(完整word版)指数函数题型归纳

合集下载

指数及指数函数知识点总结及经典例题

指数及指数函数知识点总结及经典例题

高中数学必修1知识点总结—指数及指数函数1、 根式na (一般的,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈且.)35325325n n n ⎧=⎪⎨-=-⎪⎩正数的次方根是正数如当是奇数时,负数的次方根是负数如20,n a n an ⎧>±⎪⎨⎪⎩正数的次方根有个,且互为相反数如:则次方根为当是偶数时,负数没有偶次方根0的任何次方根都是0,记作0n2、nna的讨论 n nn a a =当是奇数时,;,0,0n n a a n a a a a ≥⎧==⎨-≤⎩当是偶数时, (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mnmna a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m mmnnnaa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义.义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数. (3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)rsr saa aa r s R +⋅=>∈ ②()(0,,)r s rsa a a r s R =>∈③()(0,0,)rr rab a b a b r R =>>∈一、 指数计算公式:()Q s r a ∈>,,0_____=⋅s r a a ________=sraa _____)(=s r a ______)(=r ab )1,,0_______(>∈>=*n N n m a anm,________=n na 练习 计算下列各式的值:计算下列各式的值:(1))4()3)((636131212132b a b a b a ÷- (2)()322175.003129721687064.0+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛---(3)421033)21(25.0)21()4(--⨯+-- (4)33)3(625π-+-2.已知31=+-x x ,则=+-22x x 已知23=a,513=b,则=-ba 23=____________. 3. 若21025x x =,则10x x-等于_________________【2.1.2】指数函数及其性质(4)指数函数)指数函数函数名称函数名称指数函数指数函数定义定义函数(0x y a a =>且1)a ≠叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R 值域值域(0,)+∞过定点过定点 图象过定点(0,1),即当0x=时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对变化对 图象的影响图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.题型1、求函数经过的点 1、2)(f 1-=+x a x )10(≠>a a 且过定点______________2、函数y=4+a x -1的图象恒过定点P 的坐标是________________3.已知指数函数图像经过点)3,1(-p ,则=)3(f题型2、 图像问题1.下列说法中:下列说法中:①任取x ∈R 都有3x >2x ; ②当a >1时,任取x ∈R 都有a x >a -x ;③函数y =(3)-x 是增函数;④函数y =2|x |的最小值为1 ;⑤在同一坐标系中,y =2x 与y =2-x 的图象对称于y 轴。

(完整版)指数函数经典习题大全

(完整版)指数函数经典习题大全

指数函数习题新泰一中闫辉一、选择题1.下列函数中指数函数的个数是 ( ).①②③④A.0个 B.1个 C.2个 D.3个2.若,,则函数的图象一定在()A.第一、二、三象限 B.第一、三、四象限C.第二、三、四象限 D.第一、二、四象限3.已知,当其值域为时,的取值范围是()A. B.C. D.4.若,,下列不等式成立的是()A. B. C. D.5.已知且,,则是()A.奇函数 B.偶函数C.非奇非偶函数 D.奇偶性与有关6.函数()的图象是()7.函数与的图象大致是( ).8.当时,函数与的图象只可能是()9.在下列图象中,二次函数与指数函数的图象只可能是()10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ).A.2400元 B.900元 C.300元 D.3600元二、填空题1.比较大小:(1);(2) ______ 1;(3) ______2.若,则的取值范围为_________.3.求函数的单调减区间为__________.4.的反函数的定义域是__________.5.函数的值域是__________ .6.已知的定义域为 ,则的定义域为__________.7.当时, ,则的取值范围是__________.8.时,的图象过定点________ .9.若 ,则函数的图象一定不在第_____象限.10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________.11.函数的最小值为____________.12.函数的单调递增区间是____________.13.已知关于的方程有两个实数解,则实数的取值范围是_________.14.若函数(且)在区间上的最大值是14,那么等于_________.三、解答题1.按从小到大排列下列各数:,,,,,,,2.设有两个函数与,要使(1);(2),求、的取值范围.3.已知 ,试比较的大小.4.若函数是奇函数,求的值.5.已知,求函数的值域.6.解方程:(1);(2).7.已知函数(且)(1)求的最小值;(2)若,求的取值范围.8.试比较与的大小,并加以证明.9.某工厂从年到年某种产品的成本共下降了19%,若每年下降的百分率相等,求每年下降的百分率10.某工厂今年1月、2月、3月生产某产品分别为1万件、1.2件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量与月份数的关系,模拟函数可以选用二次函数或函数(其中、、为常数),已知四月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好?请说明理由.11.设,求出的值.12.解方程.参考答案:一、1.B 2.A 3.D 4.B 5.A 6.B 7.D 8.A 9.A 10.A二、1.(1)(2)(3)2. 3. 4.(0,1) 5.6. 7.8.恒过点(1,3) 9.四 10.11. 12. 13. 14.或三、1.解:除以外,将其余的数分为三类:(1)负数:(2)小于1的正数:,,(3)大于1的正数:,,在(2)中,;在(3)中,;综上可知说明:对几个数比较大小的具体方法是:(1)与0比,与1比,将所有数分成三类:,,,(2)在各类中两两比2.解:(1)要使由条件是,解之得(2)要使,必须分两种情况:当时,只要,解之得;当时,只要,解之得或说明:若是与比较大小,通常要分和两种情况考虑.3.4.解:为奇函数,,即,则,5.解:由得,即,解之得,于是,即,故所求函数的值域为6.解:(1)两边同除可得,令,有,解之得或,即或,于是或(2)原方程化为,即,由求根公式可得到,故7.解:(1),当即时,有最小值为(2),解得当时,;当时,.8.当时, > ,当时, > .9.解:设每年下降的百分率为,由题意可得,,,故每年下降的百分率为10%10.解:设模拟的二次函数为,由条件,,,可得,解得又由及条件可得,解得下面比较,与1.37的差,比的误差较小,从而作为模拟函数较好11.解:故12.解:令 ,则原方程化为 解得 或 ,即 或 (舍去),习题二1. 求不等式2741(0x x aa a -->>,1)a ≠且中x 的取值范围.2. . 指数函数xb y a ⎛⎫= ⎪⎝⎭的图象如图所示,求二次函数2y ax bx =+的顶点的横坐标的取值范围.3. 函数()xf x a =(0a >,且1a ≠)对于任意的实数x ,y 都有( ) A.()()()f xy f x f y =B.()()()f xy f x f y =+ C.()()()f x y f x f y +=D.()()()f x y f x f y +=+oyx14. 若11()()23x x <,则x 满足( )A.0x > B.0x < C.0x ≤D.0x ≥5. (1)已知12()3a a -+=,求33a a -+;(2)已知21xa=,求33x xx xa a a a--++; (3)已知31xa -+=,求2362a ax x ---+的值.6. 已知函数()xf x a =(0a >,1a ≠)在[]22-,上函数值总小于2,求实数a 的取值范围. 7 已知函数()xxf x a a -=+(0a >,1a ≠),且(1)3f =,则(0)(1)(2)f f f ++的值是 . 8. 若关于x 的方程22210xx a a +++=g 有实根,试求a 的取值范围.9. 当0a >且1a ≠时,函数2()3x f x a-=-必过定点 .10. 设311x y a +=,22x y a -=其中0a >,且1a ≠.确定x 为何值时,有:(1)12y y =; (2)12y y >.11 当0a ≠时,函数y ax b =+和axy b =的图象是( )12. 函数()y f x =的图象与2xy =的图象关于x 轴对称,则()f x 的表达式为 . 13. 若函数()()()21021x F x f x x ⎛⎫=+≠ ⎪-⎝⎭g 是偶函数,且()f x 不恒等于0,则()f x 为( ) A.奇函数 B.偶函数C.可能是奇函数,也可能是偶函数 D.非奇非偶函数14. 已知函数()()2211xf xg x x =-=-,,构造函数()F x 定义如下:当()()f x g x ≥时,()()F x f x =;当()()f x g x <时,()()F x g x =-,那么()F x ( )A.有最大值1,无最小值 B.有最小值0,无最大值 C.有最小值1-,无最大值D.无最小值,也无最大值15. 当0x >时,函数()()21xf x a =-的值总大于1,则实数a 的取值范围是 .16. 已知函数()f x 满足对任意实数12x x <有()()12f x f x <且()()()1212f x x f x f x +=g 若写出一个满足这些条件的函数则这个函数可以写为 .习题三一、选择题(每小题4分,共计40分) 1.下列各式中成立的一项是( )A .7177)(m n mn = B .3339= C .43433)(y x y x +=+ D .31243)3(-=-2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 9-B .a -C .a 6D .29a3.设指数函数)1,0()(≠>=a a a x f x,则下列等式中不正确...的是 ( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)]([+∈=N n y f x f xy f nnn4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或 5.若指数函数xa y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .215+ B .215- C .215± D .251± 6.方程)10(2||<<=a x ax 的解的个数为 ( )A. 0个B. 1个C. 2个D. 0个或1个 7.函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.已知2)(xx e e x f --=,则下列正确的是 ( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 10.函数22)21(++-=x x y 得单调递增区间是( )A .]1,(--∞B .),2[+∞C .]2,21[D . ]21,1[-二、填空题(每小题4分,共计28分)11.已知0.622,0.6a b ==,则实数a b 、的大小关系为 .12:不用计算器计算48373271021.097203225.0+-⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛--π=___________. 13.不等式x x 283312--<⎪⎭⎫ ⎝⎛的解集是__________________________.14.已知{}2,1,0,1,2,3n ∈--,若11()()25n n ->-,则=n ___________.15.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是 .16.定义运算:⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数()xx x f -⊗=22的值域为_________________17.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ; ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间 分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是 . 三、解答题:(10+10+12=32分) 18.已知17a a -+=,求下列各式的值: (1)33221122a a a a----; (2)1122a a-+; (3)22(1)a a a -->.19.已知函数)1(122>-+=a a a y x x在区间[-1,1]上的最大值是14,求a 的值.t/月20.(1)已知m x f x+-=132)(是奇函数,求常数m 的值; (2)画出函数|13|-=xy 的图象,并利用图象回答:k 为何值时,方程|31|x k -=无解?有一解?有两解?参考答案题号 1 2 3 4 5 6 7 8 9 10 答案BADDCCADAC二、填空题(4*7=28分)11.b a >; 12.100; 13.}24|{-<>x x x 或; 14.-1或2 15.(-2, 2) ; 16.]1,0( 17.①②⑤ 三、解答题:(10+10+12=32分) 18.解: (1)原式=11113312222111112222()()()(1)1718a a a a a a a a a aa a--------++==++=+=--。

专题09 指数与指数函数(学生版)高中数学53个题型归纳与方法技巧总结篇

专题09 指数与指数函数(学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.指数及指数运算(1)高中数学53个题型归纳与方法技巧总结篇专题09指数与指数函数根式的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中(1n >,)n N *∈,n 称为根指数,a 称为根底数.(2)根式的性质:当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.当n 为偶数时,正数的n 次方根有两个,它们互为相反数.(3)指数的概念:指数是幂运算(0)n a a ≠中的一个参数,a 为底数,n 为指数,指数位于底数的右上角,幂运算表示指数个底数相乘.(4)有理数指数幂的分类①正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个;②零指数幂01(0)a a =≠;③负整数指数幂1(0nn aa a-=≠,)n N *∈;④0的正分数指数幂等于0,0的负分数指数幂没有意义.(5)有理数指数幂的性质①+(0m n m n a a a a >=,m ,)n Q ∈;②()(0m n m n a a a >=,m ,)n Q ∈;③()(0mm mab a a b >=,0b >,)m Q ∈(0mn a a >=,m ,)n Q ∈.2.指数函数⑥既不是奇函数,也不是偶函数【方法技巧与总结】1.指数函数常用技巧(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论.(2)当01a <<时,x →+∞,0y →;a 的值越小,图象越靠近y 轴,递减的速度越快.当1a >时x →+∞,0y →;a 的值越大,图象越靠近y 轴,递增速度越快.(3)指数函数x y a =与1()xy a=的图象关于y 轴对称.【题型归纳目录】题型一:指数运算及指数方程、指数不等式题型二:指数函数的图像及性质题型三:指数函数中的恒成立问题题型四:指数函数的综合问题【典例例题】题型一:指数运算及指数方程、指数不等式例1.(2022·四川凉山·三模(文))计算:)2ln31e 1lg 4lg 0.254-⎛⎫+-++= ⎪⎝⎭______.例2.(2022·河北邯郸·一模)不等式10631x x x --≥的解集为___________.例3.(2022·陕西·榆林市教育科学研究所模拟预测(理))甲、乙两人解关于x 的方程220x x b c -+⋅+=,甲写错了常数b ,得到的根为2x =-或x =217log 4,乙写错了常数c ,得到的根为0x =或1x =,则原方程的根是()A .2x =-或2log 3x =B .1x =-或1x =C .0x =或2x =D .1x =-或2x =例4.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()4322x x f x a =-⨯+.则关于x 的不等式()6f x ≤-的解集为()A .(,2]-∞-B .(,1]-∞-C .[)()2,00,2- D .[)()2,02,-⋃+∞例5.(2022·全国·高三专题练习)化简:(1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0).(3)312211122211111a a aa a a a a -+--++++-.【方法技巧与总结】利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如20xx a Ba C ++=或2)00(x x a Ba C ++ 的形式,可借助换元法转化二次方程或二次不等式求解.题型二:指数函数的图像及性质例6.(2022·浙江绍兴·模拟预测)函数2()()-+=-x xx m f x a a ,的图象如图所示,则()A .0,01<<<m aB .0,1<>m aC .0,01m a ><<D .0,1>>m a 例7.(2022·全国·高三专题练习)函数()21xf x m =--恰有一个零点,则m 的取值范围是()A .()1,+∞B .{}()01,∞⋃+C .{}[)01,∞⋃+D .[)1,+∞例8.(2022·四川省泸县第二中学模拟预测(文))函数()11e xf x -=+,下列关于函数()f x 的说法错误的是()A .函数()f x 的图象关于原点对称B .函数()f x 的值域为()0,1C .不等式()12f x >的解集是()0,∞+D .()f x 是增函数例9.(2022·河南·三模(文))已知()1f x -为定义在R 上的奇函数,()10f =,且()f x 在[)1,0-上单调递增,在[)0,∞+上单调递减,则不等式()250xf -<的解集为()A .()22,log 6B .()()2,12,log 6-∞⋃C .()2log 6,+∞D .()()21,2log 6,⋃+∞例10.(2022·新疆阿勒泰·三模(理))函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________.例11.(2022·北京·高三专题练习)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________.例12.(2022·全国·高三专题练习)已知函数()22x x f x k -=+⋅(k 为常数,k ∈R )是R 上的奇函数.(1)求实数k 的值;(2)若函数()y f x =在区间[]1,m 上的值域为15,4n ⎡⎤⎢⎥⎣⎦,求m n +的值.【方法技巧与总结】解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响.题型三:指数函数中的恒成立问题例13.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为()A .m 1≥B .1mC .01m <<D .01m <≤例14.(2022·北京·高三专题练习)已知函数()33x xf x -=-.(1)利用函数单调性的定义证明()f x 是单调递增函数;(2)若对任意[]1,1x ∈-,()()24f x mf x ⎡⎤+≥-⎣⎦恒成立,求实数m 的取值范围.例15.(2022·全国·高三专题练习(文))已知函数()3(21xf x a a =-+为实常数).(1)讨论函数()f x 的奇偶性,并说明理由;(2)当()f x 为奇函数时,对任意[]1,6x ∈,不等式()2xuf x ≥恒成立,求实数u 的最大值.例16.(2022·全国·高三专题练习(文))已知函数1()421x x f x a +=-+ .(1)若函数()f x 在[0x ∈,2]上有最大值8-,求实数a 的值;(2)若方程()0f x =在[1x ∈-,2]上有解,求实数a 的取值范围.例17.(2022·全国·高三专题练习)已知函数2()f x x =,1()2xg x m⎛⎫=- ⎪⎝⎭(1)当[1,3]x ∈-时,求()f x 的值域;(2)若对[]0,2x ∀∈,()1g x 成立,求实数m 的取值范围;(3)若对[]10,2x ∀∈,2[1,3]x ∃∈-,使得12()()g x f x 成立,求实数m 的取值范围.【方法技巧与总结】已知不等式能恒成立求参数值(取值范围)问题常用的方法:(1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.题型四:指数函数的综合问题例18.(2022·天津河西·二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为()A .3B .4C .5D .6例19.(2022·北京·二模)若函数()()223,02,0xx f x x x a⎧+≤⎪=⎨-<≤⎪⎩的定义域和值域的交集为空集,则正数a 的取值范围是()A .(]0,1B .()0,1C .()1,4D .()2,4例20.(2022·甘肃省武威第一中学模拟预测(文))已知函数()4sin 22x x f x =++,则124043202220222022f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.例21.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,满足()()121f x f x +=-,且当(]1,1x ∈-时,()12x f x -=,则()2020f =______.例22.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.例23.(2022·江西·二模(文))设函数()2,111,12x a x f x x x --⎧≤⎪=⎨-+>⎪⎩,若()1f 是函数()f x 的最大值,则实数a 的取值范围为_______.【过关测试】一、单选题1.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减2.(2022·安徽淮南·二模(理))1947年,生物学家Max Kleiber 发表了一篇题为《body size and metabolicrate 》的论文,在论文中提出了一个克莱伯定律:对于哺乳动物,其基础代谢率与体重的34次幂成正比,即340F c M =,其中F 为基础代谢率,M 为体重.若某哺乳动物经过一段时间生长,其体重为原来的10倍,则基础代谢率1.7783≈)()A .5.4倍B .5.5倍C .5.6倍D .5.7倍3.(2022·陕西·西安中学模拟预测(文))英国著名数学家布鲁克-泰勒以微积分学中将函数展开成无穷级数的定理著称于世.在数学中,泰勒级数用无限连加式来表示一个函数,泰勒提出了适用于所有函数的泰勒级数,并建立了如下指数函数公式:23e 126!nxx x x x n =+++++++ ,其中R,N x n ∈∈的近似值为(精确到0.01)()A .1.63B .1.64C .1.65D .1.664.(2022·河南洛阳·二模(文))已知函数()()1331,1log 52,1x x f x x x +⎧-≥⎪=⎨-+-<⎪⎩,且()2f m =-,则()6f m +=()A .26B .16C .-16D .-265.(2022·四川成都·三模(理))若函数()9x f x =0x ,则()0091xx -=().A .13B .1CD .26.(2022·河南·开封高中模拟预测(文))若关于x 的不等式()221xxa x ⋅>+∈R 有实数解,则实数a 的取值范围是()A .()1,+∞B .()2,+∞C .[)1,+∞D .[)2,+∞7.(2022·四川·内江市教育科学研究所三模(理))已知函数()f x 满足:对任意x ∈R ,1122f x f x ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭.当[1,0)x ∈-时,()31x f x =-,则()3log 90=f ()A .19B .19-C .1727D .1727-8.(2022·上海宝山·二模)关于函数131()(22xx f x x =-⋅和实数,m n 的下列结论中正确的是()A .若3m n -<<,则()()f m f n <B .若0m n <<,则()()f m f n <C .若()()f m f n <,则22m n <D .若()()f m f n <,则33m n <二、多选题9.(2022·湖南·模拟预测)在同一直角坐标系中,函数x y a =与()log 2a y x =-的图象可能是()A .B .C .D .10.(2022·全国·模拟预测)已知0a b >>,下列选项中正确的为()A 1=,则1a b -<B .若221a b -=,则1a b -<C .若22=1a b -,则1a b -<D .若22log log 1a b -=,则1a b -<11.(2022·广东肇庆·模拟预测)若a b >,则下列不等式中正确的有()A .0a b ->B .22a b>C .ac bc>D .22a b >12.(2022·全国·模拟预测)已知函数14sin ,01()2,1x x x f x x x -<≤⎧=⎨+>⎩,若存在三个实数,使得()()()123f x f x f x ==,则()A .123x x x ++的取值范围为()2,3B .()23x f x 的取值范围为5,23⎛⎫ ⎪⎝⎭C .123x x x 的取值范围为51,362⎛⎫⎪⎝⎭D .()13x f x 的取值范围为1,23⎛⎫⎪⎝⎭三、填空题13.(2022·安徽淮北·一模(理))2log142-⎛⎫++= ⎪⎝⎭___________.14.(2022·四川·模拟预测(理))已知两个条件:①,,()()()a b f a b f a f b ∈+=⋅R ;②()f x 在(0,)+∞上单调递减.请写出一个同时满足以上两个条件的函数____________.15.(2022·河南·模拟预测(文))函数()1423x x f x +=-+在1,2⎛⎤-∞ ⎥⎝⎦的值域为______.16.(2022·山西·二模(理))已知函数()322x xx f x -=-给出下列结论:①()f x 是偶函数;②()f x 在()0, +上是增函数;③若0t >,则点()(),t f t 与原点连线的斜率恒为正.其中正确结论的序号为______.四、解答题17.(2022·全国·高三专题练习)由于突发短时强降雨,某小区地下车库流入大量雨水.从雨水开始流入地下车库时进行监测,已知雨水流入过程中,地下车库积水量y (单位:3m )与时间t (单位:h )成正比,雨停后,消防部门立即使用抽水机进行排水,此时y 与t 的函数关系式为25ty k ⎛⎫=⨯ ⎪⎝⎭(k 为常数),如图所示.(1)求y 关于t 的函数关系式;(2)已知该地下车库的面积为25602m ,当积水深度小于等于0.05m 时,小区居民方可入内,那么从消防部门开始排水时算起,至少需要经过几个小时以后,小区居民才能进入地下车库?18.(2022·全国·高三专题练习)(1)计算:1294⎛⎫- ⎪⎝⎭(﹣9.6)0﹣22327283--⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭;(2)已知1122a a-+=3,求22112a a a a --++++的值.19.(2022·全国·高三专题练习)已知a >0,且a ≠1,若函数y =|ax -2|与y =3a 的图象有两个交点,求实数a 的取值范围.20.(2022·全国·高三专题练习)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数;(1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集;(2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值.21.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x x f x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.22.(2022·全国·高三专题练习)已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.(1)设12,2a b ==,求方程()2f x =的根;(2)设12,2a b ==,若对任意x ∈R ,不等式()()26f x f x m ≥-恒成立,求实数m 的最大值;(3)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值.。

指数函数的性质及常考题型(含解析)

指数函数的性质及常考题型(含解析)
故选:A.
【变式 1-2】下列函数:① = 3 ;② = 6 ;③ = 6 ⋅ 2 ;④ = 8 + 1;⑤ = −6 .
其中一定为指数函数的有(
A.0 个

B.1 个
C.2 个
D.3 个
【解题思路】根据指数函数的定义判断即可;
【解答过程】解:形如 =
( > 0且 ≠ 1)为指数函数,其解析式需满足①底数为大于




如图是指数函数(1)y=ax,
(2)y=bx,
(3)y=cx,(4)y=dx 的图象,底数 a,b,c,
d 与 1 之间的大小关系为 c>d>1>a>b.
由此我们可得到以下规律:在 y 轴右(左)侧图象越高(低),其底数越大.
3.比较指数幂的大小的方法
比较指数幂的大小的方法(分三种情况)

(1)底数相同,指数不同:利用指数函数的单调性来判断;




【变式 5-2】已知函数() = ⋅ 的图像经过点(1,2),(2,4).

(1)求()的解析式;

(2)解不等式( + 3) > (4).







【变式 5-3】已知函数() = + (0 < < 1)的图象经过点(0, −1).
(1)求实数 b;
B.0 < < 1,0 < < 1

C.0 < < 1, > 1
D. > 1,0 < < 1


【变式 6-2】如图中,①②③④中不属于函数 = 3 , = 2 , =

指数函数 Word版含解析

指数函数 Word版含解析

课时规范练A 组 基础对点练1.(2016·高考全国卷Ⅲ)已知a =,b =,c =,则( )A .b <a <c B.a <b <c C .b <c <aD.c <a <b2.设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B.c <a <b C .c <b <a D.a <c <b3.设a =,则a ,b ,c 的大小顺序是( )A .b <a <c B.c <b <a C .c <a <bD.b <c <a4.(2018·金华模拟)函数f (x )=xa x |x |(0<a <1)的图象的大致形状是( )5.已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧x ⎪⎪ x <-1或x >⎭⎬⎫12,则f (10x )>0的解集为( )A .{x |x <-1或x >-lg 2}B .{x |-1<x <-lg 2}C .{x |x >-lg 2}D .{x |x <-lg 2}6.(2018·衡水中学模拟)已知a >1,f (x )=,则使f (x )<1成立的一个充分不必要条件是( ) A .-1<x <0 B.-2<x <1 C .-2<x <0D.0<x <17.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1B.ln(x 2+1)>ln(y 2+1) C .sin x >sin yD.x 3>y 38.已知函数f (x )=⎩⎨⎧a ·2x ,x ≥0,2-x ,x <0(a ∈R ),若f (f (-1))=1,则a =( )A.14B.12 C .1D.29.已知函数f (x )=⎝ ⎛⎭⎪⎫13x +a 的图象经过第二、三、四象限,g (a )=f (a )-f (a +1),则g (a )的取值范围为( ) A .(2,+∞) B.(-∞,-1) C .(-1,2)D.(-∞,2)10.函数f (x )=e 2x +1e x 的图象( ) A .关于原点对称 B.关于直线y =x 对称 C .关于x 轴对称 D.关于y 轴对称 11.不等式的解集为____.12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b = 14.已知函数f (x )=2x -12x +1.(1)判断函数f (x )的奇偶性; (2)求证f (x )在R 上为增函数.B 组 能力提升练1.已知奇函数y =⎩⎨⎧f (x ),x >0,g (x ),x <0.如果f (x )=a x (a >0,且a ≠1)对应的图象如图所示,那么g (x )=( )A.⎝ ⎛⎭⎪⎫12-x B.-⎝ ⎛⎭⎪⎫12xC .2-x D.-2x2.已知函数f (x )=a x ,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( ) A .1 B.a C .2D.a 23.函数y =a x -a -1(a >0,且a ≠1)的图象可能是( )4.若x ∈(2,4),,则a ,b ,c 的大小关系是( )A .a >b >c B.a >c >b C .c >a >bD.b >a >c5.已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则函数g (x )=a |x +b |的图象为( )6.(2018·龙岩模拟)已知函数f (x )=⎩⎨⎧a x ,x <0,(a -3)x +4a ,x ≥0满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围是( )A .(0,1] B.⎝ ⎛⎦⎥⎤0,14 C .(0,3]D.⎝ ⎛⎭⎪⎫0,14 7.(2017·高考北京卷)已知函数f (x )=3x -⎝ ⎛⎭⎪⎫13x ,则f (x )( )A .是偶函数,且在R 上是增函数B .是奇函数,且在R 上是增函数C .是偶函数,且在R 上是减函数D .是奇函数,且在R 上是减函数8.已知实数a ,b 满足12>⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫22b >14,则( )A .b <2b -a B.b >2b -a C .a <b -aD.a >b -a9.已知定义在R 上的函数g (x )=2x +2-x +|x |,则满足g (2x -1)<g (3)的x 的取值范围是____.10.已知y =f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=-14x +12x ,则此函数的值域为11.若不等式(m 2-m )2x -⎝ ⎛⎭⎪⎫12x <1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是____.12.已知函数f (x )=4x +m2x 是R 上的奇函数. (1)求m 的值;(2)设g (x )=2x +1-a .若函数f (x )与g (x )的图象至少有一个公共点.求实数a 的取值范围.13.已知函数f (x )=(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值.。

指数函数题型学霸总结四(含答案)-

指数函数题型学霸总结四(含答案)-

指数函数题型学霸总结四(含答案)阳光老师:祝你学业有成一、选择题(本大题共12小题,共60.0分)1.函数是指数函数,则有A. 或B.C. D. ,且【答案】C【解析】【分析】本题主要考查的是指数函数的概念,直接结合指数函数底数大于0且不等于1,前面系数为1,求解即可.【解答】解:由指数函数的概念,得,解得或当时,底数是1,不符合题意,舍去;当时,符合题意.故选C.2.若函数是指数函数,则a的取值范围是A. B. ,且C. D.【答案】B【解析】【试题解析】【分析】本题主要考查指数函数的定义,属于基础题.利用指数函数的定义中对底数的要求,列出不等式组,求解即得.【解答】解:因为函数是指数函数,得:,化简得故选B.3.有下列函数:;;;其中指数函数的个数是A. 0B. 1C. 2D. 3【答案】B【解析】【分析】本题考查指数函数的表达式和定义,属于基础题.根据指数函数的定义和表达式的要求即可得解.【解答】解:形如,且的函数称为指数函数,只有是指数函数.故选B.4.已知函数,若,则A. B. 0 C. D.【答案】C【解析】【试题解析】【分析】本题主要考查函数值的计算,属于基础题.发现是解题的关键.【解答】解:因为,所以,又,那么.故选C.5.下列各函数中是指数函数的是A. B. C. D.【答案】D【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易.根据指数函数的概念即可判断结果.【解答】解:根据指数函数的定义,且,可知只有D项正确,故选D.6.若函数在R上单调递减,则实数a的取值范围是A. B. C. D.【答案】C【解析】【分析】本题主要考查指数函数的单调性,属于基础题.根据指数函数的单调性,可知,解得实数a的取值范围.【解答】解:函数,在R上单调递减,则,解得,实数a的取值范围是.故选C.7.已知常数,函数经过点、,若,则a的值为A. 2B. 4C. 6D. 8【答案】B【解析】【分析】本题主要考察指数与指数幂的运算,考查运算求解能力,属于基础题.将p,q直接带入,计算即可求解得到答案.【解答】解:因为,,,,即,所以,所以,又因为,所以,又因为,所以,故选B.8.已知函数则A. 2B.C. 0D.【答案】B【解析】【分析】本题考查了函数定义域与值域、分段函数的相关知识,试题难度容易【解答】解:,.9.如图所示,面积为8的平行四边形OABC的对角线AC与BO交于点E,且若指数函数且的图象经过点E,B,则a等于A. B. C. 2 D. 3【答案】A【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度一般【解答】解:设点,则由已知可得点,,.因为点E,B在指数函数的图象上,所以所以,所以舍去或.10.下列图象中,可能是二次函数及指数函数的图象的是A. B.C. D.【答案】A【解析】【试题解析】【分析】本题主要考查指数函数的图象及性质、二次函数的图象及性质,属于基础题.指数函数在R上单调递减,则,可得,二次函数的图象与x轴的交点为、,结合选项即可判断.【解答】解:由指数函数的图象可知,指数函数在R上单调递减,则,,二次函数的图象与x轴的交点为、,只有选项A符合题意.故选A.11.函数与的图象关于A. 原点对称B. x轴对称C. y轴对称D. 直线对称【答案】C【解析】【分析】本题考查了函数的周期性和对称性、函数图象的变换平移、对称、伸缩、翻折变换的相关知识,试题难度较易【解答】解:设点为函数的图象上任意一点,则点为的图象上的点.因为点与点关于y轴对称,所以函数与的图象关于y轴对称,故选C.12.已知定义在R上的函数满足,且当时,,则A. 0B.C. 18D.【答案】C【解析】【分析】本题考查函数的周期性,涉及指数的运算,属于基础题.由题意可得函数为周期为2的周期函数,可得,代值计算可得.【解答】解:定义在R上的函数满足,函数为周期为2的周期函数,又当时,,,故选:C.二、填空题(本大题共14小题,共70.0分)13.指数函数的值域是__________.【答案】【解析】【分析】本题考查求函数值域的方法,考查指数函数的性质,解题的关键是将复杂函数化为基本函数,属于基础题.根据题意可知,函数,若令,于是可得y 转化为关于t的二次函数,根据指数函数的性质可知,结合二次函数的单调性还可得到在上函数单调递增,于是不难得到,对该不等式式求解,即可得到原函数的值域.【解答】解:令,则,因为该二次函数在上递增,所以,即原函数的值域为.故答案为.14.若函数且在区间上的最大值与最小值之和为3,则实数a的值为________.【答案】2【解析】【分析】本题考查指数函数的性质,属基础题,难度不大.讨论底数a的大小,利用指数函数的单调性求解即可.【解答】解:当时,函数在区间上单调递增,的最大值为a,最小值为,,解得,当时,函数在区间上单调递减,的最大值为,最小值为a,,解得舍,综上所述:.故答案为2.15.函数的定义域为________.【答案】【解析】【分析】本题考查了函数定义域与值域、指数方程与指数不等式的相关知识,试题难度容易【解答】解:依题意得,,得,得,得.则函数的定义域为.故答案为.16.已知函数且在区间上的函数值恒小于2,则a的取值范围是________.【答案】【解析】【分析】本题考查指数函数的性质,属于基础题.分类讨论,由指数函数的单调性得最值,求a的取值范围.【解答】解:当时,函数且在区间上单调递增,最大值为,由题意,所以,当时,函数且在区间上单调递减,最大值为,由题意,所以,则a的取值范围是故答案为17.若指数函数的图象经过点,则,.【答案】;【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度较易【解答】解:设且.因为的图象经过点,代入得,解得或舍去,所以,所以.18.若指数函数的图象经过点,则.【答案】【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易【解答】解:设且,由于其图象经过点,所以,解得或舍去,因此,故.19.已知,若,求的值.【答案】解:,若,则.所以.【解析】本题考查了指数与指数幂的运算的相关知识,试题难度一般20.已知函数是指数函数,且,则__________.【答案】 5x【解析】【分析】本题主要考查指数函数,由得,,解得即可.【解答】解:设x,且.由,得,,x.故答案为.21.若函数且的图象过点,则________.【答案】【解析】【分析】本题考查了指数函数及其性质的相关知识,试题难度容易【解答】解:由于函数图象过点,则,解得,故.22.已知直线与函数,,,的图象依次相交于点A,B,C,D,则这四点按从上到下的顺序排列是________.【答案】C,D,B,A【解析】【分析】本题考查指数函数的图象和性质,根据底数对指数函数图象的影响,在同一坐标系中画出题中四个函数的图象,即得到四个点的顺序.【解答】解:根据在第一象限内,底数越大指数函数的图象越靠近y轴,在同一坐标系中画出函数,,,的图象如下图:由图象得:这四个点从上到下的排列次序是:C,D,B,A.23.已知函数与的图象关于y轴对称,则.【答案】【解析】【分析】本题考查指数函数,涉及图象的对称变换和指数幂的运算,属于基础题.利用图象关于y轴对称的函数的解析式的关系将x换成,求得的解析式,然后代入运算化简即得.【解答】解:函数与的图象关于y轴对称,,.故答案为.24.以下是三个变量,,随变量x变化的函数值表:x1234567824816326412825614916253649640123其中关于x呈指数函数变化的函数是________.【答案】【解析】【分析】本题考查对数函数、指数函数与幂函数的增长差异.解题时要认真审题,注意指数函数的性质的合理运用.观察题中表格,可以看出,三个变量、、都是越来越大,但是增长速度不同,其中变量的增长速度最快,画出它们的图象图略,可知变量呈指数函数变化.【解答】解:观察题中表格,可知,三个变量,,都是越来越大,但是增长速度不同,增长速度最快,画出它们的图象,可知呈指数函数变化.25.函数是指数函数,则_______【答案】【解析】【分析】本题考查指数函数的定义,比较容易根据指数函数的定义,先确定a的值,再求.【解答】解:函数是指数函数,则,解得.所以,.所以,.故答案为.26.给定下列函数:;;,且;;;;;其中是指数函数的有________填序号【答案】解:指数函数为,很显然为二次函数,为指数函数,底数不一定大于0,故不是指数函数,底数小于0,不是指数函数,是指数函数,不是指数函数,是指数型函数,不是指数函数,不是指数函数,故答案为【解析】此题考查指数函数的定义,属于基础题.根据指数函数的定义进行求解即可.三、解答题(本大题共4小题,共48.0分)27.已知指数函数满足,定义域为R的函数是奇函数.确定和的解析式;判断函数的单调性,并用定义证明;若对于任意,都有成立,求a的取值范围.【答案】解:设且,,,,,是定义域为R的奇函数,,即,解得.经检验,当时,为奇函数,是定义在R上的减函数,证明如下:任取,,,则.,,又,,,,是定义在R上的减函数;,且为奇函数,,所以,因为,所以成立,设,,由对勾函数的单调性可知,函数在单调递增,在上单调递减,所以当时,有最大值为,所以.【解析】本题考查了函数的奇偶性和单调性,本题难度适中,属于较难题.利用指数函数过定点和函数为奇函数,得到关于参数的方程,解方程得到本题结论;利用函数单调性的定义加以证明,得到本题结论;利用函数的奇偶性和单调性,将原不等式转化为相应自变量的比较,利用对勾函数的单调性得到本题结论.28.某镇现在人均一年占有粮食,如果该镇人口平均每年增长,粮食总产量平均每年增长,那么x年后若人均一年占有y kg粮食,求y关于x的函数解析式.【答案】解:设该镇现在人口数量为M,则该镇现在一年的粮食总产量为360M kg.1年后,该镇粮食总产量为,人口数量为,则人均一年占有粮食为,2年后,人均一年占有粮食为,,x年后,人均一年占有粮食为,即所求函数解析式为【解析】本题考查了函数模型的应用的相关知识,试题难度较易29.用描点法在同一平面直角坐标系中画出与的图象.在的条件下,分别计算并比较与,与,与的值,从中你得到什么结论?【答案】解:作,的图象如下,,,;,;,;故;即与的图象关于y轴对称.【解析】本题主要考查了指数函数的图象及其性质,属于较易题.结合指数函数的图象,利用描点法作,的图象.可求得;;;从而可判断.30.已知不相等的两个实数a,b满足,判断实数a,b的大小关系.【答案】解:画出,的图像如图所示:,当a,b同为负时,,当a,b同为正时,,当a,b不同号时,不存在,综上所述,答案:当或.【解析】本题主要考查了指数函数的图像与性质,属于较易题画出图像,由图像可得结果.。

指数函数常考题型归纳含详解

指数函数常考题型归纳含详解

A. a b 1 c b B. b a 1 d c C.1 a b c d D. a b 1 d c 3、已知函数 f (x) (x a)(x b) (其中 a b) 的图象如图所示,则函数 g(x) ax b 的图象是( )
A.
B.
C.
D.
4、画出下列函数的图像
D.
0,
1 2
A. ab aa
B. ba bb
C. ab bb
D. ab ba
2、设 a , b , c R ,且 a b ,则( )
A. a2 b2
B.
1 2
a
1 2
b
C. a3 b3
D. 1 1 ab
3、已知集合 A {x | x2 3x 2 0}, B {x |1 2 x 4} ,则 A B ( )
题型九:复合函数的单调性
C. f x x 1
x
1、函数
y
1 2
82 xx2
的单调递增区间为_________.
D. f x 3 x
2、求下列函数的定义域和值域,并写出其单调区间.
(1) f ( x) 1 3x2 ;
1
(2)
f
(x)
1 2x 3

(3) f ( x) 2x22x3 ;
A.{x |1 x 2} B.{x |1 x 2} C.{x |1 x 2} D.{x | 0 x 2}
4、已知 a 0.20.3 , b 0.30.3 , c 0.20.2 ,则( )
A. a b c
B. b a c
题型八:指数函数的单调性
C. b c a
D. a c b
A.函数 f x 在 R 上既是奇函数,也是增函数 B.函数 f x 在 R 上既是奇函数,也是减函数

指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结一、指数函数的定义与性质指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。

其中,底数$a$决定了函数的性质。

当$a > 1$时,函数单调递增;当$0 < a < 1$时,函数单调递减。

指数函数的定义域为$R$,值域为$(0, +\infty)$。

例如,函数$y = 2^x$是一个底数为$2$(大于$1$)的指数函数,它在$R$上单调递增。

二、对数函数的定义与性质对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。

其中,对数的底数$a$同样决定了函数的性质。

当$a > 1$时,函数在$(0, +\infty)$上单调递增;当$0 < a <1$时,函数在$(0, +\infty)$上单调递减。

对数函数的定义域为$(0, +\infty)$,值域为$R$。

例如,函数$y =\log_2 x$是一个底数为$2$(大于$1$)的对数函数,它在$(0, +\infty)$上单调递增。

三、指数函数与对数函数的图象指数函数$y = a^x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(0, 1)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(0, 1)$,从左到右逐渐下降。

对数函数$y =\log_a x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(1, 0)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(1, 0)$,从左到右逐渐下降。

四、指数运算与对数运算的性质指数运算性质:1、$a^m \times a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)对数运算性质:1、$\log_a (MN) =\log_a M +\log_a N$2、$\log_a \frac{M}{N} =\log_a M \log_a N$3、$\log_a M^n = n \log_a M$4、$\log_a a = 1$5、$\log_a 1 = 0$五、例题分析例 1:比较大小比较$2^{03}$和$03^2$的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数及其性质应用
1.指数函数概念
叫做指数函数,其中是自变量,函数的定义域为.
一般地,函数
2.
函数
名称
指数函数
定义函数且叫做指数函数
图象
定义域
值域
过定点图象过定点,即当时,.
奇偶性非奇非偶
单调性在上是增函数在上是减函数
函数值的
变化情况
变化对图
象的影响
在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针
方向看图象,逐渐减小.
指数函数题型训练
题型一 比较两个值的大小 1、“同底不同指”型 (1)21
51-

⎭⎫ ⎝⎛ 3
251⎪⎭

⎝⎛ (2) 2.51.7 3
1.7 (3)0.8
14⎛⎫ ⎪
⎝⎭
1.8
12⎛⎫ ⎪⎝⎭
(4)
0.5
a ()0.6
0,1a
a a >≠
归纳:
2、“同指不同底”型
(1)5
6
311⎛⎫ ⎪
⎝⎭
5
6
833⎛⎫ ⎪
⎝⎭
(2)9 2
4
归纳: 3、“不同底不同指”型 (1)0.3
1.7
3.1
0.9
(2) 2.5
1.7
30.7 (3)0.1
0.8
- 0.2
9
-
(4)b a (01)a
b a b <<< (5) 1
23-⎛⎫ ⎪
⎝⎭
13
3
归纳:
综合类:(1)已知232()3
a =,132()3
b =,232
()5c =则a 、b 、c 的大小关系为
(2)如果0m <,则2m a =,1
()2
m b =,0.2m c =则a 、b 、c 的大小关系为
题型二 过定点问题 1、函数33x y a -=+恒过定点
2、函数()150,1x y
a a a +=->≠图像必过定点,这个定点是
3、已知对不同的a 值,函数()()120,1x f x a a a -=+>≠的图像恒过定点P ,则P 点的坐标
是 归纳:
题型三 解指数函数不等式
1、2212
2≤⎪⎭
⎫ ⎝⎛-x 2、 8
21()33
x x --< 3、0.225x < 4、221(2)(2)x x a a a a -++>++
归纳:
题型四 求指数函数相关的定义域
1
、y =
、y =
、y =
4、13
2
x y
-= 5、已知
()f x 的定义域为(0,1) ,则(3)x f 的定义域为__________
归纳:
题型五 求指数函数相关的值域 1、2
x
y
-= 2、1421x x y
+=++
3、1
33+=x x
y 4、设02x ≤
≤ ,求函数12
4
325x x y -=-⋅+值域
5、求1423x x y
+=-+,(,1]x ∈-∞的值域。

题型六 方程问题 1、2
23
380x x +--= 2、23360x x --=
3、23325032x
x
⎛⎫⎛⎫
⨯+⨯-=
⎪ ⎪⎝⎭⎝⎭
归纳:
题型七 最值问题 1、已知12x -≤≤,求函数1()3239x x f x +=+⋅-的最大值和最小值
2、已知函数221(1)x x y a a a =+->在区间[1,1]-上的最大值是14,求a 的值.
3、函数
()x
f x a = (0,1)a a >≠且在区间]2,1[-中的最大值比最小值大2
a

则a 的值为 归纳:
题型八 奇偶性问题
若函数a x f x
+-=
1
21
)(为奇函数,则实数a 的值是 题型九 单调性问题 1、函数3
222
--=x x y 的单调区间。

3、求函数222
2
x x y -++=单调区间。

4、求函数232
13x x y
-+⎛⎫= ⎪⎝⎭
的单调区间。

归纳:
题型十 图象变换及应用问题 1、为了得到函数935x y
=⨯+的图象,可以把函数3x y =的图象( )
. A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度
D .向右平移2个单位长度,再向下平移5个单位长度 2、画出函数121x y -=-图像,并求定义域与值域。

3、利用函数()2x f x =的图像,作出下列个函数的图像

(1)f x -,⑵()1f x -,⑶()f x -,⑷()f x -
归纳:
选做题: 1、函数17
6221+-⎪

⎫ ⎝⎛=x x y 的定义域为 ,值域为 ,
单调递增区间为 ,单调递减区间为 2、已知函数
1()1
x x a f x a -=+ (0,1)a a >≠且。

(1)求
()f x 的定义域和值域;(2)讨论()f x 的奇偶性。

3、函数x x y 4212-+=的定义域,单调区间。

相关文档
最新文档