高中数学复数知识点概要
(完整版)复数知识点归纳

复数【知识梳理】一、复数的根本概念1、虚数单位的性质i 叫做虚数单位,并规定:①i 可与实数进行四那么运算;②12-=i ;这样方程12-=x 就有解了,解为i x =或i x -=2、复数的概念〔1〕定义:形如bi a +(a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,a 叫做,b 叫做。
全体复数所成的集合C 叫做复数集。
复数通常用字母z 表示,即bi a z +=(a ,b ∈R )对于复数的定义要注意以下几点:①bi a z +=(a ,b ∈R )被称为复数的代数形式,其中bi 表示b 与虚数单位i 相乘②复数的实部和虚部都是实数,否那么不是代数形式〔2〕分类:例题:当实数m 为何值时,复数i m m m m )3()65(-++-是实数?虚数?纯虚数?二、复数相等也就是说,两个复数相等,充要条件是他们的实部和虚局部别相等注意:只有两个复数全是实数,才可以比拟大小,否那么无法比拟大小例题:0)4()3(=-+-+i x y x 求y x ,的值三、共轭复数bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==⇔bi a z +=的共轭复数记作bi a z -=_,且22_b a z z +=⋅ 四、复数的几何意义1、复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。
显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。
2、复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系〔复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量〕相等的向量表示同一个复数例题:〔1〕当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点①位于第三象限;②位于直线x y =上〔2〕复平面内)6,2(=→AB ,→→AB CD //,求→CD 对应的复数3、复数的模:向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =假设bi a z +=1,di c z +=2,那么21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:i z +=2,求i z +-1的值五、复数的运算〔1〕运算法那么:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R①i d b c a di c bi a z z )()(21+++=+++=±②i ad bc bd ac di c bi a z z )()()()(21++-=+⋅+=⋅ ③2221)()()()())(()()(dc i ad bc bd ac di c di c di c bi a di c bi a z z +-++=-⋅+-+=++= 〔2〕OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-.六、常用结论〔1〕i ,12-=i ,i i -=3,14=i求n i ,只需将n 除以4看余数是几就是i 的几次例题:=675i(2)i i 2)1(2=+,i i 2)1(2-=-(3)1)2321(3=±-i ,1)2321(3-=±i 【思考辨析】判断下面结论是否正确(请在括号中打“√〞或“×〞)(1)方程x 2+x +1=0没有解.( )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(3)复数中有相等复数的概念,因此复数可以比拟大小.( )(4)原点是实轴与虚轴的交点.( )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.() 【考点自测】1.(2021·安徽)设i是虚数单位,那么复数(1-i)(1+2i)等于()A.3+3iB.-1+3iC.3+iD.-1+i2.(2021·课标全国Ⅰ)复数z满足(z-1)i=1+i,那么z等于()A.-2-iB.-2+iC.2-iD.2+i3.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.假设C为线段AB的中点,那么点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+ia,b∈R a+i=2-b i,那么(a+b i)2等于()A.3-4iB.3+4iC.4-3iD.4+3i5.(1+2i)=4+3i,那么z=________.【题型分析】题型一复数的概念例1z=a-(a∈R)是纯虚数,那么a的值为()(2)a∈R,复数z1=2+a i,z2=1-2i,假设为纯虚数,那么复数的虚部为()A.1B.iC.(3)假设z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,那么“m=1〞是“z1=z2〞的()引申探究1.对本例(1)中的复数z,假设|z|=,求a的值.2.在本例(2)中,假设为实数,那么a=________.思维升华解决复数概念问题的方法及考前须知(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+b i(a,b∈R)的形式,以确定实部和虚部.(1)假设复数z=(x2-1)+(x-1)i为纯虚数,那么实数x的值为()A.-1B.0C.1D.-1或1(2)(2021·浙江)i是虚数单位,a,b∈R,那么“a=b=1〞是“(a+b i)2=2i〞的()题型二复数的运算命题点1复数的乘法运算例2(1)(2021·湖北)i为虚数单位,i607的共轭复数为()A.iB.-iC.1D.-1(2)(2021·北京)复数i(2-i)等于()A.1+2iB.1-2iC.-1+2iD.-1-2i命题点2复数的除法运算例3(1)(2021·湖南)=1+i(i为虚数单位),那么复数z等于()A.1+iB.1-iC.-1+iD.-1-i(2)()6+=________.命题点3复数的运算与复数概念的综合问题例4(1)(2021·天津)i是虚数单位,假设复数(1-2i)(a+i)是纯虚数,那么实数a的值为________.(2)(2021·江苏)复数z=(5+2i)2(i为虚数单位),那么z的实部为________.命题点4复数的综合运算例5(1)(2021·安徽)设i是虚数单位,表示复数zz=1+i,那么+i·等于()(2)假设复数z满足(3-4i)z=|4+3i|,那么z的虚部为()A.-4B.-C.4D.思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四那么运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.(3)复数的运算与复数概念的综合题,先利用复数的运算法那么化简,一般化为a+b i(a,b∈R)的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法那么化简,一般化为a+b i(a,b∈R)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法那么进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2021·山东)假设复数z满足=i,其中i为虚数单位,那么z等于()A.1-iB.1+iC.-1-iD.-1+i(2)2021=________.(3)+2021=________.题型三复数的几何意义例6(1)(2021·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的()(2)△ABC的三个顶点对应的复数分别为z1,z2,z3,假设复数z满足|z-z1|=|z-z2|=|z-z3|,那么z 对应的点为△ABC的()思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,那么图中表示z的共轭复数的点是()A.AB.BC.CD.D(2)z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a i)2在复平面内对应的点在第一象限,求实数a的取值范围.【思想与方法】解决复数问题的实数化思想典例x,y为共轭复数,且(x+y)2-3xy i=4-6i,求x,y.思维点拨(1)x,y为共轭复数,可用复数的根本形式表示出来;(2)利用复数相等,将复数问题转化为实数问题.温馨提醒(1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最根本的思想方法. (2)此题求解的关键是先把x、y用复数的根本形式表示出来,再用待定系数法求解.这是常用的数学方法.(3)此题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解.【方法与技巧】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.z=a+b i(a,b∈R z=a+b i(a,b∈R),既要从整体的角度去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两局部去认识.3.在复数的几何意义中,加法和减法对应向量的三角形法那么,其方向是应注意的问题,平移往往和加法、减法相结合.【失误与防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比拟大小.a+b i(a,b∈R)中的实数b,即虚部是一个实数.【稳固练习】1.(2021·福建)假设(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),那么a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,4z=+i,那么|z|等于()A.B.C.3.(2021·课标全国Ⅱ)假设a为实数,且(2+a i)(a-2i)=-4i,那么a等于()4.假设i为虚数单位,图中复平面内点Z表示复数z,那么表示复数的点是()A.EB.FC.GD.H5.(2021·江西)是z的共轭复数,假设z+=2,(z-)i=2(i为虚数单位),那么z等于()A.1+iB.-1-iC.-1+iD.1-i6.(2021·江苏)设复数z满足z2=3+4i(i是虚数单位),那么z的模为________.=a+b i(a,b为实数,i为虚数单位),那么a+b=________.8.复数(3+i)m-(2+i)对应的点在第三象限内,那么实数m的取值范围是________.9.计算:(1);(2);(3)+;(4).z1=+(10-a2)i,z2=+(2a-5)i,假设1+z2是实数,求实数a的值.【能力提升】z1,z2满足z1=m+(4-m2)i,z2=2cosθ+(λ+3sinθ)i(m,λ,θ∈R),并且z1=z2,那么λ的取值范围是()A.[-1,1]B.C.D.f(n)=n+n(n∈N*),那么集合{f(n)}中元素的个数为()z=x+y i,且|z-2|=,那么的最大值为________.a∈R,假设复数z=+在复平面内对应的点在直线x+y=0上,那么a的值为____________.15.假设1+i是关于x的实系数方程x2+bx+c=0的一个复数根,那么b=________,c=________. 【稳固练习参考答案】1A.2.B.3.B..5.D.6..7.3.8.m<.9.解(1)==-1-3i.(2)====+i.(3)+=+=+=-1.(4)====--i.10.解1+z2=+(a2-10)i++(2a-5)i=+[(a2-10)+(2a-5)]i=+(a2+2a-15)i.∵1+z2是实数,∴a2+2a-15=0,解得a=-5或a=3.又(a+5)(a-1)≠0,∴a≠-5且a≠1,故a=3.11.解析由复数相等的充要条件可得化简得4-4cos2θ=λ+3sinθ,由此可得λ=-4cos2θ-3sinθ+4=-4(1-sin2θ)-3sinθ+4=4sin2θ-3sinθ=42-,因为sinθ∈[-1,1],所以4sin2θ-3sinθ∈.答案C12.解析f(n)=n+n=i n+(-i)n,f(1)=0,f(2)=-2,f(3)=0,f(4)=2,f(5)=0,…∴集合中共有3个元素.答案 C13.解析∵|z-2|==,∴(x-2)2+y2max==.14.解析∵z=+=+i,∴依题意得+=0,∴a=0.15.解析∵实系数一元二次方程x2+bx+c=0的一个虚根为1+i,∴其共轭复数1-i也是方程的根.由根与系数的关系知,∴b=-2,c=3.。
高中数学中的复数

高中数学中的复数在高中数学学习中,我们常常会接触到复数这个概念。
复数是由实数部分和虚数部分构成的数,学习和理解复数对于我们深入了解数学的本质和应用具有重要的意义。
本文将介绍复数的定义、性质以及在高中数学中的应用。
一、复数的定义复数是由实数部分和虚数部分构成的数,通常表示为a+bi的形式,其中a为实数部分,b为虚数部分,i为虚数单位,满足i²=-1。
二、复数的性质1. 复数的加法和减法:将实部相加或相减,虚部相加或相减。
2. 复数的乘法:实部和虚部分别相乘得到新的实部和虚部。
3. 复数的除法:分子和分母同时乘以共轭复数,并运用乘法规则进行计算。
4. 复数的模:复数的模等于实数部分和虚数部分的平方和的平方根。
5. 复数的共轭:将复数的虚数部分取相反数得到共轭复数。
6. 复数的指数表示:根据欧拉公式,复数可以表示为e^ix的形式。
三、复数在高中数学中的应用1. 解方程:复数可以用于解决各类方程,包括二次方程、三次方程等。
复数根定理告诉我们,若一个多项式方程没有实数根,则必定存在复数根。
2. 向量运算:复数可以用于表示平面上的向量,利用复数的加法和乘法可以进行向量的运算,如相加、相减、旋转等。
3. 三角函数:复数可以与三角函数建立联系,通过欧拉公式,我们可以将三角函数用复数表示,进而简化三角函数的计算。
4. 矩阵运算:复数在矩阵运算中也有广泛应用,包括复数矩阵的加法、乘法、求逆等。
5. 物理学中的应用:复数在物理学中也有重要应用,如交流电路中的分析、波动学中的表示等。
综上所述,复数在高中数学中扮演着重要的角色。
通过学习和理解复数的定义和性质,我们可以更好地应用复数解决各种数学问题,并将其应用到更广泛的领域中。
在学习过程中,我们应注重对复数概念的理解和运用能力的培养,以提高自己在数学领域的素养和能力。
通过深入研究和探索,我们能够更好地理解数学的本质,并在实际问题中灵活应用数学知识。
高中数学复数知识点概要

高中数学复数知识点概要
高中数学复数知识点概要
复数是高中代数的重要内容,在高考试题中约占8%
-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强.
在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究.
1.知识网络图
2.复数中的难点
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
(2)复数三角形式的乘方和开方.有部分学生对运算法则知。
复数的知识点总结

复数的知识点总结一、基本概念复数是指由实数和虚数构成的数,形式为 a + bi,其中a 和b 都是实数,i 是虚数单位,满足 i² = -1。
实数是指具有有限位小数的数或无理数,而虚数是不能用实数表示的数。
二、复数的表示法复数有一般式、三角式和指数式三种表示法。
1. 一般式:a + bi其中 a 表示实部,b 表示虚部。
2. 三角式:r(cosθ + i sinθ)其中 r 表示复数的模,θ 表示复数的辐角或幅角。
3. 指数式:re^(iθ)其中 r 表示复数的模,e 是自然对数的底数,θ 表示复数的幅角。
三、基本运算1. 加法(a + bi) + (c + di) = (a + c) + (b + d)i即实部相加,虚部相加。
2. 减法(a + bi) - (c + di) = (a - c) + (b - d)i即实部相减,虚部相减。
3. 乘法(a + bi) × (c + di) = (ac - bd) + (ad + bc)i即实数部分按照常规乘法规则计算,虚数部分交叉相乘。
4. 除法(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)/(c² + d²)i即分子分母同除以 c + di,然后将分子分母分别展开并化简。
5. 共轭复数(a + bi) 的共轭复数为 (a - bi),共轭复数满足以下性质:a. 它们的实部相等。
b. 它们的虚部相等,但符号相反。
c. 一个复数与它的共轭复数的积等于这个复数的模的平方。
d. 两个复数的积的共轭等于它们的共轭的积。
四、复数的模和幅角1. 复数模|r|复数的模是指复数与原点之间的距离,可以用勾股定理求出。
|r| = √(a² + b²)2. 复数的幅角θ复数的幅角是指复数与正实轴正方向的夹角,可以用反正切函数求出。
复数全章知识点

复数全章知识点一、知识概述《复数》①基本定义:复数就是把实数和虚数合在一起的数。
比如,3是实数,但如果写成3 + 0i,这就是复数了。
其中i是虚数单位,规定i的平方等于-1。
就好像有一个神秘的数字世界,原本只有像1、2、3这些实实在在能看到摸到的实数,但科学家为了解决一些问题,发现还得有像i这么个神奇的东西,当它和实数组合起来就成了复数。
②重要程度:在数学学科里可是非常重要的,很多数学问题,特别是和方程、函数相关的,如果没有复数的概念,就没办法完整解决。
像在高等数学、物理学中的交流电计算等领域它可都是大功臣。
③前置知识:要掌握好实数的知识,像有理数、无理数,它们的运算规则,四则运算这些基本功。
因为复数也会用到实数的运算规则。
④应用价值:在电工学里,计算交流电的时候,如果只考虑实数,很多计算是没办法进行的。
因为交流电是有相位差的,而这个相位差就是复数里虚数部分在现实中的体现。
在信号处理里,也经常用到复数,把信号分解成实部和虚部来分别处理。
二、知识体系①知识图谱:复数在数学学科里算是数系扩充后的内容,它是实数系的扩展。
如果我们把数系比作一个家族,实数是家族的一大部分,那复数就是把这个家族又扩大了一些,把像i这种很奇怪的成员也包含进来了。
②关联知识:和方程、函数特别是多项式函数有很大联系。
许多多项式方程在实数范围内无解,但在复数范围内就有解了。
还和向量有点联系。
可以把复数看成一种特殊的向量,实部和虚部分别是向量的两个分量。
③重难点分析:- 掌握难度:我刚学的时候觉得有点难的就是虚数单位i这个概念,有点抽象。
它不像实数那么直观。
- 关键点:理解复数的实部、虚部,还有i的平方等于-1这条铁律。
能熟练进行复数的四则运算。
④考点分析:- 在考试中,如果是基础数学考试,会重点考查复数的基本运算,像加、减、乘、除。
比如出一道题让你计算(2 + 3i)+(1 - 2i),这种简单的计算。
如果是稍难一点的或者高等数学考试,会考查复数在方程中的应用,比如解一个在实数内无解的二次方程在复数范围内的解。
高中数学中的复数运算知识点总结

高中数学中的复数运算知识点总结在高中数学学习中,复数运算是一个重要的知识点。
复数是由实数和虚数构成的数,其运算包括四则运算、乘方运算等。
下面将对高中数学中的复数运算进行总结。
一、复数的定义复数是由实部和虚部构成的数,通常表示为a+bi,其中a为实部,b为虚部,i是虚数单位。
实部和虚部都是实数,虚部的系数b前面必须加上虚数单位i。
二、复数加法和减法1. 加法复数a+bi和c+di相加,实部和虚部分别相加即可,即(a+bi)+(c+di)=(a+c)+(b+d)i。
2. 减法复数a+bi和c+di相减,实部和虚部分别相减即可,即(a+bi)-(c+di)=(a-c)+(b-d)i。
三、复数乘法和除法1. 乘法复数a+bi和c+di相乘,按照分配律展开式进行计算,即(a+bi)(c+di) = (ac-bd)+(ad+bc)i。
2. 除法复数a+bi除以c+di,先将被除数和除数的虚部有理化,然后根据乘法的倒数性质进行计算。
先将除数的虚部变号,得到复数的共轭复数,然后将除数乘以其共轭复数,再将结果化简为标准形式即可。
四、复数的乘方和开方1. 乘方复数的乘方可以使用二项式定理进行展开,然后根据i的幂次去化简。
2. 开方复数的开方可以先将复数化为三角形式或指数形式,然后利用根式的性质进行计算。
五、复数的模和辐角1. 模复数a+bi的模用|a+bi|表示,|a+bi|=√(a²+b²)。
2. 辐角复数a+bi的辐角用θ表示,可以通过a和b的值以及复数所在象限求得,tanθ=b/a。
六、复数的共轭与倒数1. 共轭复数复数a+bi的共轭复数记作a-bi,共轭复数的实部相同,虚部的符号相反。
2. 复数的倒数复数a+bi的倒数记作1/(a+bi),倒数的实部和虚部由实部和虚部的比例求得。
综上所述,高中数学中的复数运算涉及到复数的加法、减法、乘法、除法,以及乘方、开方等运算。
同时,复数的模、辐角、共轭与倒数也是重要的概念。
高中数学复数知识点总结

高中数学复数知识点总结复数是数学中一个重要的概念,它由实数和虚数构成。
在高中数学中,我们学习了复数的表示形式、运算法则以及复数的应用。
下面是对高中数学中复数知识点的总结,希望对您有所帮助。
一、复数的定义和表示形式复数是由实数和虚数构成的数,一般表示为a+bi,其中a为实部,b为虚部,i为虚数单位,满足i²=-1。
实部和虚部可以是任意实数。
当虚部为0时,复数退化为实数。
二、复数的运算法则1. 复数的加法和减法:分别对实部和虚部进行相加或相减。
2. 复数的乘法:将复数写为a+bi和c+di的形式,然后应用分配律进行计算。
3. 复数的除法:将除数乘以共轭复数的分子和分母,然后将分子和分母分别展开,最后进行化简。
4. 复数的乘方和开方:使用欧拉公式、指数形式以及三角函数的相关知识,将复数转化为指数形式进行计算。
5. 复数的共轭:实部不变,虚部变号。
6. 复数的模:复数与自身的共轭复数的乘积的平方根。
三、复数的应用1. 解方程:复数可以用来解决无实数解的方程,如x²+1=0。
2. 平面向量:复数可以表示平面上的向量,方向由复数的幅角表示,长度由复数的模表示。
3. 电路分析:复数可以用于分析交流电路,计算电流、电压和功率。
4. 振动系统:复数可以用于描述和分析振动系统的运动情况。
5. 信号处理:复数可以用于处理信号的频率、相位和幅度等特征。
四、常见的复数知识点1. 欧拉公式:e^(iθ) = cosθ + isinθ,其中i为虚数单位,θ为实数。
2. 常见公式:(a+bi)(a-bi)=a²+b²,其中a、b为实数。
3. 求方程的根:如x²+1=0的根为±i。
4. 模的性质:|z₁·z₂|=|z₁|·|z₂|,其中z₁、z₂为复数。
5. 幂的性质:(a+bi)ⁿ=aⁿ+[C(n,1)aⁿ⁻¹b+C(n,2)aⁿ⁻²b²+...+C(n,n-1)abⁿ⁻¹+bn]i,其中C(n,m)为组合数。
高考复数知识点精华总结

复 数1.复数的概念:(1)虚数单位i ;(2)复数的代数形式z=a+bi ,(a, b ∈R);(3)复数的实部、虚部、虚数与纯虚数。
2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。
应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。
4.复数的四则运算若两个复数z1=a1+b1i ,z2=a2+b2i ,(1)加法:z1+z2=(a1+a2)+(b1+b2)i ;(2)减法:z1-z2=(a1-a2)+(b1-b2)i ;(3)乘法:z1〃z2=(a1a2-b1b2)+(a1b2+a2b1)i ;(4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。
(6)特殊复数的运算:① n i (n 为整数)的周期性运算; ②(1±i)2 =±2i ;③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0.5.共轭复数与复数的模(1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0).(2)复数z=a+bi 的模|Z|=22a b +, 且2||z z z ⋅==a 2+b 2.6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相等规定为a+bi=c+di a c b d =⎧⇔⎨=⎩. 由这个定义得到a+bi=0⇔00a b =⎧⎨=⎩. 两个复数不能比较大小,只能由定义判断它们相等或不相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几何、三角表示方法以及复数的运算.方程、方程组,数形结合,分域讨论,等价转化的数学思想与方法在本章中有突出的体现.而复数是代数,三角,解析几何知识,相互转化的枢纽,这对拓宽学生思路,提高学生解综合习题能力是有益的.数、式的运算和解方程,方程组,不等式是学好本章必须具有的基本技能.简化运算的意识也应进一步加强.在本章学习结束时,应该明确对二次三项式的因式分解和解一元二次方程与二项方程可以画上圆满的句号了,对向量的运算、曲线的复数形式的方程、复数集中的数列等边缘性的知识还有待于进一步的研究.
1.知识网络图
2.复数中的难点
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.
(3)复数的辐角主值的求法.
(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.
3.复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复
数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.
(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.
(4)复数集中一元二次方程和二项方程的解法.。