初中数学(初二组)竞赛试卷及其解析
初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
全国初二数学竞赛试题及答案解析

全国初二数学竞赛试题及答案解析一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不规则三角形答案:A解析:根据勾股定理的逆定理,如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2. 已知x^2 - 5x + 6 = 0,求x的值。
A. 1B. 2C. 3D. 6答案:C解析:这是一个二次方程,可以通过因式分解法求解。
x^2 - 5x + 6 = (x - 2)(x - 3) = 0,解得x = 2 或 x = 3。
...30. 已知一个数列的前三项为2, 3, 5,且每一项都是前两项的和,求第10项的值。
答案:55解析:这是一个斐波那契数列,每一项都是前两项的和。
根据数列的规律,可以依次计算出第10项的值为55。
二、填空题(每题4分,共20分)31. 如果一个圆的半径是r,那么它的面积是______。
答案:πr^232. 一个长方体的长、宽、高分别是a、b、c,它的体积是______。
答案:abc...三、解答题(每题10分,共50分)36. 已知一个等腰三角形的底边长为10厘米,两腰的长度相等,且底角为45度。
求这个等腰三角形的面积。
答案:25√2解析:首先,根据底角为45度,我们可以知道这是一个等腰直角三角形。
根据勾股定理,两腰的长度为底边的√2倍,即10√2厘米。
然后,根据三角形面积公式(底×高÷2),面积为10×(10√2)÷2=50√2平方厘米。
37. 一个数的平方减去这个数等于36,求这个数。
答案:9 或 -4解析:设这个数为x,根据题意,我们有x^2 - x - 36 = 0。
这是一个二次方程,可以通过因式分解法求解:(x - 9)(x + 4) = 0。
解得x = 9 或 x = -4。
...结束语:本次全国初二数学竞赛试题涵盖了代数、几何、数列等多个领域,旨在考察学生的数学基础知识和解题能力。
八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
数学初二竞赛试题及答案

数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。
2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。
3. 一个数的立方根是2,那么这个数是________。
4. 一个数的倒数是1/2,那么这个数是________。
5. 一个圆的半径是5cm,那么它的直径是________cm。
三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。
2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。
数学初二竞赛试卷及答案

一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是:A. -3B. -2C. 0D. 12. 如果一个数的平方等于4,那么这个数是:A. ±2B. ±1C. ±4D. ±33. 下列各式中,正确的是:A. 3x + 2 = 2x + 5B. 2(x + 3) = 2x + 6C. 3x - 2 = 2x - 5D. 2(x - 3) = 2x - 94. 一个长方形的长是8厘米,宽是5厘米,它的周长是:A. 16厘米B. 20厘米C. 24厘米D. 32厘米5. 如果a > b,那么下列不等式中不正确的是:A. a + 3 > b + 3B. a - 3 < b - 3C. a + 2 > b + 2D. a - 2 < b - 2二、填空题(每题5分,共25分)6. 若x² - 4x + 3 = 0,则x的值为______。
7. 若a² - 5a + 6 = 0,则a的值为______。
8. 若3a - 2 = 5,则a的值为______。
9. 若2x + 3 = 11,则x的值为______。
10. 若x - 7 = 3,则x的值为______。
11. 若a² = 25,则a的值为______。
12. 若|a| = 5,则a的值为______。
三、解答题(每题10分,共30分)13. 解方程:2x - 5 = 3x + 1。
14. 解方程:x² - 6x + 9 = 0。
15. 已知等腰三角形的底边长为10厘米,腰长为13厘米,求该三角形的周长。
四、应用题(每题15分,共30分)16. 一辆汽车从甲地出发,以每小时60千米的速度行驶,3小时后到达乙地。
然后汽车以每小时50千米的速度返回甲地,返回时遇到一辆自行车,自行车从乙地出发,速度为每小时15千米,自行车与汽车相遇后继续向甲地行驶,汽车与自行车相遇后继续行驶,直到返回甲地。
(word完整版)八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。
C.3错误!未找到引用源。
-错误!未找到引用源。
=3(a ≥0) D.错误!未找到引用源。
·错误!未找到引用源。
=错误!未找到引用源。
(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。
初二数学竞赛试卷及答案

一、选择题(每题3分,共30分)1. 已知一个等腰三角形的底边长为8cm,腰长为10cm,则该三角形的周长为()A. 24cmB. 26cmC. 28cmD. 30cm2. 下列分数中,分子分母互质的是()A. $\frac{2}{3}$B. $\frac{4}{5}$C. $\frac{6}{7}$D. $\frac{8}{9}$3. 下列数中,能被3整除的是()A. 258B. 267C. 278D. 2874. 下列图形中,具有轴对称性的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形5. 下列方程中,方程的解为x=2的是()A. 2x-1=3B. 2x+1=3C. 2x-1=5D. 2x+1=56. 下列数中,平方根是整数的是()A. 16B. 25C. 36D. 497. 下列代数式中,合并同类项后的结果为3x的是()A. 2x+1xB. 2x-1xC. 2x+2xD. 2x-2x8. 下列函数中,函数值为正数的x值有()A. x=1B. x=2C. x=3D. x=49. 下列数中,是质数的是()A. 17B. 18C. 19D. 2010. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 平行四边形二、填空题(每题5分,共25分)11. 若a=3,b=5,则a+b的值为______。
12. 下列分数中,最简分数是______。
13. 下列数中,能被5整除的是______。
14. 下列方程中,方程的解为x=3的是______。
15. 下列数中,平方根是正数的是______。
16. 下列代数式中,合并同类项后的结果为5x的是______。
17. 下列函数中,函数值为0的x值有______。
18. 下列数中,是合数的是______。
19. 下列图形中,面积最小的是______。
20. 若a=2,b=4,则a×b的值为______。
三、解答题(每题15分,共30分)21. 已知一个等腰三角形的底边长为8cm,腰长为10cm,求该三角形的面积。
初二数学竞赛题试卷答案

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()A. √16B. √25C. √9D. √-4答案:C解析:有理数是可以表示为两个整数之比的数,即形如a/b(a和b为整数,b不为0)的数。
√16=4,√25=5,√9=3,都是整数,属于有理数。
而√-4是无理数,因为它不能表示为两个整数之比。
2. 已知方程x^2 - 3x + 2 = 0,则该方程的解是()A. x = 1, x = 2B. x = 1, x = 3C. x = 2, x = 3D. x = 0, x = 2答案:A解析:这是一个一元二次方程,可以通过因式分解来解。
方程可以分解为(x -1)(x - 2) = 0,所以x = 1或x = 2。
3. 下列图形中,全等的是()A. 两个等边三角形B. 两个等腰三角形C. 两个等腰梯形D. 两个等腰直角三角形答案:D解析:全等图形要求对应边和对应角都相等。
在给出的选项中,只有等腰直角三角形满足这个条件。
4. 在直角坐标系中,点P(-3,2)关于原点的对称点是()A.(3,-2)B.(-3,-2)C.(2,-3)D.(-2,3)答案:A解析:点P关于原点的对称点意味着将点P的横坐标和纵坐标都取相反数。
所以,对称点是(3,-2)。
5. 下列不等式中,正确的是()A. 2x > 4B. 3x < 6C. 4x ≤ 12D. 5x ≥ 15答案:C解析:将不等式两边都除以相应的系数,可以得到x的值。
对于A,x > 2;对于B,x < 2;对于C,x ≤ 3;对于D,x ≥ 3。
只有C中的不等式是正确的。
二、填空题(每题5分,共25分)6. 若a + b = 5,ab = 6,则a^2 + b^2的值为______。
答案:37解析:利用恒等式(a + b)^2 = a^2 + 2ab + b^2,可以得到(a + b)^2 = 5^2 = 25。
将ab = 6代入,得到a^2 + 26 + b^2 = 25,即a^2 + b^2 = 25 - 12 = 13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学(初二组)竞赛试卷及其解析
一、选择题(本大题满分42分,每小题7分)
1、设13x ≤≤
,则13x x ---的最大值与最小值的和
( ) (A
)0 (B )1 (C
)2 (D )3
解析:由条件13x ≤
≤,可得1324x x x ---=-,当1x =,得最小值-2,当3x =,得最大值2,故选A
2、设x =y 是不超过x 的最大整数,求
1
x y
-= ( ) (A 2 (B )2 (C 1 (D 1
解析:易得
2y =2,故选B.
3、如图,已知在四边形ABCD 中,∠ACB =∠BAD=105°,∠ABC=∠ADC=45°,则∠CAD=( )
(A )65° (B )70° (C )75° (D )80°
解析:此题由三角形内角和及角的构成容易得,答案为C.
4、由1、2、4分别各用一次,组成一个三位数,这样的三位数中是4的倍数的三位数共有 ( )
(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个
解析:是4的倍数必然个位数不能是1,再将124、142、214、412试除以4,便可得答案为B.
5、已知:,,x y z 为三个非负实数,且满足325
231x y z x y z ++=⎧⎨+-=⎩,设37s x y z =
+-,则s 的最大值
是( )
(A )111
- (B )111 (C ) 57- (D )7
5-
解析:由方程组解出73711x z y z
=-⎧⎨
=-⎩,由,x y 非负实数,可解得37711z ≤≤,
∵373(73)711732s x y z z z z z =+-=-+--=-,取7
11
z =
代入即可求得,答案为A
6、如图,∠DAP =∠PBC=∠CDP=90°,AP=PB=4,AD=3,则BC 的长是( )
(A )323 (B )16 (C )413 (D )412
解析:延长DP 交CB 延长线于点E ,如图,由三角形全等可证PE=DP,AD=BE ,由勾股定理可求DP=5,故DE=10,再由△EB P ∽△EDC ,可得
EB EP
ED EC
=,求得EC=
503,BC=EC-EB=503-3=413
,答案C 二、填空题(本大题满分28分,每小题7分)
1、关于x 的不等式组3361x x a
x -≥+⎧⎨≥⎩
的解是13x ≤≤,则a 的值是
解析:解不等式组得313a x --≤
≤
,故
33,123
a
a --=∴=- 2、如果281p p +与都是质数,则p =
解析:考虑到是初二竞赛,试值可求得P=3
3、设,x y 为两个不同的非负整数,且213xy x y ++=,则x y +的最小值是
解析:∵,x y 为两个不同的非负整数,∴0213x ≤<,故x 取0~6的整数,代入再求符合条件的
y ,
符合条件的整数解只有024
,,1331x x x y y y ===⎧⎧⎧⎨
⎨⎨
===⎩⎩⎩
三组,故x y +的最小值为5. 4、如图,已知ABCD 为正方形,△AEP 为等腰直角三角形,∠EAP=90°,且D 、P 、E 三点共线,若EA=AP=1,
DP=
解析:连结BE ,易证△AE B ≌△APD ,故PD=EB ,∠APD =∠AEB 。
∵△AEP 为等腰直角三角形,∠EAP=90°
∴∠AEP=∠APE=45° ∴∠APD=135° 故∠AEB=135° ∴∠PEB=∠AEB-∠AEP=135°-45°=90° 可求
PE=
再由勾股定理可求得
所以
设实数k 满足01k <<,解关于x 的分式方程
2211
1k k x x x x
+-=-- 解 ∵
22111k k x x x x +-=-- ∴221(1)(1)
(1)(1)
kx k x x x x x x x +--=--- ∴21(1)(1)kx k x -=+-…………………………………………………………5分
∴(1)k x k -=- ,又∵01k <<
∴1k
x k
=
- …………………………………………………………10分 当1
2
k
=
时,1x =为增根,原方程无解………………………………………15分 当01k <<且12k ≠时,原方程的解是1k
x k
=-…………………………………20分
四、(本大题满分25分)
已知一次函数(0)y kx b k =+≠的图像与x 轴的正半轴交于E 点,与y 轴的正半轴交于F 点,与一次函数21y x =-的图像相交于A (m,2),且A 点为EF 的中点. (1)求一次函数y kx b =+的表达式;
(2)若一次函数21y x =-的图像与x 轴相交于P 点,求三角形APE 的面积。
解析:∵函数21y x =-过点A (m,2) ∴32
m =
A 点坐标3
(,2)2……………………5分
∵ A 3
(
,2)2
点为EF 的中点. ∴E (3,0) F (0,4) ………………………………10分 ∴ 一次函数解析式为4
43
y x =-+ ……………………………………………15分
∵一次函数21y x =-的图像与x 轴相交于P 点,
∴ P 1
(
,0)2
………………………………20分 如图:所以PE=5
2, PE 边上的高为2,
∴515
2222
S ∆=⨯⨯=…………………………………25分
如图,已知AB=A C,∠BAC=∠CDE=90°,DC=DE,F是BE的中点,求证:FA=FD且FA⊥FD 解析:连结AF、DF,并延长AF至G,使FG=AF,
连结DG、EG
∵
BF EF
AFB GFE FG FA
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△AFB≌△GFE
∴AB=GE ,∠B=∠FEG……………………5分
∵ABED为四边形,且∠BAC=∠CDE=90°,
∴∠B+∠FED+∠CAD+∠CDA=180°,
又∵∠C+∠CAD+∠CDA=180°
∴∠C=∠B+∠FED=∠FEG+∠FED=∠GED………………10分又因为GE=AB=AC,CD=ED
∴△ACD≌△GED…………………………………15分
∴AD=GD,∠ADC=∠GDE
而AF=GF
∴AF⊥DF…………………………………20分
又∵∠GDE+∠GDC=∠CDE=90°
∴∠ADC+∠GDC=90°即∠ADG=90°
∴DF=AF…………………………………25分。