2015深圳中考数学宝安二模试题及答案
2015年深圳市中考数学试卷-(附答案)

2015年广东省深圳市中考数学试卷一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C .D .2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1063.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a44.(3分)下列图形既是中心对称又是轴对称图形的是()A .B .C .D .5.(3分)下列主视图正确的是()A .B .C .D .6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,907.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A .B .C .D .8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.49.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50° B.20° C.60° D.70°10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.10011.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A .B .C .D .12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =.在以上4个结论中,正确的有()A.1 B.2 C.3 D.4二、填空题:13.(3分)因式分解:3a2﹣3b2= .14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= .三、解答题:17.计算:|2﹣|+2sin60°+﹣.18.解方程:.19.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B和O 重合的时候,求三角板运动的时间;(2)如图2,当AC和半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的分析式;(2)DE上是否存在点P到AD的距离和到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.2015年广东省深圳市中考数学试卷--答案一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.【解答】解:﹣15的相反数是15,故选:A.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【解答】解:将316000000用科学记数法表示为:3.16×108.故选B.3.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选C.4.(3分)下列图形既是中心对称又是轴对称图形的是()A .B .C .D .【解答】解:A、∵此图形旋转180°后不能和原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能和原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能和原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能和原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.5.(3分)下列主视图正确的是()A .B .C .D .【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.7.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A .B .C .D .【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线和y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线和x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.9.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A .50°B .20°C .60°D .70° 【解答】解:∵AB 为⊙O 直径, ∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°, ∴∠DBA=∠ACD=70°. 故选D .10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .140 B .120 C .160 D .100【解答】解:设商品的进价为每件x 元,售价为每件0.8×200元,由题意,得 0.8×200=x+40, 解得:x=120. 故选:B .11.(3分)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )A .B .C .D .【解答】解:∵PB+PC=BC , 而PA+PC=BC , ∴PA=PB ,∴点P 在AB 的垂直平分线上,即点P 为AB 的垂直平分线和BC 的交点. 故选D .12.(3分)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽△BEF ;④S △BEF =.在以上4个结论中,正确的有( )A .1B .2C .3D .4【解答】解:由折叠可知,DF=DC=DA ,∠DFE=∠C=90°, ∴∠DFG=∠A=90°, ∴△ADG ≌△FDG ,①正确; ∵正方形边长是12, ∴BE=EC=EF=6,设AG=FG=x ,则EG=x+6,BG=12﹣x , 由勾股定理得:EG 2=BE 2+BG 2, 即:(x+6)2=62+(12﹣x )2, 解得:x=4∴AG=GF=4,BG=8,BG=2AG ,②正确;BE=EF=6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,③错误; S △GBE=×6×8=24,S △BEF=•S △GBE==,④正确.故选:C .二、填空题:13.(3分)因式分解:3a 2﹣3b 2= 3(a+b )(a ﹣b ) . 【解答】解:原式=3(a 2﹣b 2)=3(a+b )(a ﹣b ), 故答案为:3(a+b )(a ﹣b )14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为=.故答案为:.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21 个太阳.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= 16 .【解答】解:∵△BCE的面积为8,∴,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16.故答案为:16.三、解答题:17.计算:|2﹣|+2sin60°+﹣.【解答】解:原式=2﹣+2×+2﹣1=3.18.解方程:.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=,经检验x1=1和x2=都为分式方程的解.19.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20% ,参加调查的总人数为400 ,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400 人.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.20.小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×=5,∴AB=1.5+5.答:旗杆AB的高度为(1.5+5)米.21.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.22.如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B和O重合的时候,求三角板运动的时间;(2)如图2,当AC和半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【解答】(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O和切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.23.如图1,关于x 的二次函数y=﹣x 2+bx+c 经过点A (﹣3,0),点C (0,3),点D 为二次函数的顶点,DE 为二次函数的对称轴,E 在x 轴上. (1)求抛物线的分析式;(2)DE 上是否存在点P 到AD 的距离和到x 轴的距离相等?若存在求出点P ,若不存在请说明理由;(3)如图2,DE 的左侧抛物线上是否存在点F ,使2S △FBC =3S △EBC ?若存在求出点F 的坐标,若不存在请说明理由.【解答】解:(1)∵二次函数y=﹣x 2+bx+c 经过点A (﹣3,0),点C (0,3), ∴,解得,∴抛物线的分析式y=﹣x 2﹣2x+3, (2)存在,当P 在∠DAB 的平分线上时,如图1,作PM ⊥AD ,设P (﹣1,m ),则PM=PD •sin ∠ADE=(4﹣m ),PE=m ,∵PM=PE ,∴(4﹣m )=m ,m=﹣1, ∴P 点坐标为(﹣1,﹣1);当P 在∠DAB 的外角平分线上时,如图2,作PN ⊥AD ,设P (﹣1,n ),则PN=PD •sin ∠ADE=(4﹣n ),PE=﹣n ,∵PN=PE ,∴(4﹣n )=﹣n ,n=﹣﹣1, ∴P 点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P 点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵抛物线的分析式y=﹣x 2﹣2x+3, ∴B (1,0), ∴S △EBC =EB •OC=3, ∵2S △FBC =3S △EBC , ∴S △FBC =,过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,∵S△FBC=S△BQH﹣S△BFH﹣S△CFQ=HB•HQ﹣BH•HF﹣QF•FM=BH(HQ﹣HF)﹣QF•FM=BH•QF﹣QF•FM=QF•(BH﹣FM)=FQ •OB=FQ=,∴FQ=9,∵BC的分析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,),∵S△ABC=6>,∴点F不可能在A点下方,综上可知F点的坐标为(,).。
深圳市2015年中考数学试题及答案

深圳市2015年初中毕业学业考试数 学 试 题一、选择题(32361''⨯= ) 1.15-的相反数是( ) A .15B .15-C .15±D .1152.数361 000 000用科学记数法表示,以下表示正确的是( ) A .90.36110⨯B .83.6110⨯C .73.6110⨯D .73.6110⨯3.下列运算错误的是( ) A .2a a a ⋅=B .32a a a -=C .325()a a =D .314a a a -=÷4.如图1是用五块大小相同的小正方体搭的积木,该几何体的主视图为( )图1 ABCD5.下列图形中,既是中心对称又是轴对称的图形是( )ABCD6.有一组数据:75,80,80,85,90,这组数据的众数,中位数分别是( ) A .75,80B .80,80C .80,85D .80,907.不等式21x x -…的解集在数轴上表示正确的是( )ABCD8.某商品的标价为200元,8折销售仍赚40元,则商品进价是( )元 A .80B .100C .120D .1409.二次函数2(0)bx y ax c a ++≠=的图象如图2所示,下列说法①0a >;②0b >;③0c <;④240b ac ->, 其中正确的个数是( ) A .②④ B .①③ C .③④ D .①②③10.如图3,AB 为O 的直径,已知20ACD ∠=︒,则BAD ∠=( ) A .40︒B .50︒C .60︒D .70︒11.已知△ABC 中,AC AB BC <<,用尺规在线段BC 上确定一点P ,使得PA PC BC +=,则符合要求作图痕迹是( )ABCD12.如图4,已知正方形ABCD 的边长为12,点E 在BC 边上,BE EC =,将△DCE 沿DE 对折至△DFE ,延长EF 交AB 于G ,连接DG ,BF ,则给出以下4 个结论:①△ADG ≌△FDG ;②2GB AG =;③△EBF ∽△DEG ;④725BEFS=, 其所有正确结论个数是( ) A .1 B .2 C .3 D .4ABC PC P ABCPAB PCBAA 图3G F E DCBA 图4二、填空题(4312''⨯=)13.分解因式:2233a b -=______________.14.从数字1,2,3这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是______.15.如图所示,下列图均是由完全相同的“太阳型”图标按一定规律拼搭而成:第1个图案需要2个图标,第2个图案需要4个图案,第3个图案需要7个图标,…,按此规律,第5个案需要的图标个数是_______.16.如图5,Rt △ABC 直角边BC 在x 轴负半轴上,斜边AC 上的中线BD 的反向延长线交y 轴正半轴于点E , 双曲线(0)kxy x =<的图象经过A 点,若△BEC 的面积为8,则k =_______.三、解答题(567889952''''''''++++++=) 17.计算:)111222sin 60-⎛⎫︒+-⎪⎝⎭+.18.解方程:542332x x x+=--.第1个 第2个 第3个第4个19.2015年深圳市“读书月”活动结束后,教育部门就某校初三学生在该活动期间阅读课外书籍的数量进行了统计,将收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:学生读书数量扇形统计图学生读书数量条形统计图(1)x =______,这次共抽取______名学生进行调查,补全条形图;(2)在学生读书数量扇形统计图中,3本以上所对扇形的圆心角是________度;(3)若全市在校初三年级学生有6.7万名,请你估计全市初三学生在本次“读书月”活动中读书数量在3本以上的学生约有__________万名.20.如图6,小丽准备测一根测旗杆AB 的高度,已知的小丽眼睛距离地面 1.5EC =米,第一次测量点C 点和第二次测量点D 之间的距离10CD =米,30AEG ∠=︒,60AFG ∠=︒,请你帮小丽算出这旗杆的高度.(点ABCDEFG 在同一平面内,结果保留根号.)3本 以上3本2本 1本及1本以下数量3本 45%3本以上 x1本及1本以上10%2本 25%DCB 图621.为了增强居民节约用水意识,深圳市在2011年开始对供水范围内的居民用水实行“阶梯收费”,具体收费收费标准如下表:某户居民四月份用水10立方米,缴纳水费23元. (1)求a 的值;(2)若该户居民五月份所缴水费为71元,求该户居民五月份的用水量.22.如图7,形如量角器的半圆O 的半径3OE =cm ,形如三角板的△ABC 中,90ABC ∠=︒,6AB BC ==cm ,△ABC 以2cm/s 的速度从左向右移动匀速运动(点B 运到E 点时,运动停止),在运动过程中,点A ,B 始终在直线DE 上,设运动时间为t (s),当0t =时,△ABC 在半圆O 的左侧,1BD =cm .(1)当点B 运动到点O 时,求运动时间t 的值; (2)如图8,当斜边AC 与半圆O 相切时,求AD 的长;(3)如图9,当点B 运动到点E时,连接OC 交圆O 于F , 直线DF 交CE 于G ,求证:2C F C C G E=⋅.G DEO C 图9E O DBA 图8E OD CB A图723.如图10-1, 已知抛物线2bx c y x +-+=经过点(3,0)A -,)(0,3C 两点,点D 点为抛物线的顶点,DE 为抛物线的对称轴,点E 在x 轴上. (1)求抛物线的解析式;(2)探究:在抛物线线的对称轴DE 上是否存在点P ,使得点P 到直线AD 和到x 轴距离相等?若存在,求出点P 的坐标,若不存在,说明理由;(3)如图10-2,探究:在对称轴DE 左侧的抛物线上是否存在点F ,使23FBCEBCSS=,若存在,求点F 坐标,若不存在,说明理由.图10-2图10-1简明参考答案1-5.ABCBD 6-10.BABAD 11-12.DD 13.3())a b a b +-; 14.13;15.21; 16.16; 17.3;18.1x =,分式方程需要验根;19.(1)20%;400;补图略,3本以上80人;(2)72; (3)1.34.20.()1.5米;21.(1)2.3;(2)28吨.22.(1)2;(2)()3cm ;(3)略,提示:连接FE ,证: △CGF ∽△CFE .23.(1)223x y x --+=;(2)()11,P -;(3)F ⎝⎭.。
2015年深圳市中考数学试题及答案

2015年深圳市初中毕业生学业考试数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目1、15-的相反数是( )A 、15B 、15-C 、151 D 、151- 2、用科学计数法表示316000000为( )A 、71016.3⨯B 、81016.3⨯C 、7106.31⨯D 、6106.31⨯3、下列说法错误的是( )A 、2a a a =∙B 、a a a 32=+C 、523)(a a =D 、413a a a =÷-4、下列图形既是中心对称又是轴对称图形的是( )5、下列主视图正确的是( )6、在一下数据90,85,80,80,75中,众数、中位数分别是( )A 、8075,B 、80,80C 、85,80D 、90,80 7、解不等式12-≥x x ,并把解集在数轴上表示( )8、二次函数)0(2≠++=a c bx ax y 的图像如下图所示,下列说法正确的个数是( )○10>a ;○20>b ;○30<c ;○4042>-ac b 。
A 、1 B 、2 C 、3 D 、49、如图,AB 为⊙O 直径,已知为∠DCB=20o ,则∠DBA 为( )A 、o 50B 、o 20C 、o 60D 、o 7010、某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。
11、如图,已知⊿ABC ,AB<BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )12、如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:○1⊿ADG ≌⊿FDG ;○2GB=2AG ;○3⊿GDE ∽BEF ;○4S ⊿BEF =572。
在以上4个结论中,正确的有( )A 、1B 、2C 、3D 、4二、填空题:13、因式分解:=-2233b a 。
2015年广东省深圳市中考数学试题及参考答案(word解析版)

2015年广东省深圳市中考数学试题及参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.﹣15的相反数是()A.15 B.﹣15 C.115D.1152.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1063.下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a44.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.5.下列主视图正确的是()A.B.C.D.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,907.解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.49.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A .50°B .20°C .60°D .70°10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .10011.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )A .B .C .D .12.如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽△BEF ;④S △BEF =725.在以上4个结论中,正确的有( )A .1B .2C .3D .4二、填空题(本大题共4小题,每小题3分,共12分)13.因式分解:3a 2﹣3b 2= .14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 .15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 个太阳.16.如图,已知点A 在反比例函数k y x=(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E .若△BCE 的面积为8,则k= .三、解答题(本大题共7小题,共52分)17.(5分)计算:101|22sin 602-⎛⎫-+︒+- ⎪⎝⎭.18.(6分)解方程:54 2332xx x+=--.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.(83(1)某用户用水10(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(9分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣15的相反数是()A.15 B.﹣15 C.115D.115【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答过程】解:﹣15的相反数是15,故选:A.【总结归纳】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将316000000用科学记数法表示为:3.16×108.故选B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项法则对各选项分析判断即可得解.【解答过程】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选C.【总结归纳】本题考查了合并同类项,同底数幂的乘法,幂的乘方的性质,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.【知识考点】中心对称图形;轴对称图形.【思路分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答过程】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【总结归纳】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.下列主视图正确的是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从正面看得到的图形是主视图,可得答案.【解答过程】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.【总结归纳】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90。
2015年广东省深圳市中考数学试卷(含解析)

2015年广东省深圳市中考数学试卷一、选择题:D4.(3分)(2015•深圳)下列图形既是中心对称又是轴对称图形的是()D5.(3分)(2015•深圳)下列主视图正确的是()DD8.(3分)(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.>9.(3分)(2015•深圳)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()11.(3分)(2015•深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()D12.(3分)(2015•深圳)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽BEF ;④S △BEF =.在以上4个结论中,正确的有( )GBE=וGBE==二、填空题:13.(3分)(2015•深圳)因式分解:3a2﹣3b2=3(a+b)(a﹣b).14.(3分)(2015•深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.两种.因此概率为=.故答案为:.15.(3分)(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.16.(3分)(2015•深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.∴,∴三、解答题:17.(2015•深圳)计算:|2﹣|+2sin60°+﹣.﹣×18.(2015•深圳)解方程:.=都为分式方程的解.19.(2015•深圳)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调差的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.20.(2015•深圳)小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.×=5AB=1.5+51.5+5)米.(单位:元/m3).元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.t==2AO=cm3∴=,23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.∴,解得ADE=∴(﹣﹣ADE=∴(,﹣,﹣OB=,或的坐标是(,。
2015年广东省深圳市中考数学试题及解析

2015年广东省深圳市中考数学试卷一、选择题:B5.(3分)(2015•深圳)下列主视图正确的是()B.B...8.(3分)(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.9.(3分)(2015•深圳)如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )10.(3分)(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )11.(3分)(2015•深圳)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点.C.12.(3分)(2015•深圳)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽BEF ;④S △BEF=.在以上4个结论中,正确的有( )二、填空题:13.(3分)(2015•深圳)因式分解:3a2﹣3b2=.14.(3分)(2015•深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.(3分)(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.(3分)(2015•深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.三、解答题:17.(2015•深圳)计算:|2﹣|+2sin60°+﹣.18.(2015•深圳)解方程:.19.(2015•深圳)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调差的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(2015•深圳)小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.(单位:元/m3).元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.2015年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:4.(3分)(2015•深圳)下列图形既是中心对称又是轴对称图形的是()B5.(3分)(2015•深圳)下列主视图正确的是()B.B...8.(3分)(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.>9.(3分)(2015•深圳)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()10.(3分)(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()11.(3分)(2015•深圳)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点.C.12.(3分)(2015•深圳)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽BEF ;④S △BEF =.在以上4个结论中,正确的有( )GBE=•=,二、填空题:13.(3分)(2015•深圳)因式分解:3a2﹣3b2=3(a+b)(a﹣b).14.(3分)(2015•深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.两种.因此概率为=故答案为:.15.(3分)(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.16.(3分)(2015•深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.三、解答题:17.(2015•深圳)计算:|2﹣|+2sin60°+﹣.+2×+218.(2015•深圳)解方程:.,=19.(2015•深圳)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调差的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.20.(2015•深圳)小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.×=5AB=1.5+51.5+5(单位:元/m3).元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.t=OH=3cm3=23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.,(﹣﹣ADE=﹣﹣﹣,﹣OB=,的坐标是(。
2015宝安二模

实验步骤
实验现象
实验结论
取少量残余固体于试管中,加入适量的 水使之溶解,往试管中滴加 2 滴无色酚 溶液变红 酞溶液,观察现象
剩余固体是碳酸钠 和氢氧化钠混合物
①根据甲同学的猜想与验证,乙同学认为甲的结论不准确,因为 ▲ 。
②乙同学设计的实验方案是:
实验步骤
实验现象 实验结论
取少量残余固体于试管中,加入足量 ▲ ,
A.一定质量的红磷在密闭容器中燃烧
B.等质量的镁条和铁丝分别与足量的稀硫酸反应,产生气体的质量变化
C.用等质量等浓度的过氧化氢溶液在有无催化剂条件下制取氧气
D.向一定量的氢氧化钠溶液中不断加稀盐酸
10.为达到实验目的,下列实验方案或结论正确的
选项
实验目的
实验操作
A 除去铁粉中含有的少量铜粉
将混合固体加入到足量稀盐酸中,充分 反应后过滤、洗涤、干燥
B 鉴别①CuSO4 溶液②稀 H2SO4③ 不用其它任何试剂就能鉴别,且鉴别的
NaCl 溶液④NaOH 溶液
顺序为①④②③或①④③②
C 除去 CO2 中的少量 HCl 气体
先通过 NaOH 溶液,再通过浓硫酸
D 比较 Fe、Cu、Al 的金属活动性 铝丝浸入 CuSO4 溶液,铜丝浸入 Fe SO4 溶液
5.如图表示某化学反应的微观过程,下列说法正确的
A.该反应属于化合反应
B.反应物甲的质量等于生成物丁的质量
C.甲和丙均为有机物
D.甲的化学式为 C2H2
6.现欲将粗盐提纯,并用制得的精盐配制质量分数一定的氯化钠溶液,下列说法正确
的是
A.蒸发滤液时,待蒸发皿中滤液蒸干后停止加热
B.配制溶液需要经过计算、称量、量取、溶解、装液等步骤
2015宝安区第二次调研考试参考答案及评分标准

1 1 x 2 ,则可设直线 l 的解析式为: y x n 2 2
l
y G C A Q B H x
① 如图 10-3,当直线 l 与⨀ M 相切于 x 轴上方时 易知: MQ 2, OG 2 , G(0, n), H (2n,0) 则 GH 5n, MH 2n 2 易知: HQM
综上所述: S 6(t 2)
…3 分(没有分两段讨论扣 1 分) (说明:其它解法请参照评分标准酌情给分)
(3)如图 3,当 EF CD 时,过点 E 作 EN AB 于点 N ,过点 C 作 CT AB 于点 T ,则 AE 4t ,
AC AN 4 16t , ,∴ AN AB AE 5 5 BC EN 3 12t ∵ sin A ,∴ EN AB AE 5 5 16t ∴ NF AB AN BF 10 5t ………1 分 5
∵ KTR CAO, KRT COA 90
1 KT BC …………1 分 2 KT KR ∴ KRT COA , ∴ AC OC
第 3 页 共 4 页
KR AC 即 KT OC
∴ S S四边形KCTB
1 m 1 m 4 5 5 2 m 1 m 4 2 4
图 10-1
1 3 1 1 2 3 m m 2 , KR m2 m 2 (m 1)(m 4) 2 2 2 2 2
∴ AC BC AB ,则 ACB 90
2 2 2
∵ AC 5, BC 2 5, AB 5 又∵ KT
AC ,则 KT BC ,∴ S S四边形KCTB
21. (1)解:如图 8,过点 C 作 CH⊥AB 于 H,设 CH=x, ………………1 分 由已知有∠EAC=60°,∠FBC=45° E 则∠CAH=30°,∠CBH=45° 在 Rt△CBH 中,CH=HB=x, 在 Rt△CAH 中,tan∠CAH=