人教A版高中数学必修五高二上学期模块检
人教新课标版数学高二必修五练习人教A版必修5综合质量评估(含答案解析)

综合质量评估第一~三章 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如果a<0,b>0,那么,下列不等式中正确的是( )()(()()2211A B C a b D a b a b< < >2.在△ABC 中,∠A=60°,a =b=4,那么满足条件的△ABC ( ) (A)有一个解 (B)有两个解 (C)无解 (D)不能确定3.已知数列{a n }满足a 1=0,a n+1=a n +2n ,那么a 2 012的值是( ) (A)2 0122 (B)2 011×2 010 (C)2 012×2 013 (D)2 011×2 0124.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a,b,c ,2asinAsinB bcos A +=则ba=( ) ()()((A B C D 5.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=( )()()()()A B 7C 6D6.设a,b, c ∈(-∞,0),则111a ,b ,c bca+++( ) (A)都不大于-2(B)都不小于-2 (C)至少有一个不大于-2 (D)至少有一个不小于-27.在△ABC 中,角A ,B ,C 的对边分别为a,b,c ,若(a 2+c 2-b 2则角B 的值为( )()()()()52A B C D 636633ππππππ 或或 8.已知x>0,y>0,2x+y=2,c=xy,那么c 的最大值为( )()()()()11A 1BCD 2249.在△ABC 中,关于x 的方程(1+x 2)sinA+2xsinB+(1-x 2)sinC=0有两个不相等的实根,则A 为( ) (A)锐角 (B)直角 (C)钝角 (D)不能确定10.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )(A)35 (B)33 (C)31 (D)2911.已知各项均为正数的等差数列{a n }的前20项和为100,那么a 3·a 18的最大值是( )(A)50 (B)25 (C)100 (D)12.已知等差数列{a n }中,|a 3|=|a 9|,公差d<0,则使等差数列{a n }前n 项和S n 取最大值的正整数n 是( )(A)4或5 (B)5或6 (C)6或7 (D)8或9 二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在题中的横线上)13.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于__________.14.在△ABC 中,A ,B ,C 分别为a,b,c 三条边的对角,如果b=2a,B=A+60°,那么A=________.15.若负数a,b,c 满足a+b+c=-1,则111a b c++的最大值是__________. 16.不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,则实数a 的取值范围是_______.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)在△ABC 中,角A ,B ,C 成等差数列,并且sinA ·sinC=cos 2B ,三角形的面积ABC S =求三边a,b,c.18.(12分)(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项的和S k =-35,求k 的值.19.(12分)(2011·山东高考)在△ABC 中,内角A ,B ,C 的对边分别为a,b,c,已知cosA 2cosC 2c a.cosB b--=(1)求sinCsinA的值; (2)若1cosB ,4=b=2,求△ABC 的面积S.20.(12分)已知f(x)=ax 2+(b-8)x-a-ab,当x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y=f(x)的解析式;(2)c为何值时,ax2+bx+c≤0的解集为R.21.(12分)某公司计划在2012年内同时出售空调机和洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?22.(12分)已知等差数列{a n}满足:a3=7,a5+a7=26.{a n}的前n项和为S n.(1)求a n及S n;(2)令n2n1ba1=-(n∈N*),求数列{b n}的前n项和T n.答案解析1.【解析】选A.如果a<0,b>0,那么110,0,ab<>11,a b∴<故选A. 2.【解析】选C.根据正弦定理得bsinA sinB 1,a ===>故无解.故选C.3.【解析】选D.由已知a n+1-a n =2n,∴a 2-a 1=2×1,a 3-a 2=2×2,a 4-a 3=2×3,…,a n -a n-1=2(n-1),以上各式两端分别相加得:()()()n 1n 2 012a a 2123n 1n n 1.a n n 1.a 2 011 2 012.-=++⋯+-=-=-∴=⨯[]即故选D.4.【解析】选D.2asinAsinB bcos A +=2sinAsinAsinB sinBcos A b sinBsinB a sinA∴+=∴=∴==故选D. 5.【解析】选A.18789123a a a q 2.a a a== ()99456123q a a a a a a q ∴===故选A.6.【解题提示】解答本题关键是分析111a b c bca+++++的最大值.【解析】选C.111a b c 6,b c a+++++≤- 三者不能都大于-2.故选C.7.【解析】选D.在△ABC 中,根据b 2=c 2+a 2-2cacosB 得a 2+c 2-b 2=2cacosB ,代入已知得sinB 2∴=2B B ,33ππ∴==或故选D.8.【解析】选B.由已知,22x y =+≥=1c ,2∴≤故选B.9.【解析】选A.4sin 2B-4(sin 2A-sin 2C)>0, 即sin 2B+sin 2C>sin 2A,由正弦定理得b 2+c 2>a 2, 再由余弦定理得cosA>0,所以A 为锐角,故选A. 10.【解析】选C.设公比为q,由题意知2323113647113133311a a a q 2a .5a 2a a q 2a q 2a q 25a q 2a q q 2⎧==⎪⎨+=+=⎪⎩⎧=⎪⎨+=⎪⎩即 解得11q .2a 16⎧=⎪⎨⎪=⎩故55116(1)2S 31 .112⨯-==-故选C.11.【解析】选B.由题可知()3181202031820a a 20a a )S 100,a a 10,22++===∴+=(2318318a a a a ()25.2+∴≤=故选B.12.【解题提示】解答本题的关键是分析出数列{a n }第几项开始有符号发生变化.【解析】选B.由|a 3|=|a 9|得()()()22111n 1a 2d a 8d .a 5d.a a n 1d n 6d,d 0,+=+∴=-=+-=-<()∴当n ≤6时,a n ≥0,当n>6时,a n <0, ∴前5项或前6项的和最大,故选B. 13.【解析】∵a n =2n-49,∴{a n }是等差数列,且首项为-47,公差为2,由()n n 1a 2n 490,a 2n 1490-=->⎧⎪⎨=--≤⎪⎩,解得n=25. ∴从第25项开始为正,前24项都为负数,即前24项之和最小. 答案:24【方法技巧】求等差数列前n 项和最值的方法:对于等差数列,当公差不等于零时,则其为单调数列,所以其前n 项和往往存在最大值或最小值,常用的方法有:(1)通项公式法:先求出通项公式,通过通项公式确定等差数列的单调性,再求其正项或负项为哪些项,从而确定前n 项和的最值. (2)二次函数法:根据等差数列的前n 项和S n 是关于项数n 的一元二次函数,从而可直接配方,求其最值,但应注意项数n 为正整数,由此,本题还可有以下解法:方法二,a n =2n-49,a 1=-47<0,公差d=2>0,∴数列{a n }为递增等差数列. 令a n =0,得1n 24.2=∴该数列中,a 1,a 2,…,a 24<0,a 25>0,…… ∴数列{a n }的前24项和最小,故n=24. 方法三,可知数列{a n }为等差数列,a 1=-47.()()1n n 222n a a n 472n 49S 22n 48n n 2424,+-+-∴===-=--()∴当n=24时,S n 取最小值,故n=24. 14.【解析】∵b=2a,B=A+60°,∴sinB=2sinA, sinB=sin(A+60°),∴2sinA=sin(A+60°).12sinA sinA tanA 223=+∴=又∵0°<A<180°,∴A=30°. 答案:30°15.【解题提示】解答本题一方面要注意常值代换的应用,另一方面要注意利用不等式的性质化“负”为“正”. 【解析】∵a+b+c=-1,∴1=-a-b-c.111a b c a b c a b ca b c a b cb ac a c b3()()()a b a c b c32229.---------∴++=++=--+-+-+≤----=-当且仅当a=b=c=13-时取等号. 答案:-916.【解析】不等式ax 2+4x+a>1-2x 2对一切x ∈R 恒成立,即(a+2)x 2+4x+a-1>0对一切x ∈R 恒成立,若a+2=0,则4x-3>0,显然不恒成立;若a+2≠0,则a 200+>⎧⎨∆<⎩,即()()2a 2044a 2a 10+>⎧⎪⎨-+-<⎪⎩,解得a>2. 答案:(2,+∞)17.【解析】∵角A ,B ,C 成等差数列, ∴A+C=2B ,A+B+C=180°,∴B=60°, 所以21sinAsinC cos 60.4=︒= ①又ABC 1S acsinB,2==得ac=16. ② 由①②及a csinA sinC=得:22ac a c ()()64,sinAsinC sinA sinCa c 8.sinA sinC asinBb 8sinB 8sin60sinA ========︒=所以又222a c b 1cosB ,2ac 2+-== ()()222222a cb ac,ac b 3ac,a c 484896,a c ∴+-=+-=∴+=+=∴+=③联立③与②得a 2,c 2,a 2,c 2.====或18.【解析】(1)设等差数列{a n }的公差为d,则a n =a 1+(n-1)d,由a 1=1,a 3=-3可得1+2d=-3.解得d=-2. 从而a n =1+(n-1)×(-2)=3-2n ,n ∈N *. (2)由(1)可知a n =3-2n.()2n n 132n S 2n n .2+-∴==-[]由S k =-35可得2k-k 2=-35. 即k 2-2k-35=0,解得k=7或k=-5. 又k ∈N *,故k=7.19.【解析】(1)由正弦定理设a b ck,sinA sinB sinC=== 则2c a 2ksinC ksinA 2sinC sinA ,b ksinB sinB ---==cosA 2cosC 2sinC sinAcosB sinB--∴=即(cosA-2cosC )sinB=(2sinC-sinA)cosB, 化简可得sin(A+B)=2sin(B+C), 又A+B+C=π,∴sinC=2sinA.因此sinC2.sinA= (2)由sinC2sinA=得c=2a.由余弦定理b 2=a 2+c 2-2accosB 及1cosB ,b 2.4==22214a 4a 4a .a 1.c 2.4=+-⨯==得解得从而又∵cosB=14且0<B<π,sinB 4∴=因此11S acsinB 122244==⨯⨯⨯= 20.【解析】(1)由x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0知:-3,2是方程ax 2+(b-8)x-a-ab=0的两根且a <0,()2b 832a 3,a a ab b 5.32a f x 3x 3x 18.-⎧-+=-⎪=-⎧⎪∴⎨⎨--=⎩⎪-⨯=⎪⎩∴=--+得(2)由a<0,知二次函数y=ax 2+bx+c 的图象开口向下.要使-3x 2+5x+c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,得25c .12≤-∴当25c 12≤-时,ax 2+bx+c ≤0的解集为R. 21.【解析】设空调机、洗衣机的月供应量分别是x 台,y 台,总利润是z ,则z=6x+8y由题意有30x 20y 3005x 10y 110x 0y 0+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩且x, y 均为整数. 作出可行域如图.由图知直线31y x z 48=-+过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.【解题提示】第(1)题可以列方程组求出首项和公差,从而易求a n ,S n .第(2)题要注意对b n 的化简变形和裂项求和法的应用.【解析】(1)设等差数列{a n }的首项为a 1,公差为d,由于a 3=7,a 5+a 7=26,∴a 1+2d=7,2a 1+10d=26.解得a 1=3,d=2.由于a n =a 1+(n-1)d,()1n n n a a S .2+=∴a n =2n+1,S n =n(n+2),n ∈N *.(2)∵a n =2n+1,()2n a 14n n 1.∴-=+()n 1111b ().4n n 14n n 1∴==-++ 故T n =b 1+b 2+…+b n()111111(1)4223n n 111n (1).4n 14n 1=-+-+⋯+-+=-=++ ∴数列{b n }的前n 项和()*n n T n N .4n 1=∈+,。
人教A版高中数学必修五必修五 综合测试题 (第三套).docx

必修五 综合测试题 (第三套)一.选择题:1. 已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A . 15B . 30 C. 31 D. 642. 若全集U=R,集合M ={}24x x >,S =301x xx ⎧-⎫>⎨⎬+⎩⎭,则()U M S I ð=( ) A.{2}x x <- B. {23}x x x <-≥或 C. {3}x x ≥ D. {23}x x -≤<3. 若1+2+22+ (2)>128,n ÎN*,则n 的最小值为( ) A. 6 B. 7 C. 8 D. 9 4. 在ABC V 中,60B =o ,2b ac =,则ABC V 一定是( )A 、等腰三角形B 、等边三角形C 、锐角三角形D 、钝角三角形 5. 若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 值是( )A.-10B.-14C. 10D. 14 6. 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是( )A .14B .16C .18D .207.已知12=+y x ,则y x 42+的最小值为( ) A .8 B .6 C .22 D .238. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖的块数是( ) A.42n +B.42n -C.24n +D.33n +9. 已知变量y x ,满足⎪⎩⎪⎨⎧≥<+≤+-12553034x y x y x ,目标函数是y x z +=2,则有( )A .3,12min max ==z zB .,12max=z z 无最小值C .z z ,3min=无最大值 D .z 既无最大值,也无最小值10.在R 上定义运算:(1)x y x y ⊗⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 成立,则实数a 的取值范围是( ) A .11a -<< B .02a << C .1322a -<< D .3122a -<< 二填空题: 11. 在数列{}n a 中,11a =,且对于任意正整数n ,都有1n n a a n +=+,则100a =______第1个 第2个 第3个12.在⊿ABC 中,5:4:21sin :sin :sin=C B A ,则角A =13.某校要建造一个容积为83m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。
2021人教版数学同步a版必修5模块练习题--2.3 等差数列的前n项和

2.3 等差数列的前n项和第1课时等差数列的前n项和公式基础过关练题组一等差数列前n项和的有关计算1.在等差数列{a n}中,已知a1=10,d=2,S n=580,则n=( )A.10B.15C.20D.302.已知一个等差数列共n项,且其前四项之和为21,末四项之和为67,前n项之和为286,则项数n为( )A.24B.26C.25D.283.设{a n}为等差数列,公差d=-2,S n为其前n项和.若S10=S11,则a1=( )A.18B.20C.22D.244.(2019福建福州长乐高中、城关中学、文笔中学高二期末)等差数列{a n}的前n 项和为S n,且S5=6,a2=1,则公差d等于( )A.15B.35C.65D.25.设等差数列{a n}的前n项和为S n,若a6=S3=12,则{a n}的通项公式a n= . 题组二数列的前n项和S n与a n的关系6.已知数列{a n}的前n项和S n=n2,则a n=( )A.nB.n2C.2n+1D.2n-17.在各项均大于零的数列{a n}中,首项a1=1,前n项和S n满足S n√S n-1-S n-1√S n=2√S n S n-1(n∈N*且n≥2),则a81=( )A.638B.639C.640D.6418.已知数列{a n}的前n项和S n=n2+n+1,则a6+a7+…+a10的值为.9.(1)已知数列{a n}的前n项和为S n=2n2+n+3,求数列{a n}的通项公式;(2)设各项均为正数的数列{a n}的前n项和S n满足S n=14(a n+1)2,求a n.题组三裂项相消法求和10.已知数列{a n}的通项公式为a n=1n(n+1),则其前10项和为( )A.910B.911C.1112D.101111.已知数列{a n}的通项公式为a n=√n+1+√n,则其前n项和S n= .12.已知数列{a n}的通项公式为a n=lg n+1n,则其前n项和S n= .13.已知等差数列{a n}满足a3=7,a5+a7=26,{a n}的前n项和为S n.(1)求a n及S n;(2)令b n=1a n2-1(n∈N*),求数列{b n}的前n项和T n.能力提升练一、选择题1.(2020吉林省实验中学高一期末,★★☆)记等差数列{a n}的前n项和为S n.若a5=3,S13=91,则a1+a11=( )A.7B.8C.9D.102.(2020湖北荆州中学、宜昌一中高二期末联考,★★☆)已知数列{a n}满足2a n=a n-1+a n+1,S n是其前n项和,若a2,a2 019是函数f(x)=x2-6x+5的两个零点,则S2 020的值为( )A.6B.12C.2 020D.6 0603.(2018云南玉溪第一中学高三月考,★★☆)已知数列{a n}的首项a1=1,对于任意m,n∈N*,有a n+m=a n+3m,则数列{a n}前5项的和S5=( )A.121B.25C.31D.354.(2020山东日照高二月考,★★☆)已知数列{a n}的前n项和S n=n2-4n+2,则|a1|+|a2|+…+|a10|等于( )A.66B.65C.61D.565.(★★☆)设公差不为零的等差数列{a n}的前n项和为S n,若a4=2(a2+a3),则S7S4=( )A.74B.145C.7D.146.(2019广东佛山一中期末,★★☆)某企业为节能减排,用9万元购进一台新设备用于生产.第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利额等于收入减去成本),则n等于( )A.4B.5C.6D.77.(★★☆)已知数列{a n}满足a n+1+(-1)n a n=2n-1,S n为其前n项和,则S60=( )A.3 690B.1 830C.1 845D.3 660二、填空题8.(2019江苏南京高三上学情调研,★★☆)记等差数列{a n}的前n项和为S n,若a m=10,S2m-1=110,则m的值为.9.(2020广东深圳宝安高二期末,★★☆)若等差数列{a n}满足a5=11,a12=-3,且{a n}的前n项和S n的最大值为M,则lg M= .10.(2020吉林松原扶余一中高一期末,★★☆)已知单调递减数列{a n}的前n项和为S n,a1≠0,且4S n=2a n-a n2(n∈N*),则a5= .三、解答题11.(2020湖北荆门高二期末,★★☆)已知数列{a n}的前n项和为S n,且(a n+1-a n)2+2=3(a n+1-a n),a50=1,求S100的最小值.12.(2020安徽合肥一中、合肥六中高一期末,★★☆)已知等差数列{a n}的前n项和为S n,且S2=8,a3+a8=2a5+2.(1)求a n ;(2)设数列{1S n}的前n 项和为T n ,求证:T n <34.13.(★★☆)已知函数f(x)=14x +m(m>0),当x 1,x 2∈R 且x 1+x 2=1时,总有f(x 1)+f(x 2)=12.(1)求m 的值;(2)设数列{a n }满足a n =f(0)+f (1n )+f (2n )+…+f (n -1n)+f(1),求数列{a n }的前n 项和S n .14.(2019山东济宁一中月考,★★☆)数列{a n }中,a 1=1,当n≥2时,其前n 项和S n满足S n 2=a n ·(S n -12).(1)求S n的表达式;(2)设b n=S n,求数列{b n}的前n项和T n.2n+115.(2018黑龙江哈尔滨第六中学高三下考前押题卷,★★★)数列{a n}中,S n为其前n项和,且2S n=na n+n(n∈N*).(1)求证:{a n}是等差数列;(2)若a2=2,b n=n+2,T n是{b n}的前n项和,求T n.a n a n+12n第2课时等差数列前n项和的性质及应用基础过关练题组一 等差数列前n 项和的性质1.已知等差数列{a n }中,S n 是其前n 项和,a 1=-11,S 1010-S 88=2,则S 11=( )A.-11 B .11 C.10 D.-102.一个等差数列共有10项,其奇数项之和是12.5,偶数项之和是15,则它的首项与公差分别是( ) A.12,12B.12,1 C.1,12D.12,23.设S n 是等差数列{a n }的前n 项和,若a 7a 5=913,则S 13S 9= .4.已知等差数列{a n }的前10项和为30,前30项的和为10,则前40项的和为 .题组二 等差数列前n 项和的函数属性5.已知数列{a n }中,a 1=10,a n+1=a n -12,则它的前n 项和S n 的最大值为 . 6.在等差数列{a n }中,a 1>0,公差d<0,a 5=3a 7,且其前n 项和为S n ,则S n 取最大值时,n= .7.已知等差数列{a n }的前n 项和为S n ,公差为d. (1)若S 2 016>0,S 2 017<0,且S k 最大,则整数k= ; (2)若a 1=25,S 9=S 17<0,且S k 最大,则整数k= . 8.已知{a n }是等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项公式a n ;(2)求{a n }的前n 项和S n 的最大值.题组三等差数列的综合问题9.数列{a n}的首项为3,{b n}为等差数列,且b n=a n+1-a n(n∈N*),若b3=-2,b10=12,则a8=( )A.0B.3C.8D.1110.若a,b,c成等差数列,则二次函数y=ax2-2bx+c的图象与x轴的交点个数为( )A.0B.1C.2D.1或211.《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小一份的量为( )A.52B.54C.53D.5612.(2019湖南长沙一中高二期末)已知等差数列{a n}的各项均为正数,其前n项和为S n,且满足a1+a5=27a32,S7=63.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1=a1,且b n+1-b n=a n+1,求数列{1b n}的前n项和T n.能力提升练一、选择题1.(2020浙江高三期末,★★☆)已知公差不为零的等差数列{a n}满足a32=a1a4,S n为数列{a n}的前n项和,则S3S1的值为( )A.94B.-94C.32D.-322.(2019山东招远一中高二月考,★★☆)已知等差数列{a n}的前n项和为S n,若S4=1,S8=4,则a17+a18+a19+a20的值为( )A.9B.12C.16D.173.(2020浙江丽水高一期末,★★★)设等差数列{a n}的前n项和为S n,公差为d,已知a1≠0,S5=S17,则( )A.da11>0B.da12>0C.a1a12>0D.a1a11<04.(2020广东第二师范学院番禺附属中学高二期末,★★★)若等差数列{a n}的前n 项和S n有最大值,且a11a10<-1,则S n取正值时,项数n的最大值为( )A.15B.17C.19D.215.(2020江苏徐州高二期末,★★★)已知等差数列{a n}的前n项和为S n,若a1>0,公差d≠0,则下列结论不正确的是( )A.若S5=S9,则S14=0B.若S5=S9,则S7最大C.若S6>S7,则S7>S8D.若S6>S7,则S5>S6二、填空题6.(2019河北衡水中学高考猜题卷,★★☆)设等差数列{a n}的前n项和为S n,已知S13>0,S14<0,若a k·a k+1<0,则k= .7.(2018湖北黄石二中高二期中,★★☆)设等差数列{a n}的前n项和为S n,且S m= -2,S m+1=0,S m+2=3,则m= .8.(2019河北沧州一中高二期中,★★★)在等差数列{a n}中,前m(m为奇数)项和为135,其中偶数项之和为63,且a m-a1=14,则a100的值为.9.(★★★)无穷等差数列{a n}的前n项和为S n,若首项a1=32,公差d=1,则满足S k2=(S k)2的正整数k的值为.三、解答题10.(2020湖南怀化高二期末,★★☆)已知数列{a n}满足1a1+1a2+1a3+…+1a n=n2(n∈N*),且b n=a n a n+1.(1)求{a n}和{b n}的通项公式;(2)若S n为数列{b n}的前n项和,对任意的正整数n,不等式S n>λ-12恒成立,求实数λ的取值范围.11.(★★☆)已知数列{a n}为等差数列,a1=1,a n>0,其前n项和为S n,且数列{√S n}也为等差数列.(1)求{a n}的通项公式;(2)设b n =a n+1S n ·S n+1,求数列{b n }的前n 项和.答案全解全析第1课时 等差数列的前n 项和公式基础过关练1.C 因为S n =na 1+12n(n-1)d=10n+12n·(n -1)×2=n 2+9n,所以n 2+9n=580,解得n=20或n=-29(舍).2.B 设该等差数列为{a n },由题意,得a 1+a 2+a 3+a 4=21,a n +a n-1+a n-2+a n-3=67. 又∵a 1+a n =a 2+a n-1=a 3+a n-2=a 4+a n-3, ∴4(a 1+a n )=21+67=88,∴a 1+a n =22. ∴S n =n (a 1+a n )2=11n=286,∴n=26.3.B 由S 10=S 11,得a 11=S 11-S 10=0,所以a 1=a 11+(1-11)d=0+(-10)×(-2)=20.4.A ∵等差数列{a n }的前n 项和为S n ,且S 5=6,a 2=1, ∴{S 5=5a 1+5×42d =6,a 2=a 1+d =1,解得{a 1=45,d =15.故选A. 5.答案 2n解析 设等差数列{a n }的首项为a 1,公差为d,由已知得{a 1+5d =12,3a 1+3d =12,解得{a 1=2,d =2,故a n =2n. 6.D 当n=1时,a 1=S 1=1;当n≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1. ∵当n=1时,此等式也成立,∴a n =2n-1(n∈N *),故选D.7.C 由已知S n √S n -1-S n-1√S n =2·√S n S n -1可得,√S n -√S n -1=2(n≥2),又a 1=1,∴√S 1=1,∴{√S n }是以1为首项,2为公差的等差数列,故√S n =2n-1,∴S n =(2n-1)2,∴a 81=S 81-S 80=1612-1592=640. 8.答案 80解析 由题意得,a 6+a 7+…+a 10=S 10-S 5=111-31=80.9.解析 (1)∵S n =2n 2+n+3,∴当n=1时,a 1=S 1=2×12+1+3=6;当n≥2时,a n =S n - S n-1=2n 2+n+3-[2(n-1)2+(n-1)+3]=4n-1.当n=1时,a 1不符合上式, ∴a n ={6(n =1),4n -1(n ≥2).(2)当n=1时,a 1=S 1=14(a 1+1)2,解得a 1=1;当n≥2时,a n =S n -S n-1=14(a n +1)2-14·(a n-1+1)2,即4a n =a n 2+2a n +1-(a n -12+2a n-1+1),∴a n 2-a n -12-2(a n +a n-1)=0,∴(a n +a n-1)(a n -a n-1-2)=0.∵数列{a n }的各项均为正数,∴a n +a n-1>0,∴a n -a n-1-2=0,即a n -a n-1=2, ∴数列{a n }是公差为2,首项为1的等差数列, ∴a n =1+2(n-1)=2n-1.10.D 设数列{a n }的前n 项和为S n .由a n =1n (n+1)=1n -1n+1得,S n =(1-12)+(12-13)+…+1n -1n+1=1-1n+1,所以S 10=1-111=1011.11.答案 √n +1-1 解析 由已知得, a n =√n+1+√n=√n +1-√n ,所以S n =a 1+a 2+…+a n =(√2-1)+(√3-√2)+…+(√n +1-√n )=√n +1-1. 12.答案 lg(n+1)解析 由已知得a n =lg(n+1)-lg n,所以S n =a 1+a 2+…+a n =(lg 2-lg 1)+(lg 3-lg 2)+…+[lg(n+1)-lg n]=lg(n+1). 13.解析 (1)设等差数列{a n }的首项为a 1,公差为d. 因为a 3=7,a 5+a 7=26, 所以{a 1+2d =7,2a 1+10d =26,解得{a 1=3,d =2.所以a n =3+2(n-1)=2n+1,S n =3n+n (n -1)2×2=n 2+2n.(2)由(1)知a n =2n+1, 所以b n =1a n 2-1=1(2n+1)2-1=14·1n (n+1)=14·(1n-1n+1),所以T n =14(1-12+12-13+ (1)-1n +1)=14(1-1n+1)=n4(n+1),即数列{b n }的前n 项和T n =n4(n+1). 能力提升练一、选择题1.D 由S 13=13a 7=91,可得a 7=7,所以a 5+a 7=10,从而a 1+a 11=a 5+a 7=10.2.D 由题意,得数列{a n }为等差数列.a 2,a 2 019是函数f(x)=x 2-6x+5的两个零点,等价于a 2,a 2 019是方程x 2-6x+5=0的两个根,∴a 2+a 2 019=6, ∴S 2 020=(a 1+a 2 020)·2 0202=(a 2+a 2 019)·2 0202=6 060,故选D.3.D 令m=1,有a n+1=a n +3,即a n+1-a n =3,又已知a 1=1,∴{a n }是首项为1,公差为3的等差数列,∴a n =1+3(n-1)=3n-2, ∴S 5=5(a 1+a 5)2=5a 3=5×(3×3-2)=35.4.A 当n≥2,n∈N *时,a n =S n -S n-1=n 2-4n+2-[(n-1)2-4(n-1)+2] =n 2-4n+2-(n 2-6n+7) =n 2-4n+2-n 2+6n-7=2n-5, 当n=1时,a 1=S 1=-1,不满足上式, ∴a n ={-1,n =1,2n -5,n ≥2,n ∈N *.∴|a 1|+|a 2|+…+|a 10|=1+1+1+3+5+…+15=2+(1+15)×82=2+64=66.5.C 解法一:设等差数列{a n }的首项为a 1,公差为d.根据等差数列的性质及a 4=2(a 2+a 3),得a 1+3d=2(a 1+d+a 1+2d),化简得a 1=-d,所以S 7S 4=7a 1+7×62d 4a 1+4×32d =14d 2d=7.解法二:由已知及等差数列的性质,得a 4=2(a 2+a 3)=2(a 1+a 4),又S 7S 4=7(a 1+a 7)24(a 1+a 4)2=7a 42(a 1+a 4),所以S7S 4=7.6.B 设该设备第n(n∈N *)年的运营费用为a n 万元,则数列{a n }是以2为首项,2为公差的等差数列,则a n =2n,则该设备到第n(n∈N *)年的运营费用总和为a 1+a 2+…+a n =2+4+…+2n=n (2+2n )2=(n 2+n)万元.设第n(n∈N *)年的盈利总额为S n 万元,则S n =11n-(n 2+n)-9=-n 2+10n-9=-(n-5)2+16,因此,当S n 取最大值时,n=5,故选B. 7.B 由题意得,当n 为奇数时,a n+1-a n =2n-1,n+1为偶数,所以a n+2+a n+1=2n+1,两式相减得a n+2+a n =2;当n 为偶数时,a n+1+a n =2n-1,n+1为奇数,所以a n+2-a n+1=2n+1,两式相加得a n+2+a n =4n. 故S 60=a 1+a 3+a 5+…+a 59+(a 2+a 4+a 6+…+a 60)=2×15+(4×2+4×6+…+4×58)=30+4×450=1 830.故选B. 二、填空题 8.答案 6解析 ∵{a n }是等差数列,且a m =10, ∴S 2m-1=a 2m -1+a 12×(2m -1)=(2m-1)a m =10(2m-1)=110,解得m=6.9.答案 2解析 设等差数列{a n }的首项为a 1,公差为d.∵a 5=11,a 12=-3,∴{a 1+4d =11,a 1+11d =-3,解得{d =-2,a 1=19.∴a n =19-2(n-1)=21-2n.令a n ≥0,解得n≤212.因此当n=10时,{a n }的前n 项和S n 取得最大值,且最大值M=10×19+10×92×(-2)=190-90=100,∴lg M=2. 10.答案 -10解析 当n=1时,4S 1=2a 1-a 12,∴a 1=-2. 当n≥2时,4S n =2a n -a n 2,① 4S n-1=2a n-1-a n -12,②①-②,得4a n =2a n -2a n-1-(a n 2-a n -12),化简,得a n -a n-1=-2或a n +a n-1=0,∵数列{a n }是递减数列,且a 1=-2,∴a n +a n-1=0舍去. ∴数列{a n }是首项为-2,公差为-2的等差数列,故a 5=-2+(5-1)×(-2)=-10. 三、解答题11.解析 由题意,得a n+1-a n =2或a n+1-a n =1.由a 50=1知,当n≤49时,a n ≤0;当n≥51时,a n >0.故当数列{a n }的前50项的公差为2,后50项的公差为1时,数列的前100项和最小. 所以(S 100)min =50×1+50×492×(-2)+50×2+50×492=-1 075.12.解析 (1)设数列{a n }的首项为a 1,公差为d,由题意得{2a 1+d =8,2a 1+9d =2a 1+8d +2,解得{a 1=3,d =2.所以a n =2n+1. (2)证明:由(1)知a n =2n+1,所以S n =n2(3+2n+1)=n 2+2n.所以1S n=1n (n+2)=12(1n -1n+2).所以T n =12[(1-13)+(12-14)+(13-15)+… +(1n -1-1n +1)+(1n-1n +2)]=12(1+12-1n+1-1n+2)<34. 13.解析 (1)令x 1=x 2=12,得f (12)=14=12+m,解得m=2.(2)由a n =f(0)+f (1n )+f (2n )+…+f (n -1n )+f(1),得a n =f(1)+f (n -1n )+…+f (1n )+f(0),两式相加,得2a n =[f(0)+f(1)]+[f (1n )+f (n -1n )]+…+[f(1)+f(0)]=12(n+1),即a n =14(n+1),显然数列{a n }是等差数列, 当n=1时,a 1=12,所以S n =n [12+14(n+1)]2=18n 2+38n.14.解析 (1)由a n =S n -S n-1(n≥2)得,S n 2=(S n -S n-1)(S n -12)=S n 2-12S n -S n-1S n +12S n-1,即S n-1-S n =2S n S n-1(n≥2), ∴1S n -1S n -1=2(n≥2),又1S 1=1a 1=1,∴{1S n}是以1为首项,2为公差的等差数列,∴1S n=2n-1,即S n =12n -1(n∈N *).(2)由(1)得b n =1(2n -1)(2n+1)=12(12n -1-12n+1), ∴T n =b 1+b 2+b 3+…+b n=12(1-13)+(13-15)+(15-17)+…+(12n -1-12n+1) =12(1-12n+1) =n 2n+1.15.解析 (1)证明:由2S n =na n +n(n∈N *)①,得2S n-1=(n-1)a n-1+(n-1)(n≥2)②, ①-②得,2a n =na n +n-(n-1)a n-1-(n-1), ∴(n -2)a n =(n-1)a n-1-1(n≥2)③, ∴(n -1)a n+1=na n -1(n∈N *)④,④-③得,(n-1)a n+1-(n-2)a n =na n -(n-1)a n-1,∴2(n -1)a n =(n-1)a n-1+(n-1)a n+1(n≥2),∴2a n =a n-1+a n+1, ∴{a n }是等差数列.(2)设等差数列{a n }的公差为d. 由题意得2S 1=a 1+1,∴a 1=1,又∵a 2=2,且由(1)知{a n }是等差数列, ∴d=a 2-a 1=1,∴a n =n, ∴b n =n+2n (n+1)·2n=12n -1·n -12n (n+1),∴T n =(1-14)+(14-112)+…+[12n -1·n -12n (n+1)]=1-12n (n+1).第2课时 等差数列前n 项和的性质及应用基础过关练1.A 因为{a n }为等差数列,所以{Sn n }也为等差数列,且首项S11=a 1=-11.设{Sn n }的公差为d,则S1010-S88=2d=2,所以d=1,所以S 1111=-11+10d=-1,所以S 11=-11.2.A 设等差数列为{a n },首项为a 1,公差为d,由S 偶-S 奇=5d=15-12.5=2.5,得d=0.5.再由S 10=10a 1+10×92×12=15+12.5,得a 1=0.5.3.答案 1解析 由等差数列前n 项和的性质得S13S 9=13a 79a 5=139×913=1.4.答案 -40解析 设等差数列{a n }的前n 项和为S n .解法一:由题易知数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等差数列.设其公差为d, 则前3项和为3S 10+3×22d=S 30=10,即S 10+d=103,又S 10=30,所以d=-803,所以S 40-S 30=S 10+3d=30+3×(-803)=-50,所以S 40=-50+S 30=-40.解法二:因为数列{a n }是等差数列,所以数列{S n n }也是等差数列,所以点(n ,S nn )在一条直线上,即(10,S 1010),(30,S 3030),(40,S4040)三点共线,于是S 3030-S 101030-10=S 4040-S 101040-10,将S 10=30,S 30=10代入,解得S 40=-40.5.答案 105解析 由题意得a n+1-a n =-12,∴数列{a n }是公差为-12的等差数列,又a 1=10,∴a n =-n 2+212(n∈N *).∵a 1=10>0,-12<0,∴设从第n 项起为负数,则-n 2+212<0(n∈N *), ∴n>21,∴前21项的和最大,最大值为S 21=105. 6.答案 7或8解析 由a 5=3a 7,得a 1+4d=3(a 1+6d),即a 1=-7d,所以a n =a 1+(n-1)d=-7d+(n-1)d=(n-8)d. 又因为a 1>0,d<0,所以当{a n ≥0,a n+1≤0时,S n 取得最大值,即{(n -8)d ≥0,(n -7)d ≤0,解得7≤n≤8.所以当S n 取最大值时,n=7或8. 7.答案 (1)1 008 (2)13解析 (1)由等差数列的性质可知,S 2 017=2 017a 1 009<0,所以a 1 009<0, 又S 2 016=2 016(a 1 008+a 1 009)2>0,即a 1 008+a 1 009>0,所以结合a 1 009<0可得a 1 008>0,因此S 1 008最大,故k=1 008. (2)解法一:由{a 1=25,S 9=S 17,可得{a 1=25,9a 1+9×4d =17a 1+17×8d ,解得d=-2,则S n =25n+n (n -1)2×(-2)=-(n-13)2+169,显然S 13最大,故k=13.解法二:同解法一得d=-2, 故a n =25+(-2)×(n -1)=27-2n,显然对于n∈N *,当n≤13时,a n >0;当n≥14时,a n <0.故S 13最大,k=13. 8.解析 (1)设{a n }的公差为d,则由a 2=1, a 5=-5,得d=a 5-a 25-2=-5-13=-2,∴a 1=a 2-d=3,∴a n =-2n+5. (2)由(1)得,S n =3n+n (n -1)2×(-2)=-n 2+4n=-(n-2)2+4,∴当n=2时,S n 取得最大值4.9.B 设数列{b n }的首项为b 1,公差为d,则由b 3=-2,b 10=12,得{b 1+2d =-2,b 1+9d =12,解得{b 1=-6,d =2,∴b n =-6+(n-1)×2=2n -8,∴a n+1-a n =2n-8,又a 1=3, ∴a 2-a 1=2×1-8, a 3-a 2=2×2-8,a 4-a 3=2×3-8, …… a 8-a 7=2×7-8,以上各式相加得,a 8-a 1=2×(1+2+3+…+7)-8×7=0,∴a 8=a 1=3.10.D 由a,b,c 成等差数列得2b=a+c,Δ=(-2b)2-4ac=(a+c)2-4ac=(a-c)2, 当a=c 时,Δ=0,有一个交点; 当a≠c 时,Δ>0,有两个交点.11.C 由题意可得中间的那份为20个面包.设最小的一份为a 1,公差为d,由题意可得[20+(a 1+3d)+(a 1+4d)]×17=a 1+(a 1+d),解得a 1=53,故选C.12.解析 (1)解法一:设等差数列{a n }的公差为d,由题意,得a n >0,且{a 1+a 1+4d =27(a 1+2d )2,7a 1+21d =63,∴{a 1=3,d =2.∴a n =2n+1.解法二:∵{a n }是等差数列,且a 1+a 5=27a 32,∴2a 3=27a 32.又a n >0,∴a 3=7. ∵S 7=7(a 1+a 7)2=7a 4=63,∴a 4=9,∴d=a 4-a 1=2, ∴a n =a 3+(n-3)d=2n+1. (2)∵b n+1-b n =a n+1,且a n =2n+1, ∴b n+1-b n =2n+3. ∴当n≥2时,b n =(b n -b n-1)+(b n-1-b n-2)+…+(b 2-b 1)+b 1=(2n+1)+(2n-1)+…+5+3 =n(n+2),当n=1时,b 1=3满足上式, ∴b n =n(n+2). ∴1b n =1n (n+2)=12(1n -1n+2), ∴T n =1b 1+1b 2+…+1b n -1+1b n=12[(1-13)+(12-14)+(13-15)+ …+(1n -1-1n +1)+(1n-1n +2)]=12(1+12-1n+1-1n+2) =34-2n+32(n+1)(n+2).能力提升练一、选择题1.A 设数列{a n }的公差为d(d≠0),由a 32=a 1a 4得(a 1+2d)2=a 1(a 1+3d),整理,得a 1d+4d 2=0,因为d≠0,所以a 1=-4d,所以S 3=3a 1+3d=-9d,所以S 3S 1=-9d -4d =94,故选A.2.A 由等差数列前n 项和的性质得, S 4,S 8-S 4,S 12-S 8,…成等差数列. 由S 4=1,S 8=4可得,其公差为2, 所以S 36=S 4+(S 8-S 4)+…+(S 36-S 32)=9×1+9×82×2=81.又因为S 36=36×(a 1+a 36)2,所以a 1+a 36=8118=92,所以a 17+a 18+a 19+a 20=2(a 17+a 20)=2(a 1+a 36)=9. 3.B 由a 1≠0,S 5=S 17,得5a 1+5×42d=17a 1+17×162d,化简,得2a 1+21d=0,即a 11+a 12=0.因为a 1≠0,所以d≠0,所以a 11,a 12符号相反.若d>0,则a 11<0,a 12>0,a 1<0,所以da 11<0,da 12>0,a 1a 12<0,a 1a 11>0;若d<0,则a 11>0,a 12<0,a 1>0,所以da 11<0,da 12>0,a 1a 12<0,a 1a 11>0.综上,选B. 4.C 设等差数列{a n }的首项为a 1,公差为d.由S n 有最大值,得d<0.由a11a 10<-1,得a 11<0<a 10,且a 11+a 10<0.由a 10>0,得2a 10=a 1+a 19>0,所以S 19>0.由a 10+a 11<0,得a 1+a 20=a 10+a 11<0,所以S 20<0.所以S n 取正值时,n 的最大值为19. 5.D 由S 5=S 9得a 6+a 7+a 8+a 9=0,即a 1+a 14=0,所以S 14=14×(a 1+a 14)2=0,故A 中结论正确.由S 5=S 9得5a 1+10d=9a 1+36d,即d=-213a 1.因为a 1>0,所以d<0. 再由S n 对应的二次函数的图象知,对称轴为n=5+92=7,所以S 7最大,故B 中结论正确. 由S 6>S 7得a 7<0.又a 1>0,所以d<0,所以a 8<0,所以S 7>S 8.但a 6的符号不确定,所以S 5与S 6的大小无法比较,故C 中结论正确,D 中结论错误.故选D. 二、填空题 6.答案 7解析 因为S 13>0,S 14<0,所以{13(a 1+a 13)2>0,14(a 1+a 14)2<0,即{a 1+a 13>0,a 1+a 14<0, ∴{a 1+a 13=2a 7>0,a 1+a 14=a 7+a 8<0,∴{a 7>0,a 8<0, 又a k ·a k+1<0,∴k=7. 7.答案 4解析 因为S n 是等差数列{a n }的前n 项和,所以数列{Sn n}是等差数列,所以S m m+S m+2m+2=2S m+1m+1,即-2m +3m+2=0,解得m=4.8.答案 101解析 ∵在前m 项中偶数项之和为S 偶=63,∴奇数项之和为S 奇=135-63=72.设等差数列{a n }的公差为d,则S 奇-S 偶=2a 1+(m -1)d2=72-63=9.∵a m =a 1+d(m-1),∴a 1+a m2=9.由题意得m (a 1+a m )2=135,∴m=15,又∵a m -a 1=14, ∴a 1=2,d=14m -1=1,∴a 100=a 1+99d=101.9.答案 4解析 解法一:由题意,得S n =32n+n (n -1)2×1=12n 2+n,则S k 2=12k 4+k 2,(S k )2=(12k 2+k)2,∴12k 4+k 2=(12k 2+k)2,即14k 4-k 3=0,解得k=0或k=4.∵k∈N *,∴k=4.解法二:∵数列{a n }为等差数列,∴不妨设S n =An 2+Bn,其中A=d2,B=a 1-d2,则S k 2=A(k 2)2+Bk 2,S k =Ak 2+Bk.由S k 2=(S k )2,得k 2(Ak 2+B)=k 2(Ak+B)2.∵k∈N *,∴Ak 2+B=(Ak+B)2,即(A 2-A)·k 2+2ABk+B 2-B=0,又A=d 2=12,B=a 1-d2=1,∴14k 2-k=0,解得k=0(舍去)或k=4.三、解答题10.解析 (1)∵1a 1+1a 2+1a 3+…+1a n=n 2(n∈N *)①,∴当n≥2时,1a 1+1a 2+1a 3+…+1a n -1=(n-1)2②.①-②,得1a n=2n-1(n≥2),经检验,1a 1=1满足上式,∴1a n=2n-1(n∈N *),∴a n =12n -1.∴b n =1(2n -1)(2n+1)=12(12n -1-12n+1).(2)由(1)及已知得S n =12·(1-13+13-15+…+12n -1-12n+1)=n2n+1. 又S n =n 2n+1=12-14n+2,n∈N *,∴S n ∈[13,12),∴不等式S n >λ-12恒成立等价于13>λ-12,∴λ<56.故实数λ的取值范围为(-∞,56).11.解析 (1)设等差数列{a n }的公差为d(d≥0),则S 1=a 1=1,S 2=2+d,S 3=3+3d. ∵数列{√S n }为等差数列, ∴2√2+d =1+√3+3d ,解得d=2. ∴a n =1+2(n-1)=2n-1. (2)由(1)得a n+1=2n+1, S n =n+n (n -1)2×2=n 2, ∴b n =a n+1S n ·S n+1=2n+1n 2·(n+1)2=1n2-1(n+1)2.设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =(112-122)+(122-132)+…+[1n 2-1(n+1)2]=1-1(n+1)2=n 2+2n(n+1)2.。
2020高二数学人教A必修5 模块综合检测 Word版含解析

模块综合检测(时间:120分钟满分:150分)知识点分布表一、选择题(本大题共12小题,每小题5分,共60分)1.(2015江西吉安联考,1)若a,b,c∈R,a>b,则下列不等式成立的是()A. B.C.a2>b2D.a|c|>b|c|答案:B解析:A.∵当1>-2时,1<-不成立,∴不成立.B.∵c2+1≥1,a>b,∴,故B正确.C.∵当1>-2时,1>4不成立,∴a2>b2不成立.D.当c=0时,0=a|c|>b|c|=0,不成立.故选B.2.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为()A. B.3 C. D.7答案:A解析:S=×AB·AC sin 60°=×2×AC=,所以AC=1.所以BC2=AB2+AC2-2AB·AC cos 60°=3.所以BC=,故选A.3.若5,x,y,z,21成等差数列,则x+y+z的值为()A.26B.29C.39D.52答案:C解析:因为5,x,y,z,21构成等差数列,所以y是x,z的等差中项,也是5,21的等差中项,所以x+z=2y,5+21=2y,所以y=13,x+z=26,所以x+y+z=39.4.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知b cos C+c cos B=2b,则等于()A.1B.C.2D.答案:C解析:利用正弦定理,将b cos C+c cos B=2b化为sin B cos C+sin C cos B=2sin B, 即sin(B+C)=2sin B.∵sin(B+C)=sin A,∴sin A=2sin B.利用正弦定理可得a=2b,故=2.5.已知数列{a n}满足3a n+1+a n=0,a2=-,则{a n}的前10项和等于()A.-6(1-3-10)B.(1-3-10)C.3(1-3-10)D.3(1+3-10)答案:C解析:由3a n+1+a n=0,得=-.所以{a n}是以q=-为公比的等比数列.所以a1=a2·=-×(-3)=4.所以S10=--=3(1-3-10),故选C.则目标6.(2015河北邯郸三校联考,6)设变量x,y满足约束条件--函数z=3x-y的最大值为() A.-4 B.0 C. D.4答案:D解析:画出不等式组表示的平面区域,直线在y轴上的截距最小,z最大,最大值为6-2=4.故选D.7.已知等差数列{a n}满足,a1>0,5a8=8a13,则前n项和S n取最大值时,n的值为()A.20B.21C.22D.23答案:B解析:由5a8=8a13得5(a1+7d)=8(a1+12d)⇒d=-a1,由a n=a1+(n-1)d=a1+(n-1)-≥0⇒n≤=21,所以数列{a n}前21项都是正数,以后各项都是负数,故S n取最大值时,n的值为21,选B.8.(2015福建宁德五校联考,8)已知正实数a,b满足=1,x=a+b,则实数x的取值范围是()A.[6,+∞)B.(2,+∞)C.[4,+∞)D.[3+2,+∞)答案:D解析:∵=1,∴x=a+b=(a+b)=2+1+≥3+2当且仅当即时等号成立.故选D.9.(2015河南南阳高二期中,7)在△ABC中,若tan A tan B>1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定答案:A解析:因为A和B都为三角形中的内角,由tan A tan B>1,得到1-tan A tan B<0,且得到tan A>0,tan B>0,即A,B为锐角,<0,所以tan(A+B)=-则A+B∈ππ,即C为锐角,所以△ABC是锐角三角形.10.(2015山东潍坊四县联考,10)已知数列{a n}中,a1=2,na n+1=(n+1)a n+2,n∈N*,则a11=()A.36B.38C.40D.42答案:D解析:因为na n+1=(n+1)a n+2,n∈N*,所以在等式的两边同时除以n(n+1),得=2-.所以+2--…-.所以a11=42.故选D.11.(2015陕西高考,10)设f(x)=ln x,0<a<b,若p=f(),q=f,r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.q=r>pC.p=r<qD.p=r>q答案:C解析:∵f(x)=ln x,∴p=f()=ln(ln a+ln b)=r.又∵0<a<b,∴.又∵y=ln x为递增函数,∴ln>ln,即q>r,综上p=r<q.12.(2015河南南阳高二期中,6)对于数列{a n},定义数列{a n+1-a n}为数列a n的“差数列”,若a1=1,{a n}的“差数列”的通项公式为3n,则数列{a n}的通项公式a n=()A.3n-1B.3n+1+2C.-D.-答案:C解析:∵a1=1,a n+1-a n=3n,∴a n=(a n-a n-)+(a n-1-a n-2)+…+(a2-a1)+a11=3n-1+3n-2+…+31+1-.故选C.=--二、填空题(本大题共4小题,每小题5分,共20分)13.(2015广东湛江高二期末,14)若x>4,函数y=x+-,当x= 时,函数有最小值为 . 答案:5 6解析:∵x>4,∴x-4>0.∴y=x+ - =x-4+- +4≥2 - ·-+4=6.当且仅当x-4=-即x=5时等号成立.14.(2015山东潍坊四县联考,12)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且- ,则= .答案:解析:-.15.设数列{a n }满足:a 1=1,a 2=4,a 3=9,a n =a n-1+a n-2-a n-3(n=4,5,…),则a 2015= .答案:8 057解析:由a n =a n-1+a n-2-a n-3,得a n+1=a n +a n-1-a n-2,两式作和得:a n+1=2a n-1-a n-3, 即a n+1+a n-3=2a n-1(n=4,5,…).∴数列{a n }的奇数项和偶数项均构成等差数列. ∵a 1=1,a 3=9,∴奇数项构成的等差数列的公差为8.则a2 015=a1+8(1 008-1)=1+8×1 007=8 057.故答案为8 057.三、解答题(17~20小题及22小题每小题12分,21小题10分,共70分)17.已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=4,cos B=.(1)若b=3,求sin A的值;(2)若△ABC的面积为12,求b的值.解:(1)∵cos B=,0<B<π,∴sin B=-.由正弦定理可得:.又a=4,b=3,∴sin A=.(2)由面积公式,得S△ABC=ac sin B,∴ac×=12,可解得c=10.由余弦定理,b2=a2+c2-2ac cos B=52,解得b=2.18.数列{a n}中,a1=2,a n+1=a n+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列.(1)求c的值;(2)求{a n}的通项公式.解:(1)a1=2,a2=2+c,a3=2+3c,因为a1,a2,a3成等比数列,所以(2+c)2=2(2+3c),解得c=0或c=2.当c=0时,a1=a2=a3,不符合题意,舍去,故c=2.(2)当n≥2时,由于a2-a1=c,a3-a2=2c,…,a n-a n-1=(n-1)c,所以a n-a1=[1+2+…+(n-1)]c=- c.又a1=2,c=2,故a n=2+n(n-1)=n2-n+2(n=2,3,…).当n=1时,上式也成立.所以a n=n2-n+2(n=1,2,…).19△ABC的内角A,B,C的对边分别是a,b,c,已知A,B,C成等差数列,△ABC 的面积为.(1)求证:a,2,c成等比数列;(2)求△ABC的周长L的最小值,并说明此时△ABC的形状.(1)证明:∵A,B,C成等差数列,∴B=60°.又△ABC的面积为,∴ac sin 60°=,即ac=4.∵ac=22,∴a,2,c成等比数列.(2)解:在△ABC中,根据余弦定理,得b2=a2+c2-2ac cos 60°=a2+c2-ac≥2ac-ac=ac=4,∴b≥2,当且仅当a=c时,等号成立.∴△ABC的周长L=a+b+c≥2+b=4+b,当且仅当a=c时,等号成立.∴L≥4+2=6,当且仅当a=c时,等号成立.∴△ABC周长的最小值为6.∵a=c,B=60°,∴此时△ABC为等边三角形.20已知f(x)=x2-abx+2a2.(1)当b=3时,①若不等式f(x)≤0的解集为[1,2],求实数a的值;②求不等式f(x)<0的解集.(2)若f(2)>0在a∈[1,2]上恒成立,求实数b的取值范围.解:(1)当b=3时,f(x)=x2-abx+2a2=x2-3ax+2a2,①∵不等式f(x)≤0的解集为[1,2],∴1,2是方程x2-3ax+2a2=0的两根.∴解得a=1.②∵x2-3ax+2a2<0,∴(x-a)(x-2a)<0.∴当a>0时,此不等式的解集为(a,2a),当a=0时,此不等式的解集为空集,当a<0时,此不等式的解集为(2a,a).(2)由题意f(2)=4-2ab+2a2>0在a∈[1,2]上恒成立,即b<a+在a∈[1,2]上恒成立.又a+≥2·=2,当且仅当a=,即a=时上式等号成立.∴b<2,实数b的取值范围是(-∞,2).21.汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,某市的一条道路在一个限速为40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事后现场勘查测得甲车刹车距离刚好12 m,乙车刹车距离略超过10 m.又知甲、乙两种车型的刹车距离S(m)与车速x(km/h)之间分别有如下关系:S甲=0.1x+0.01x2,S乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?解:由题意知,对于甲车,有0.1x+0.01x2=12,即x2+10x-1 200=0,解得x=30或x=-40(x=-40不符合实际意义,舍去).这表明甲车的车速为30 km/h.甲车车速不会超过限速40 km/h.对于乙车,有0.05x+0.005x2>10,即x2+10x-2 000>0,解得x>40或x<-50(x<-50不符合实际意义,舍去).这表明乙车的车速超过40 km/h,超过规定限速.。
人教A版高中数学必修五高二(上)期中试卷

高中数学学习材料(灿若寒星精心整理制作)2016-2017学年河南省郑州市七校联考高二(上)期中数学试卷(理科)一、选择题(本题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a>b,c>d,且c,d不为0,那么下列不等式一定成立的是()A.ad>bc B.ac>bd C.a﹣c>b﹣d D.a+c>b+d2.不等式(x﹣1)(2﹣x)≥0的解集为()A.{x|1≤x≤2}B.{x|x≤1或x≥2}C.{x|1<x<2}D.{x|x<1或x>2}=1+2a n,则数列{a n}前10项的和为3.在数列{a n}中,若a1=﹣2,且对任意的n∈N*有2a n+1()A.2 B.10 C.D.4.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.845.在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是()A.x>2 B.x<2 C.D.6.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.C.2D.27.若关于x的不等式x+≥a2﹣3a对任意实数x>0恒成立,则实数a的取值范围为()A.[﹣1,4] B.(﹣∞,﹣2]∪[5,+∞)C.(﹣∞,﹣1]∪[4,+∞)D.[﹣2,5]8.若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5 B.6 C.7 D.89.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 10.在△ABC中,角A,B,C的对边分别为a,b,c,若A,B,C成等差数列,2a,2b,2c成等比数列,则cosAcosB=()A.B.C.D.11.已知数列{a n}:, +, ++,…, +++…+,…,若b n=,那么数列{b n}的前n项和S n为()A. B. C. D.12.已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得=4a1,则+的最小值为()A.B.C.D.二、填空题(本题共4个小题,每题5分,共20分)13.已知数列{a n}中,a1=1且=+(n∈N*),则a10=.14.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+bsinC﹣a﹣c=0,则角B=.15.设实数x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为10,则a2+b2的最小值为.16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n}称为“斐波那契数列”,该数列是一个非常美丽、和谐的数列,有很多奇妙的属性,比如:随着项数的增加,前一项与后一项的比值越逼近黄金分割.06180339887.若把该数列{a n}的每一项除以4所得的余数按相对应的顺序组成新数列{b n},在数列{b n}中第2016项的值是.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知关于x的不等式kx2﹣2x+3k<0.(1)若不等式的解集为{x|x<﹣3或x>﹣1},求k的值;(2)若不等式的解集为∅,求实数k的取值范围.18.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若cosB=,△ABC的周长为5,求b的长.19.己知数列{a n}的前n项和S n=,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=2a n+(﹣1)n a n,求数列{b n}的前2n项和.20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.21.某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为Q=(x≥0).已知生产此产品的年固定投入为3万元,每生产1万元此产品仍需再投入32万元,若每件销售价为“平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?22.已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=.(1)当n∈N*时,求f(n)的表达式;(2)设a n=n•f(n),n∈N*,求证a1+a2+a3+…+a n<2;(3)设b n=(9﹣n),n∈N*,S n为b n的前n项和,当S n最大时,求n的值.2016-2017学年河南省郑州市七校联考高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a >b ,c >d ,且c ,d 不为0,那么下列不等式一定成立的是( ) A .ad >bc B .ac >bd C .a ﹣c >b ﹣d D .a +c >b +d 【考点】不等关系与不等式.【分析】a >b ,c >d ,根据不等式的性质即可得到答案. 【解答】解:令a=2,b=﹣2,c=3,d=﹣6, 则2×3<(﹣5)(﹣6)=30,可排除A 2×(﹣6)<(﹣2)×3可排除B ; 2﹣3<(﹣2)﹣(﹣6)=4可排除C , ∵a >b ,c >d ,∴a +c >b +d (不等式的加法性质)正确. 故选D .2.不等式(x ﹣1)(2﹣x )≥0的解集为( )A .{x |1≤x ≤2}B .{x |x ≤1或x ≥2}C .{x |1<x <2}D .{x |x <1或x >2} 【考点】一元二次不等式的解法. 【分析】此题是x 的系数不为正的二次不等式,可转化为x 的系数为正的整式不等式然后再利用二次不等式的解法即可求解. 【解答】解:∵(x ﹣1)(2﹣x )≥0, ∴(x ﹣2)(x ﹣1)≤0∴结合二次函数的性质可得解集为1≤x ≤2. 故选A .3.在数列{a n }中,若a 1=﹣2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10C .D .【考点】数列递推式;数列的求和.【分析】由已知数列递推式可得数列{a n }是公差为的等差数列,代入等差数列的前n 项和公式得答案.【解答】解:由2a n +1=1+2a n ,得2a n +1﹣2a n =1,则,∴数列{a n }是公差为的等差数列,又a 1=﹣2,∴.故选:C.4.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21 B.42 C.63 D.84【考点】等比数列的通项公式.【分析】由已知,a1=3,a1+a3+a5=21,利用等比数列的通项公式可求q,然后在代入等比数列通项公式即可求.【解答】解:∵a1=3,a1+a3+a5=21,∴,∴q4+q2+1=7,∴q4+q2﹣6=0,∴q2=2,∴a3+a5+a7==3×(2+4+8)=42.故选:B5.在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是()A.x>2 B.x<2 C.D.【考点】正弦定理的应用.【分析】利用正弦定理和b和sinB求得a和sinA的关系,利用B求得A+C;要使三角形两个这两个值互补先看若A≤45°,则和A互补的角大于135°进而推断出A+B>180°与三角形内角和矛盾;进而可推断出45°<A<135°若A=90,这样补角也是90°,一解不符合题意进而可推断出sinA的范围,利用sinA和a的关系求得a的范围.【解答】解:==2∴a=2sinAA+C=180°﹣45°=135°A有两个值,则这两个值互补若A≤45°,则C≥90°,这样A+B>180°,不成立∴45°<A<135°又若A=90,这样补角也是90°,一解所以<sinA<1a=2sinA所以2<a<2故选C6.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为()A.B.C.2D.2【考点】余弦定理.【分析】利用三角形面积公式列出关系式,把AB,sinA,已知面积代入求出AC的长,再利用余弦定理即可求出BC的长.【解答】解:∵在△ABC中,A=60°,AB=2,且△ABC的面积为,∴AB•AC•sinA=,即×2×AC×=,解得:AC=1,由余弦定理得:BC2=AC2+AB2﹣2AC•AB•cosA=1+4﹣2=3,则BC=.故选:B.7.若关于x的不等式x+≥a2﹣3a对任意实数x>0恒成立,则实数a的取值范围为()A.[﹣1,4] B.(﹣∞,﹣2]∪[5,+∞)C.(﹣∞,﹣1]∪[4,+∞)D.[﹣2,5]【考点】函数恒成立问题.【分析】利用基本不等式求出不等式x+的最小值为4,转化4≥a2﹣3a,由此解得实数a的取值范围.【解答】解:∵x>0,∴不等式x+=4,当且仅当x=2时,表达式取得最小值为4,由关于x的不等式x+≥a2﹣3a对任意实数x>0恒成立,可得4≥a2﹣3a,解得﹣1≤a≤4,故选:A.8.若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5 B.6 C.7 D.8【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.9.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 【考点】解三角形的实际应用.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣=120(﹣1)(m).∴河流的宽度BC 等于120(﹣1)m .故选:B .10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A ,B ,C 成等差数列,2a ,2b ,2c 成等比数列,则cosAcosB=( )A .B .C .D .【考点】等差数列与等比数列的综合.【分析】先根据A ,B ,C 成等差数列和三角形内角和定理求出B 的值,根据等比中项的性质可知b 2=ac 代入余弦定理求得a 2+c 2﹣ac=ac ,整理求得a=c ,即得A=C ,最后利用三角形内角和定理求出A 和C ,最后求出式子的值.【解答】解:由A ,B ,C 成等差数列,有2B=A +C (1) ∵A ,B ,C 为△ABC 的内角,∴A +B +C=π(2).由(1)(2)得B=.由2a ,2b ,2c 成等比数列,得b 2=ac , 由余弦定理得,b 2=a 2+c 2﹣2accosB把B=、b 2=ac 代入得,a 2+c 2﹣ac=ac ,即(a ﹣c )2=0,则a=c ,从而A=C=B=,∴cosAcosB==,故选A .11.已知数列{a n }:, +, ++,…, +++…+,…,若b n =,那么数列{b n }的前n 项和S n 为( )A .B .C .D .【考点】数列的求和.【分析】先确定数列{a n }的通项,再确定数列{b n }的通项,利用裂项法可求数列的和.【解答】解:由题意,数列{a n }的通项为a n ==,∴b n ==4(﹣)∴S n =4(1﹣+﹣+…+﹣)=4(1﹣)=故选B .12.已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得=4a 1,则+的最小值为( )A .B .C .D .【考点】基本不等式;等比数列的通项公式.【分析】由 a 7=a 6+2a 5 求得q=2,代入求得m +n=6,利用基本不等式求出它的最小值.【解答】解:由各项均为正数的等比数列{a n }满足 a 7=a 6+2a 5,可得,∴q 2﹣q ﹣2=0,∴q=2.∵,∴q m +n ﹣2=16,∴2m +n ﹣2=24,∴m +n=6,∴,当且仅当=时,等号成立.故的最小值等于,故选A .二、填空题(本题共4个小题,每题5分,共20分)13.已知数列{a n }中,a 1=1且=+(n ∈N *),则a 10=.【考点】等差数列的通项公式.【分析】由数列递推式可知数列{}是以为首项,以为公差的等差数列,由此求得数列{a n }的通项公式,则答案可求.【解答】解:由=+,得﹣=,∴数列{}是以为首项,以为公差的等差数列,则,∴.则.故答案为:.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知bcosC +bsinC ﹣a ﹣c=0,则角B= . 【考点】正弦定理.【分析】已知等式利用正弦定理化简,整理后得到cosB=,结合B 的范围即可得解B 的值.【解答】证明:在△ABC 中,∵bcosC +bsinC ﹣a ﹣c=0,∴利用正弦定理化简得:sinBcosC +sinBsinC ﹣sinA ﹣sinC=0,即sinBcosC +sinBsinC=sinA +sinC=sin (B +C )+sinC=sinBcosC +cosBsinC +sinC=sinBcosC +sinC (cosB +1),∴sinB=cosB +1,即sin (B ﹣)=,∵0<B <π,∴﹣<B ﹣<,∴B ﹣=,即B=.故答案为:.15.设实数x ,y 满足约束条件,若目标函数z=ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为 .【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识先求出a ,b 的关系,然后利用基本不等式求的最小值.【解答】解:由z=ax +by (a >0,b >0)得y=, 作出可行域如图:∵a >0,b >0,∴直线y=的斜率为负,且截距最大时,z 也最大.平移直线y=,由图象可知当y=经过点A 时,直线的截距最大,此时z 也最大.由,解得,即A (4,6).此时z=4a+6b=10,即2a+3b﹣5=0,即(a,b)在直线2x+3y﹣5=0上,a2+b2的几何意义为直线上点到圆的距离的平方,则圆心到直线的距离d=,则a2+b2的最小值为d2=,故答案为:.16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n}称为“斐波那契数列”,该数列是一个非常美丽、和谐的数列,有很多奇妙的属性,比如:随着项数的增加,前一项与后一项的比值越逼近黄金分割.06180339887.若把该数列{a n}的每一项除以4所得的余数按相对应的顺序组成新数列{b n},在数列{b n}中第2016项的值是0.【考点】数列的应用.【分析】根据数列,得到余数构成是数列是周期数列,即可得到结论.【解答】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n}是周期为6的周期数列,=b6=0,∴b2016=b236×6故答案为:0.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知关于x的不等式kx2﹣2x+3k<0.(1)若不等式的解集为{x|x<﹣3或x>﹣1},求k的值;(2)若不等式的解集为∅,求实数k的取值范围.【考点】一元二次不等式的解法.【分析】(1)根据不等式与对应一元二次方程的关系,利用根与系数的关系求出k的值;(2)根据不等式kx2﹣2x+3k<0的解集为∅,讨论k的取值,求出结果即可.【解答】解:(1)由不等式的解集为{x|x<﹣3或x>﹣1},可知k<0,﹣3和﹣1是一元二次方程kx2﹣2x+3k=0的两根,所以,解得k=﹣;(2)因不等式kx2﹣2x+3k<0的解集为∅,若k=0,则不等式﹣2x<0,此时x>0,不合题意;若k≠0,则,解得;综上,实数k的取值范围是(0,].18.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若cosB=,△ABC的周长为5,求b的长.【考点】正弦定理的应用;余弦定理.【分析】(1)利用正弦定理化简等式的右边,然后整理,利用两角和的正弦函数求出的值.(2)利用(1)可知c=2a,结合余弦定理,三角形的周长,即可求出b的值.【解答】解:(1)因为所以即:cosAsinB﹣2sinBcosC=2sinCcosB﹣cosBsinA所以sin(A+B)=2sin(B+C),即sinC=2sinA所以=2(2)由(1)可知c=2a…①a+b+c=5…②b2=a2+c2﹣2accosB…③cosB=…④解①②③④可得a=1,b=c=2;所以b=219.己知数列{a n}的前n项和S n=,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=2a n+(﹣1)n a n,求数列{b n}的前2n项和.【考点】数列的求和;数列递推式.【分析】(1)求得首项,再由n换为n﹣1,相减可得数列的通项公式;(2)求得b n=2n+(﹣1)n•n,n为奇数时,b n=n;n为偶数时,b n=3n.运用等差数列的求和公式计算即可得到所求.【解答】解:(1)S n=,n∈N*,可得a1=S1=1,=﹣=n,当n>1时,a n=S n﹣S n﹣1综上可得,a n=n,n∈N*;(2)b n=2n+(﹣1)n•n,n为奇数时,b n=n;n为偶数时,b n=3n.即有数列{b n}的前2n项和为(1+3+5+…+2n﹣1)+(6+12+…+6n)=n(1+2n﹣1)+n(6+6n)=3n2+4n.20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=(1)求角C的大小,(2)若c=2,求使△ABC面积最大时a,b的值.【考点】正弦定理;余弦定理.【分析】(1)已知等式左边利用正弦定理化简,右边利用诱导公式变形,整理后再利用两角和与差的正弦函数公式及诱导公式变形,根据sinA不为0求出cosC的值,即可确定出C的度数;(2)利用余弦定理列出关系式,将c与cosC的值代入并利用基本不等式求出ab的最大值,进而确定出三角形ABC面积的最大值,以及此时a与b的值即可.【解答】解:(1)∵A+C=π﹣B,即cos(A+C)=﹣cosB,∴由正弦定理化简已知等式得:=,整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,∵sinA≠0,∴cosC=﹣,∵C为三角形内角,∴C=;(Ⅱ)∵c=2,cosC=﹣,∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,∴ab≤,(当且仅当a=b时成立),∵S=absinC=ab≤,∴当a=b时,△ABC面积最大为,此时a=b=,则当a=b=时,△ABC的面积最大为.21.某企业准备投入适当的广告费对产品进行促销,在一年内预计销售Q(万件)与广告费x(万元)之间的函数关系为Q=(x≥0).已知生产此产品的年固定投入为3万元,每生产1万元此产品仍需再投入32万元,若每件销售价为“平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试将年利润W(万元)表示为年广告费x(万元)的函数;(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?【考点】函数模型的选择与应用.【分析】(1)根据生产此产品的年固定投入为3万元,每生产1万件此产品仍需后期再投入32万元,若每件售价为“年平均每件投入的150%”与“年平均每件所占广告费的50%”之和,可建立函数关系式;(2)利用换元法,再借助于基本不等式,即可求得最值.【解答】解:(1)由题意可得,产品的生产成本为(32Q+3)万元,每万件销售价为,∴年销售收入为=,∴年利润=.(2)令x+1=t(t≥1),则.∵t≥1,∴,即W≤42,当且仅当,即t=8时,W有最大值42,此时x=7.即当年广告费为7万元时,企业利润最大,最大值为42万元.22.已知函数f(x)满足f(x+y)=f(x)•f(y),且f(1)=.(1)当n∈N*时,求f(n)的表达式;(2)设a n=n•f(n),n∈N*,求证a1+a2+a3+…+a n<2;(3)设b n=(9﹣n),n∈N*,S n为b n的前n项和,当S n最大时,求n的值.【考点】数列的求和;数列的函数特性;等比数列的通项公式.【分析】(1)由于函数f(x)满足f(x+y)=f(x)•f(y)对任意的实数x,y都成立,故可令x=n,y=1,再由f(1)=得到f(n)的表达式;(2)由(1)知,a n=n•f(n)=,故可用错位相减法求出a1+a2+a3+…+a n的表达式,即可得证;(3)由(1)和b n=(9﹣n),n∈N*可求b n的表达式,进而求出S n,由于数列为一种特殊函数,故可利用函数单调性得到S n最大时的n值.【解答】解:(1)令x=n.y=1,得到f(n+1)=f(n)•f(1)=f(n),所以{f(n)}是首项为、公比为的等比数列,即f(n)=;(2)∵,,,两式相减得:,整理得.(3)∵f(n)=,而b n=(9﹣n),n∈N*,则b n=,当n≤8时,b n>0;当n=9时,b n=0;当n>9时,b n<0;∴n=8或9时,S n取到最大值.2016年11月24日。
2024-2025学年新教材高中数学模块综合提升教案新人教A版选择性必修第一册

1.教学重点
(1)函数与导数的应用:理解导数在实际问题中的应用,如速度、加速度、曲线斜率等,掌握函数的单调性、极值和最值等概念。
举例:分析实际问题,如物体运动的速度与时间的关系,利用导数求解函数的极值和最பைடு நூலகம்。
(2)平面向量:掌握平面向量的概念、运算规则及几何意义,理解向量的数量积和向量垂直的条件。
核心素养目标
本章节的教学旨在培养学生的数学抽象、逻辑推理、数学建模和数学运算等核心素养。通过学习函数与导数的应用、平面向量、三角函数的性质等知识点,学生应能提升将现实问题抽象为数学模型的能力,运用逻辑推理解决数学问题,利用数学运算处理数据和信息,以及应用数学知识解决实际生活中的问题。同时,通过参与小组讨论、独立思考等活动,学生的合作交流和自主学习的能力也将得到提升。
5.三角函数的极值:理解三角函数的极值概念,掌握求解方法,并能应用于实际问题。
6.三角函数的应用:学习三角函数在实际问题中的应用,如测量角度、计算长度等。
7.三角恒等式:掌握三角恒等式的证明和应用,如正弦定理、余弦定理等。
8.三角函数的变换:学习三角函数的变换,如倍角公式、和差公式、积化和差公式等。
5.题目:已知函数f(x) = ax^2 + bx + c(a ≠ 0),求f(x)的单调递减区间。
答案:首先,我们需要计算f(x)的导数f'(x) = 2ax + b。然后,我们找出f'(x) < 0的实数解,即解不等式2ax + b < 0。这些解就是f(x)的单调递减区间。在每个区间上,f(x)单调递减。
2024-2025学年新教材高中数学模块综合提升教案新人教A版选择性必修第一册
授课内容
人教新课标版数学高二-2013-高中数学人教A版必修五模块综合测评

模块综合测评 必修5(A 版)(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A =π3,a =3,b =1,则c 等于( )A .1B .2 C.3-1D. 3解析:据题意有3sin60°=1sin B 得sin B =12,由于a >b ⇒A >B ,故B =π6,所以C =π-π6-π3=π2,c =2b =2.答案:B2.在△ABC 中,a =2b cos C ,则该三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形解析:∵a =2b cos C ,∴a =2b a 2+b 2-c 22ab ,∴b 2=c 2,即b =c . 答案:A3.已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d =( )A .-23B .-13 C.13D.23解析:设数列的首项为a 1,公差为d ,则S 10=10a 1+10×92×d =70,即2a 1+9d =14.①又a 10=a 1+9d =10.② 由①②解之可得a 1=4,d =23. 答案:D4.已知等差数列的前n 项和为18,若S 3=1,a n +a n -1+a n -2=3,则n 的值为( )A .9B .21C .27D .36解析:∵S 3=a 1+a 2+a 3=1, 又∵a 1+a n =a 2+a n -1=a 3+a n -2, ∴3(a 1+a n )=1+3,∴a 1+a n =43.又∵S n =n (a 1+a n )2=23n =18,∴n =27,故选C. 答案:C5.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(-1,3)C .(1,3)D .(-∞,1)∪(3,+∞)解析:(ax +b )(x -3)>0等价于⎩⎨⎧ax +b >0,x -3>0,或⎩⎨⎧ax +b <0,x -3<0.∴⎩⎨⎧x >-1,x >3,或⎩⎨⎧x <-1,x <3.∴x ∈(-∞,-1)∪(3,+∞). 答案:A6.若a >0,b >0且a 2+14b 2=1,则a 1+b 2的最大值是( )A.32B.62C.54D.258解析:a1+b 2=24a 2(1+b 2)4≤4a 2+(1+b 2)4=54,等号当且仅当⎩⎨⎧4a 2=1+b 2,4a 2+b 2=4时成立,即a =104,b =62时成立.答案:C7.已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( )A .a =b <cB .a =b >cC .a <b <cD .a >b >c解析:a =log 23+log 23=log 233=32log 23>1,b =log 29-log 23=log 233=32log 23>1,c =log 32<log 33=1,故答案为B.答案:B8.对于每个自然数n ,抛物线y =(n 2+n )x 2-(2n +1)x +1与x 轴交于A n ,B n 两点,以|A n B n |表示该两点间的距离,则|A 1B 1|+|A 2B 2|+…+|A 2 011B 2 011|的值是( )A.2 0102 011B.2 0122 011 C.2 0112 010D.2 0112 012解析:|A n B n |=|x 1-x 2|= ⎝ ⎛⎭⎪⎫2n +1n 2+n 2-4n 2+n =1n 2+n =1n (n +1)=1n -1n +1,∴|A 1B 1|+|A 2B 2|+…+|A 2 011B 2 011|=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 011-12 012=2 0112 012. 答案:D9.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m .如果目标函数z =x -y 的最小值为-1,那么实数m 等于( )A .7B .5C .4D .3 解析:由题设可知⎩⎨⎧2x -y -1=0,x +y -m =0⇒⎩⎪⎨⎪⎧x =m +13,y =2m -13⇒m +13-2m -13=-1⇒m =5.答案:B10.设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .X +Z =2YB .Y (Y -X )=Z (Z -X )C .Y 2=XZD .Y (Y -X )=X (Z -X )解析:由题意知S n =X ,S 2n =Y ,S 3n =Z . 又∵{a n }是等比数列.∴S n ,S 2n -S n ,S 3n -S 2n 为等比数列,即X ,Y -X ,Z -Y 为等比数列,∴(Y -X )2=X ·(Z -Y ),即Y 2-2XY +X 2=ZX -XY . ∴Y 2-XY =ZX -X 2,即Y (Y -X )=X (Z -X ). 答案:D第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分. 11.已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则这个等比数列的公比是__________.解析:已知等差数列{a n }的公差d ≠0,它的第1、5、17项顺次成等比数列,则a 25=a 1·a 16,则(a 1+4d )2=a 1·(a 1+16d ),整理得a 1=2d ,故这个等比数列的公比是q =a 5a 1=a 1+4d a 1=2d +4d 2d =3.答案:312.△ABC 中,A ,B ,C 分别为a ,b ,c 三条边的对角,如果b =2a ,B =A +60°,那么A =__________.解析:∵b =2a ,∴sin B =2sin A . 又∵B =A +60°,∴sin(A +60°)=2sin A , 即3cos A =3sin A .∴cos 2A =3sin 2A .∴4sin 2A =1. ∴sin A =12,∴A =30°. 答案:30°13.若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时上式取等号.利用以上结论,可以得到函数f (x )=2x +91-2x (x ∈⎝ ⎛⎭⎪⎫0,12)的最小值为__________,取最小值时x 的值为__________.解析:由已知中的信息,可得f (x )=222x +321-2x ≥(2+3)22x +(1-2x )=25,当且仅当22x =31-2x,即x =15时上式取最小值,即[f (x )]min =25.答案:25 1514.已知实数x ,y 满足2x +y ≥1,则u =x 2+y 2+4x -2y 的最小值为__________.解析:由u =x 2+y 2+4x -2y =(x +2)2+(y -1)2-5知,u 表示点P (x ,y )与定点A (-2,1)的距离的平方与5的差.又由约束条件2x +y ≥1知:点P (x ,y )在直线l :2x +y =1上及其右上方.问题转化为求定点A (-2,1)到由2x +y ≥1所确定的平面区域的最近距离.故A 到直线l 的距离为A 到区域G 上点的距离的最小值.d =|2×(-2)+1-1|22+12=45,∴d 2=165,∴u min =d 2-5=-95. 答案:-95三、解答题:本大题共4小题,满分50分. 15.(12分)解关于x 的不等式x 2-2ax +2≤0(a ∈R ).解:因为Δ=4a 2-8,所以当Δ<0即-2<a <2时,原不等式的解集为∅;(2分)当Δ=0即a =±2,对应的方程有两个相等实根. (4分)当a =2时,原不等式的解集是{x |x =2}; (6分)当a =-2时,原不等式的解集是{x |x =-2}; (8分)当Δ>0时,对应的方程有两个不等实根,分别为x 1=a -a 2-2,x 2=a +a 2-2,且x 1<x 2,所以不等式的解集是{x |a -a 2-2≤x ≤a+a 2-2}.(12分)16.(12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,cos B=35,且AB →·BC →=-21.(1)求△ABC 的面积; (2)若a =7,求角C .解:(1)∵AB →·BC →=|AB →||BC →|cos(π-B )=-ac cos B =-35ac =-21,∴ac =35.(2分)又∵cos B =35,且B ∈(0,π), ∴sin B =1-cos 2B =45.∴S △ABC =12ac ·sin B =12×35×45=14. (6分)(2)由(1)知ac =35,又a =7,∴c =5.∴b 2=49+25-2×7×5×35=32.∴b =4 2.(8分)由正弦定理得b sin B =c sin C .即4245=5sin C ,∴sin C =22,又∵a >c ,∴C ∈⎝ ⎛⎭⎪⎫0,π2,∴C =π4.(12分) 17.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )cos B =b cos C .(1)求内角B 的大小;(2)设m =(sin A ,cos2A ),n =(4k,1)(k >1),m·n 的最大值为5,求k 的值.解:(1)由正弦定理及(2a -c )cos B =b cos C , 得(2sin A -sin C )cos B =sin B cos C ,整理得:2sin A cos B =sin B cos C +sin C cos B =sin(B +C )=sin A ,(4分)∵A ∈(0,π),∴sin A ≠0,故cos B =12,∴B =π3.(6分)(2)m·n =4k sin A +cos2A =-2sin 2A +4k sin A +1,其中A ∈⎝ ⎛⎭⎪⎫0,2π3,设sin A =t ,t ∈(0,1],则m·n =-2t 2+4kt +1=-2(t -k )2+1+2k 2.(8分)又k >1,故当t =1时,m·n 取得最大值. 由题意得-2+4k +1=5,解得k =32.(12分)18.(14分)已知数列{a n }的前n 项和为S n ,且-1,S n ,a n +1成等差数列,n ∈N *,a 1=1,函数f (x )=log 3x .(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1(n +3)[f (a n )+2],记数列{b n }的前n 项和为T n ,试比较T n 与512-2n +5312的大小.解:(1)∵-1,S n ,a n +1成等差数列. ∴2S n =a n +1-1,①当n ≥2时,2S n -1=a n -1,② ①-②,得2(S n -S n -1)=a n +1-a n , ∴3a n =a n +1.∴a n +1a n=3.(4分)当n =1时,由①得2S 1=2a 1=a 2-1,a 1=1, ∴a 2=3.∴a 2a 1=3.∴{a n }是以1为首项,3为公比的等比数列. ∴a n =3n -1.(6分)(2)∵f (x )=log 3x ,∴f (a n )=log 33n -1=n -1.∴b n =1(n +3)[f (a n )+2]=1(n +1)(n +3)=12⎝ ⎛⎭⎪⎪⎫1n +1-1n +3.(8分) ∴T n =12⎝ ⎛12-14+13-15+14-16+15-17+… ⎭⎪⎪⎫+1n -1n +2+1n +1-1n +3 =12⎝ ⎛⎭⎪⎪⎫12+13-1n +2-1n +3 =512-2n +52(n +2)(n +3).(10分) 比较T n 与512-2n +5312的大小,只需比较2(n +2)(n +3)与312的大小即可.2(n +2)(n +3)-312=2(n 2+5n +6-156)=2(n 2+5n -150)=2(n +15)(n -10).∵n ∈N *,∴当1≤n ≤9且n ∈N *时,2(n +2)(n +3)<312,即T n <512-2n +5312; 当n =10时,2(n +2)(n +3)=312,即T n =512-2n +5312;当n >10且n ∈N *时,2(n +2)(n +3)>312,即T n >512-2n +5312.(14分)。
高中数学模块素养测评卷一新人教A版必修第一册

模块素养测评卷(一)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A ={x|-1<x<3},B ={x ∈N *|0<x <4},则A ∩B =( ) A .{x |0<x <3} B .{x |-1<x <4} C .{1,2} D .{0,1,2}2.“对任意x ∈R ,都有x 2≥0”的否定形式为( ) A .对任意x ∈R ,都有x 2<0 B .不存在x ∈R ,都有x 2<0C .存在x 0∈R ,使得x 20 ≥0 D .存在x 0∈R ,使得x 20 <0 3.已知a ,b ∈R ,那么“3a<3b”是“log 13a >log 13b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)5.将函数y =cos 2x 的图象向右平移π4个单位,得到函数y =f (x )·sin x 的图象,则f (x )的表达式可以是( )A .f (x )=-2cos xB .f (x )=2cos xC .f (x )=22sin 2x D .f (x )=22(sin 2x +cos 2x ) 6.若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数与其图象相符的是( )7.核酸检测在新冠疫情防控中起到了重要作用,是重要依据之一,核酸检测是用荧光定量PCR 法进行的,即通过化学物质的荧光信号,对在PCR 扩增过程中的靶标DNA 进行实时检测.已知被标靶的DNA 在PCR 扩增期间,每扩增一次,DNA 的数量就增加p %.若被测标本DNA 扩增5次后,数量变为原来的10倍,则p 的值约为(参考数据:100.2≈1.585,10-0.2≈0.631)( )A .36.9B .41.5C .58.5D .63.18.已知函数f (x )=m sin ωx +2cos ωx (m ≠0,ω>0)的图象的一个对称中心到相邻对称轴的距离为π6,且f (0)+f ⎝ ⎛⎭⎪⎫π9=6,则函数f (x )在下列区间上单调递减的是( )A .⎝ ⎛⎭⎪⎫0,π4B .⎝ ⎛⎭⎪⎫-π2,-π4C .⎝ ⎛⎭⎪⎫π3,π2D .⎝ ⎛⎭⎪⎫-5π6,-2π3二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列函数为偶函数的是( )A .f (x )=x 4B .f (x )=1x 2C .f (x )=x +1xD .f (x )=cos x10.若a >b >0,则下列不等式成立的是( ) A .b a >b +1a +1 B .1a <1b C .a +1b >b +1a D .a +1a >b +1b11.如图是函数y =sin (ωx +φ)的部分图象,则sin (ωx +φ)=( )A.sin ⎝⎛⎭⎪⎫2x +2π3B .sin ⎝ ⎛⎭⎪⎫π3-2x C .cos ⎝⎛⎭⎪⎫2x +π6D .cos ⎝⎛⎭⎪⎫5π6-2x12.已知函数f (x )=x |x -a |,其中a ∈R ,下列结论正确的是( ) A .存在实数a ,使得函数f (x )为奇函数 B .存在实数a ,使得函数f (x )为偶函数C .当a >0时,f (x )的单调增区间为(-∞,a2),(a ,+∞)D .当a <0时,若方程f (x )+1=0有三个不等实根,则a <-2 三、填空题(本题共4小题,每小题5分,共20分.)13.已知y =f (x )是奇函数,当x ≥0时,f (x )=x 23 ,则f (-8)的值是________. 14.已知sin α-cos α=43,则sin 2α=________.15.若log 4(3a +4b )=log 2ab ,则a +b 的最小值为________.16.已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≥02-x ,x <0(a ∈R ),且f (f (-1))=1,则a =________;若f (f (m ))=4,则m =________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)求值: (1)()6423×⎝⎛⎭⎫34-32-0.125-13;(2)()log 37+log 732-log 949log 73-(log 73)2.18.(本小题满分12分)已知函数f (x )=x 2+(1-a )x -a , (1)当a =2时,求不等式f (x )>0的解集;(2)若函数f (x )在[1,3]上具有单调性,求实数a 的取值范围.19.(本小题满分12分)已知函数f (x )=4cos x sin (x +π6)-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.20.(本小题满分12分) 已知α,β为锐角,tan α=43,cos (α+β)=-55.(1)求sin α(sin 2α-cos 2α)2cos α-sin α的值;(2)求sin (α-β)的值.21.(本小题满分12分)某造纸厂拟建一座平面图形为矩形,面积为162平方米的三级污水处理池,平面图如图所示,池的深度一定,已知池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计,设水池的宽为x 米,总造价为y 元.(1)求y 关于x 的函数解析式;(2)证明:函数y =f (x )在[10,20]上单调递增;(3)当污水处理池的宽为多少米时,总造价最低?并求出最低总造价.22.(本小题满分12分)已知函数f (x )=kx +log 3(3x+1)(k ∈R )为偶函数. (1)求实数k 的值;(2)若方程f (x )=12x +log 3(a ·3x-a )(a ∈R )有且仅有一个实数根,求实数a 的取值范围.模块素养测评卷(一)1.答案:C解析:B ={x ∈N *|0<x <4}={1,2,3},A ={x |-1<x <3},所以A ∩B ={1,2}. 2.答案:D解析:全称量词命题的否定是存在量词命题,则“对任意x ∈R ,都有x 2≥0”的否定形式为:存在x 0∈R ,使得x 20 <0. 3.答案:B解析:由3a<3b⇒a <b ,因为a ,b 的正负性不明确,故不能由3a<3b一定推出log 13a >log 13b 成立;由log 13a >log 13b ⇒a <b ⇒3a <3b ,所以“3a <3b ”是“log 13a >log 13b ”的必要不充分条件.4.答案:C解析:因为f (2)=3-1>0,f (4)=32-2<0,所以由根的存在性定理可知选C.5.答案:B解析:∵将函数y =cos 2x 的图象向右平移π4个单位得y =cos 2(x -π4)=cos (2x -π2)=sin 2x =2sin x cos x =f (x )·sin x ,∴f (x )=2cos x . 6.答案:B解析:由函数y =log a x (a >0,且a ≠1)的图象可知,a =3,则对于选项A ,y =3-x是减函数,所以A 错误;对于选项B ,y =x 3的图象是正确的;对于选项C ,y =(-x )a =-x 3是减函数,故C 错;对于选项D ,函数y =log 3(-x )是减函数,故D 错误.7.答案:C解析:设DNA 数量没有扩增前为a ,由题意可得a (1+p %)5=10a , 所以(1+p %)5=10,所以1+p %=100.2, 可得p %=100.2-1=0.585,p =58.5. 8.答案:B解析:因为函数f (x )=m sin ωx +2cos ωx (m ≠0,ω>0)的图象的一个对称中心到相邻对称轴的距离是π6,所以14×2πω=π6,解得ω=3.又f (0)+f (π9)=6,所以2+32m +2×12=6,解得m =23,所以f (x )=23sin 3x +2cos 3x =4sin (3x +π6).令π2+2k π≤3x +π6≤3π2+2k π,k ∈Z , 解得π9+2k π3≤x ≤4π9+2k π3,k ∈Z ,所以函数f (x )的单调递减区间是[π9+2k π3,4π9+2k π3],k ∈Z .当k =-1时,(-π2,-π4)⊆[-5π9,-2π9],所以函数f (x )在区间(-π2,-π4)上单调递减.9.答案:ABD解析:因为x ∈R ,f (-x )=x 4=f (x ),所以f (x )=x 4为偶函数; 因为x ≠0,函数f (-x )=1x 2=f (x ),所以f (x )=1x2为偶函数;因为x ∈R ,f (-x )=cos x =f (x ),所以f (x )=cos x 为偶函数; 因为x ≠0,函数f (-x )=-x -1x =-f (x ),所以f (x )=x +1x为奇函数.10.答案:BC解析:因为a >b >0,所以b -a <0,ab >0, 所以b a -b +1a +1=b (a +1)-a (b +1)a (a +1)=b -a a (a +1)<0,所以b a <b +1a +1,故A 不正确;1a -1b=b -a ab<0,所以1a <1b,故B 正确;a +1b -b -1a =a -b +a -b ab =(a -b )(1+1ab)>0,故C 正确; 当a =12,b =13时,满足a >b >0,但是a +1a =12+2=52<b +1b =13+3=103,故D 不正确.11.答案:ABC解析:由函数图象可知T 2=2π3-π6=π2,∴T =π,则|ω|=2πT =2ππ=2,不妨令ω=2,当x =23π+π62=5π12时,y =-1,∴2×5π12+φ=3π2+2k π(k ∈Z ),解得φ=2k π+2π3(k ∈Z ),即函数的解析式为y =sin (2x +2π3+2k π)=sin (2x +2π3),故A 正确;又sin (2x +2π3)=sin (π+2x -π3)=-sin (2x -π3)=sin ⎝ ⎛⎭⎪⎫π3-2x ,故B 正确;又sin (2x +2π3)=sin (2x +π6+π2)=cos (2x +π6),故C 正确;而cos (2x +π6)=cos (π+2x -5π6)=-cos (2x -5π6)=-cos (5π6-2x ),故D 错误.12.答案:ACD解析:由f (-x )=-x |-x -a |=-x |x +a |,显然当a =0时有f (-x )=-f (x ),但不存在实数a 使f (-x )=f (x ),A 正确,B 错误;f (x )=⎩⎪⎨⎪⎧ax -x 2,x <a x 2-ax ,x ≥a且f (x )在x =a 处连续,当a >0时,易知f (x )在(-∞,a2)上递增,在(a2,a )上递减,在(a ,+∞)上递增,C 正确;由f (x )解析式,当a <0时f (x )在(-∞,a )上递增,在(a ,a 2)上递减,在(a2,+∞)上递增,又f (a )=0,f (a 2)=-a 24,要使f (x )+1=0有三个不等实根,即f (x )与y =-1有三个交点,所以-a 24<-1,又a <0,可得a <-2,D 正确.13.答案:-4解析:f (8)=823=4,因为f (x )为奇函数,所以f (-8)=-f (8)=-4. 14.答案:-79解析:sin α-cos α=43,两边平方得1-sin 2α=169,则sin 2α=-79.15.答案:7+4 3解析:由log 4(3a +4b )=log 2ab ,得ab =3a +4b ,即b =3aa -4>0,所以a >4,a +b =a +3a a -4=a -4+12a -4+7≥7+212=7+43,当且仅当a =4+2 3 时取等号,所以a +b 的最小值为7+4 3.16.答案:14 -2或4解析:由题意得f (-1)=2-(-1)=2,所以f (f (-1))=f (2)=a ·22=4a =1,解得a =14.∴f (x )=⎩⎪⎨⎪⎧2x -2,x ≥02-x ,x <0,又f (f (m ))=4,当m <0时,f (f (m ))=f (2-m )=22-m-2=4,解得m =-2; 当m ≥0时,f (f (m ))=f (2m -2)=22m -2-2=4,解得m =4.所以m =-2或4.17.解析:(1)原式=(432)23×(413)-32-(18)-13=4×4-12-2=4×14-2=0.(2)原式=(log 37)2+(log 73)2+2log 37×log 73-log 37log 73-(log 73)2=(log 37)2+2-(log 37)2=2.18.解析:(1)当a =2时,f (x )=x 2-x -2>0,解得x >2或x <-1, 故不等式f (x )>0的解集为(-∞,-1)∪(2,+∞). (2)因为函数f (x )在[1,3]上具有单调性, 所以a -12≤1或a -12≥3,解得a ≤3或a ≥7.19.解析:(1)因为f (x )=4cos x sin (x +π6)-1=4cos x ·(32sin x +12cos x )-1 =3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin (2x +π6),故f (x )最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.20.解析:(1)因为α,β为锐角,tan α=43,则sin αcos α=43sin 2α+cos 2α=1,解得⎩⎪⎨⎪⎧sin α=45cos α=35,所以sin 2α=2sin αcos α=2425,cos 2α=cos 2α-sin 2α=-725.所以sin α(sin 2α-cos 2α)2cos α-sin α=tan α(sin 2α-cos 2α)2-tan α=43×(2425-925)2-43=65.(2)因为α,β为锐角,tan α=43,cos (α+β)=-55,所以sin (α+β)=1-cos 2(α+β)=255, sin (α-β)=sin [2α-(α+β)]=sin 2αcos (α+β)-cos 2α·sin (α+β) =2425×(-55)-(-725)×255=-2525. 21.解析:(1)由已知得水池的长为162x米,所以y =400×2×(x +162x )+248×2x +80×162=1 296×(x +100x)+12 960,所以y 关于x 的函数解析式y =1 296(x +100x)+12 960.(2)任取x 1,x 2∈[10,20],且x 1<x 2, 则f (x 1)-f (x 2)=1 296(x 1+100x 1)+12 960-[1 296×(x 2+100x 2)+12 960]=1 296(x 1+100x 1-x 2-100x 2)=1 296[x 1-x 2+100(x 2-x 1)x 1x 2]=1 296(x 1-x 2)(1-100x 1x 2)∵10≤x 1<x 2≤20,∴x 1-x 2<0,x 1x 2>100, ∴1-100x 1x 2>0,∴(x 1-x 2)(1-100x 1x 2)<0,即f (x 1)<f (x 2),所以函数y =f (x )在[10,20]上单调递增. (3)由(1)知y =1 296(x +100x)+12 960≥1 296×2x ·100x+12 960=38 880,当且仅当x =100x(x >0),即x =10时等号成立,函数取得最小值,即当污水处理池的宽为10米时,总造价最低,最低总造价为38 880元.22.解析:(1)由题设,f (-x )=f (x ),即-kx +log 3(3-x+1)=kx +log 3(3x+1), ∴2kx =log 33-x=-x ,可得2k =-1,则k =-12.11 (2)由题设,-x 2+log 3(3x +1)=x 2+log 3(a ·3x -a ),则log 3(3x +1)=x +log 3a (3x -1), ∴a (3x -1)>0,且3x +1=3x ·a (3x -1)=a (32x -3x ),整理得a ·32x -(a +1)3x -1=0, 令t =3x (t >0),则g (t )=at 2-(a +1)t -1有且仅有一个零点,g (0)=-1<0,g (1)=-2<0,当a =0时,g (t )=-t -1, 此时g (t )=0,得t =-1,不合题意;当a >0时,x >0, 此时,t ∈(1,+∞)且g (t )开口向上,∴g (t )在(1,+∞)上有且仅有一个零点;当a <0时,x <0,此时,t ∈(0,1)且g (t )开口向下且对称轴是x =12(1+1a), ∴0<1+1a<2,即a <-1时,仅当Δ=(a +1)2+4a =a 2+6a +1=0,可得a =-3-22符合条件;1+1a<0,即-1<a <0时,g (t )在(0,1)上无零点. 综上,a ∈{-3-22}∪(0,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料
金戈铁骑整理制作
山东省临沂市卧龙学校2011—2012学年高二上学期模块检
测
数 学(文)2011.11
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分,考试时间120分钟.
第Ⅰ卷(选择题,共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上.
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案代号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.
3.考试结束后,监考人员将答题卡收回.
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(本大题共12个小题,每小题5分,共60分).
1. 已知等差数列}{n a 的前n 项和为n S ,若854,18S a a 则-=等于( )
A .72
B .54
C . 36
D .18
2.在等比数列
{}n a ,37232a a ==,,则q =( ) A. 2 B. -2
C. ±2
D. 4
3.在△ABC 中,若222c a b ab =++,则∠C =( )
A. 60°
B. 90°
C. 150°
D. 120° 4.如果33log log 4m n +=,那么n m +的最小值是( )
A .4
B .34
C .9
D .18
5.已知0<<b a ,则下列式子中恒成立的是( )
A .b a 11<
B .b a 11>
C .22b a <
D . 1<b
a 6. 不解三角形,下列判断中正确的是( )
A .a =7,b =14,A =300有两解
B .a =30,b =25,A =1500有一解
C .a =6,b =9,A =450有两解
D .a =9,c =10,B =600无解
7. 在首项为81,公差为-7的等差数列{a n }中,最接近零的是第 ( ) 项
A . 11
B . 12 C. 13 D . 14
8.不等式x 2-ax -b <0的解为2<x <3,则a ,b 值分别为( )
A.a =2,b =3
B.a =-2,b =3
C.a =5,b =-6
D.a =-5,b =6
9.关于x 的方程02cos cos cos 2
2=-⋅⋅-C B A x x 有一个根为1,则△ABC 一定是( )
A .等腰三角形
B .直角三角形
C .锐角三角形
D .钝角三角形
10.已知两个数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为( )
A. 4
B. 5
C. 6
D. 7 11.f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是( )
A .a ≤0
B .a <-4
C .-<<40a
D .-<≤40a
12.如果正数,,,a b c d 满足4a b cd +==,那么( )
A. ab c d ≤+且等号成立时,,,a b c d 的取值唯一
B. ab c d ≥+且等号成立时,,,a b c d 的取值唯一
C. ab c d ≤+且等号成立时,,,a b c d 的取值不唯一
D. ab c d ≥+且等号成立时,,,a b c d 的取值不唯一
文第II 卷(非选择题,共90分)
二、填空题:本大题共4小题,每小题4分,共16分,把正确答案填在题中横线上.
13.不等式x
x 1≤的解集是 . 14.等差数列110,116,122,128,……,在400与600之间共有________项.
15.已知变量y x ,满足关系式⎪⎩
⎪⎨⎧≤≤≥+333y x y x ,22)1(++=y x z ,则z 的最大值是 .
16.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则此三角形的最大内角的度数等于________.
三、解答题:(本大题共6个小题,共74分. 解答应写出文字说明、证明过程或演算步骤)
17.(本题满分12分)
已知在△ABC 中,A =450,AB =6,BC =2.
解此三角形.
18. (本题满分12分)
解关于x 的不等式:
11
<+x ax .
19.(本题满分12分)
等差数列{}n a 的项数m 是奇数, 且a 1 + a 3 + …+a m = 44 , a 2 + a 4 +…+ a m -1 =33 . 求m 的值.
20. (本题满分12分)
已知是数列{}n a 是等比数列,其中71a =,且456,1,a a a +成等差数列. (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)数列{}n a 的前n 项和记为n s ,证明:128(1,2,3,...n s n <=).
21.(本题满分12分)
已知2()3(6)6f x x a a x =-+-+.
(Ⅰ)解关于a 的不等式(1)4f >;
(Ⅱ)若不等式()f x b >的解集为(0,3),求实数,a b 的值.
22.(本题满分14分)
在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N .
(Ⅰ)证明数列{}n a n -是等比数列;
(Ⅱ)求数列{}n a 的前n 项和n S ;
(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立.
高二数学(文)试题答案
一、选择题1.A 2.C 3.D 4.D 5.B 6.B 7.C 8.C 9.A 10.B 11.D 12.A
二、填空题13. (,1)(0,1)-∞-⋃ 14.33 15. 25 16. 1200
三、解答题
17.解答:C =120 B =15 AC =13-…………………………………6分
或C =60 ,B =75 ,AC =13+………………………………12分
18.解不等式可变形为(1)101
a x x --<+, 当0a =时,x R ∈………………………………2分
当1a =时,1x >-………………………………4分 当
111a <--即01a <<时,111x a <<--………………………………7分 当111a >--即0a <或1a >时,111
x a -<<-………………………………10分 综上……. …………………………12分
19. 解:由已知可得
1324144
(1)33(2)m m a a a a a a -+++=⎧⎨+++=⎩………………………………4分
(1)-(2)得
11112
m a d -+=………………………………6分 (1)+(2)得
11(1)(1)[]7722
m m m m S ma d m a d --=+=+=………………………………10分 所以 11m=77 即 m=7………………………………12分
20. (1)由题意得:244422a q a a q +=+……(1)……………………………2分
341a q =……(2)………………………………4分
整理得222(1)1q q q +=+12
q ∴=………………………………6分 48a ∴=,164a =
1164()2
n n a -=………………………………8分 (2)11281()1282n n s ⎡⎤=-<⎢⎥⎣
⎦………………………………12分 21. 解:(1){}|17a a -<<…………………….6分 3,6a b ==……………………………………………12分
22.解:(Ⅰ)证明:由题设1431n n a a n +=-+,得 1(1)4()n n a n a n +-+=-,n ∈*N .………………………………2分 又111a -=,
所以数列{}n a n -是首项为1,且公比为4的等比数列.………………………………4分
(Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为
14n n a n -=+.………………………………7分
所以数列{}n a 的前n 项和41(1)32
n n n n S -+=+.………………………………10分 (Ⅲ)证明:对任意的n ∈*
N , 1141(1)(2)41(1)44323
2n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭ 21(34)02
n n =-+-≤.………………………………12分 所以不等式14n n S S +≤,对任意n ∈*N 皆成立.………………………………14分。