【精品】2020年中学八年级数学上册 12.2 全等三角形的判定课时练习3(含解析)新人教版
12.2三角形全等的判定(3)ASA、AAS说课稿-2022-2023学年人教版八年级上册数学

12.2 三角形全等的判定(3)ASA、AAS说课稿-2022-2023学年人教版八年级上册数学引言《2022-2023学年人教版八年级上册数学》中的第12章是关于三角形的全等的判定的内容,本节课主要介绍了ASA(角边角)和AAS(角角边)两种判定全等的方法。
通过本节课的学习,学生可以了解到三角形全等的几个重要判定方法,提高他们的逻辑思维能力和证明能力。
学情分析在初中数学课程中,全等三角形的判定是非常重要的一部分内容。
在之前的学习中,学生已经学习了SSS、SAS两种判定全等的方法。
本节课主要引入了ASA和AAS这两种新的判定方法,增加了学生的全等三角形判定技巧。
在此之前,学生已经学习过三角形的基本性质、相似三角形的判定和性质等相关内容,为学习本课内容打下了坚实的基础。
在学习ASA和AAS这两种判定方法之前,学生已经学习了角的概念、角的类型和性质等内容。
学生已经具备了对角的认识和理解,并能够运用角的基本知识解决问题。
本节课的学习将进一步拓展学生对角和三角形的认识,培养他们的证明思维和逻辑思维能力。
教学目标•知识目标:了解ASA和AAS这两种判定全等的方法,掌握其应用技巧。
•能力目标:运用ASA和AAS的判定方法解决实际问题,提高证明能力和逻辑思维能力。
•情感目标:培养学生对数学的兴趣和学习的积极态度,培养合作意识和团队精神。
教学重点和难点教学重点•ASA和AAS这两种判定全等的方法的介绍和运用。
•正确理解全等三角形的定义和性质,掌握判定方法的使用技巧。
教学难点•判定问题的证明过程,培养学生的证明能力和逻辑思维能力。
教学过程导入新课1.教师出示两个相似三角形,让学生观察并找出它们的相似性质。
2.引导学生回顾之前学习的相似三角形的判定方法,并复习相似三角形的定义和性质。
提出问题1.教师出示一个例子,让学生观察并思考两个全等三角形的条件。
2.引导学生思考如何判定两个三角形全等。
引入ASA的判定方法1.明确学习目标:学习ASA的判定方法,了解其原理和条件。
人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)

人教版八年级数学上册《12.2三角形全等的判定》练习题(附答案)一选择题1.下列条件不能判定两个直角三角形全等的是( )A. 斜边和一直角边对应相等B. 两个锐角对应相等C. 一锐角和斜边对应相等D. 两条直角边对应相等2.一块三角形玻璃被打碎后店员带着如图所示的一片碎玻璃去重新配一块与原来全等的三角形玻璃能够全等的依据是( )A. ASAB. AASC. SASD. SSS3.如图OD⊥AB于点D OP⊥AC于点P且OD=OP则△AOD与△AOP全等的理由是( )A. SSSB. ASAC. SSAD. HL4.如图为6个边长相等的正方形的组合图形则∠1+∠2+∠3的度数为( )A. 90°B. 135°C. 150°D. 180°5.如图AC是△ABC和△ADC的公共边下列条件中不能判定△ABC≌△ADC的是( )A. AB=AD,∠2=∠1B. AB=AD,∠3=∠4C. ∠2=∠1,∠3=∠4D. ∠2=∠16.如图已知点B、E、C、F在同一直线上且BE=CF,∠ABC=∠DEF那么添加一个条件后.仍无法判定△ABC≌△DEF的是( )A. AC=DFB. AB=DEC. AC//DFD. ∠A=∠D7.如图点C D在AB同侧∠CAB=∠DBA下列条件中不能判定△ABD≌△BAC的是( )A. ∠D=∠CB. BD=ACC. AD=BCD. ∠CAD=∠DBC8.如图D是AB上一点DF交AC于点E,DE=FE,FC//AB若AB=4,CF=3则BD的长是( )A. 0.5B. 1C. 1.5D. 29.如图△ABC中AB=AC,AD是角平分线BE=CF则下列说法中正确的有( )①AD平分∠EDF;②△EBD≌△FCD;③BD=CD;④AD⊥BC.A. 1个B. 2个C. 3个D. 4个10.两组邻边分别相等的四边形叫做“筝形”如图四边形ABCD是一个筝形其中AD=CD AB=CB 在探究筝形的性质时得到如下结论:③四边形ABCD的面积其中正确的结论有.( )A. 0个B. 1个C. 2个D. 3个二填空题11.如图在3×3的正方形网格中∠1+∠2=_______度.12.如图已知AB=AC,EB=EC,AE的延长线交BC于D则图中全等的三角形共有______对.13.如图所示的网格是正方形网格点A,B,C,D均落在格点上则∠BAC+∠ACD=____°.14.如图∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4则AC=______.15.如图在△ABC和△DEF中点B,F,C,E在同一直线上BF=CE,AB//DE请添加一个条件使△ABC≌△DEF这个添加的条件可以是______(只需写一个不添加辅助线).16.如图在△ABC中高AD和BE交于点H且DH=DC则∠ABC=°.17.如图在四边形ABCD中AB=AD,∠BAD=∠BCD=90∘连接AC若AC=6则四边形ABCD的面积为.18.如图∠C=90°,AC=20,BC=10,AX⊥AC点P和点Q同时从点A出发分别在线段AC和射线AX上运动且AB=PQ当AP=______时以点A,P,Q为顶点的三角形与△ABC全等.19.如图△ABC中AB=AC,AD⊥BC于D点DE⊥AB于点E BF⊥AC于点F,DE=3cm则BF=cm.20.如图所示∠E=∠F=90∘,∠B=∠C,AE=AF结论:①EM=FN②AF//EB③∠FAN=∠EAM④△ACN≌△ABM.其中正确的有______ .三解答题21.如图点A,D,C,F在同一条直线上AD=CF,AB=DE,AB//DE.求证:BC=EF.22.如图点C、F、E、B在一条直线上∠CFD=∠BEA,CE=BF,DF=AE写出CD与AB之间的关系并证明你的结论.23.如图B、C、E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B.求证:△ABC≌△CDE24.已知:如图在△ABC中BE⊥AC垂足为点E,CD⊥AB垂足为点D且BD=CE.求证:∠ABC=∠ACB.25.如图在△ABC中AB=CB,∠ABC=90°,D为AB延长线上一点点E在BC边上且BE=BD 连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°求∠BDC的度数.答案和解析1.【答案】B【解析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A.符合判定HL故本选项正确不符合题意;B.全等三角形的判定必须有边的参与故本选项错误符合题意;C.符合判定AAS故本选项正确不符合题意;D.符合判定SAS故本选项正确不符合题意.故选B.2.【答案】A【解析】本题考查了全等三角形的判定:全等三角形的判定方法中选用哪一种方法取决于题目中的已知条件若已知两边对应相等则找它们的夹角或第三边;若已知两角对应相等则必须再找一组对边对应相等若已知一边一角则找另一组角或找这个角的另一组对应邻边.利用全等三角形判定方法进行判断.【解答】解:这片碎玻璃的两个角和这两个角所夹的边确定从而可根据“ASA”重新配一块与原来全等的三角形玻璃.故选:A.3.【答案】D【解析】本题考查了直角三角形全等的判定的知识点解题关键点是熟练掌握直角三角形全等的判定方法HL.根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【解答】解:∵OD⊥AB且OP⊥AC∴△AOD和△AOP是直角三角形又∵OD=OP且AO=AO∴△AOD≌△AOP(HL).故选D.4.【答案】B【解析】本题考查了全等图形准确识图并判断出全等的三角形是解题的关键标注字母利用“边角边”证明△ABC和△DEA全等根据全等三角形对应角相等可得∠1=∠4从而求出∠1+∠3=90°再判断出∠2=45°进而计算即可得解.【解答】解:如图在△ABC和△DEA中{AB=DE∠ABC=∠DEA=90°BC=EA,∴△ABC≌△DEA(SAS)∴∠1=∠4∵∠3+∠4=90°∴∠1+∠3=90°又∵∠2=45°∴∠1+∠2+∠3=90°+45°=135°.故选B.5.【答案】A【解析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS等.利用全等三角形的判定定理:SSS SAS ASA AAS等逐项进行分析即可.判定两个三角形全等时必须有边的参与若有两边一角对应相等时这个角必须是两边的夹角.【解答】解:A.AB=AD∠2=∠1再加上公共边AC=AC不能判定△ABC≌△ADC故此选项符合题意;B.AB=AD∠3=∠4再加上公共边AC=AC可利用SAS判定△ABC≌△ADC故此选项不合题意;C.∠2=∠1∠3=∠4再加上公共边AC=AC可利用ASA判定△ABC≌△ADC故此选项不合题意;D.∠2=∠1∠B=∠D再加上公共边AC=AC可利用AAS判定△ABC≌△ADC故此选项不合题意;故选A.6.【答案】A【解析】解:∵BE=CF∴BE+EC=EC+CF即BC=EF且∠ABC=∠DEF∴当AC=DF时满足SSA无法判定△ABC≌△DEF故A不能;当AB=DE时满足SAS可以判定△ABC≌△DEF故B可以;当AC//DF时可得∠ACB=∠F满足ASA可以判定△ABC≌△DEF故C可以;当∠A=∠D时满足AAS可以判定△ABC≌△DEF故D可以;故选:A.根据全等三角形的判定方法逐项判断即可.本题主要考查全等三角形的判定方法 掌握全等三角形的判定方法是解题的关键 即SSS SAS ASA AAS 和HL .7.【答案】C【解析】本题考查了全等三角形的判定定理的应用 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 符合SSA 和AAA 不能推出两三角形全等. 根据图形知道隐含条件BC =BC 根据全等三角形的判定定理逐个判断即可.【解答】解:A 添加条件∠D =∠C 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理AAS 能推出△ABD ≌△BAC 故本选项错误;B 添加条件BD =AC 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理SAS 能推出△ABD ≌△BAC 故本选项错误;C 添加条件AD =BC 还有已知条件∠CAB =∠DBA BC =BC 不符合全等三角形的判定定理 不能推出△ABD ≌△BAC 故本选项正确;D ∵∠CAB =∠DBA ∠CAD =∠DBC∴∠DAB =∠CBA 还有已知条件∠CAB =∠DBA BC =BC 符合全等三角形的判定定理ASA 能推出△ABD ≌△BAC 故本选项错误;故选C .8.【答案】B【解析】解:∵CF//AB∴∠A =∠FCE ∠ADE =∠F∴在△ADE 和△CFE 中{∠A =∠FCE∠ADE =∠F DE =FE∴△ADE ≌△CFE(AAS)∴AD =CF =3∵AB =4∴DB =AB −AD =4−3=1.故选B .根据平行线的性质 得出∠A =∠FCE ∠ADE =∠F 再根据全等三角形的判定证明△ADE ≌△CFE得出AD=CF根据AB=4CF=3即可求线段DB的长.本题考查了全等三角形的性质和判定平行线的性质的应用能判定△ADE≌△FCE是解此题的关键解题时注意运用全等三角形的对应边相等对应角相等.9.【答案】C【解析】解:∵AB=AC AD平分∠BAC∴BD=DC AD⊥BC故③④正确在RT△BDE和RT△CDF中{BE=CFBD=CD∴RT△BDE≌RT△CDF故②正确∵AD⊥BC∴∠ADC=∠CDF=90°∴BC平分∠EDF.故①错误.故选:C.根据等腰三角形的三线合一可以判断③④正确根据HL可以证明RT△BDE≌RT△CDF可以判断②正确由BC平分∠EDF得出①错误故不难得到结论.本题考查全等三角形的判定和性质等腰三角形的性质角平分线的定义等知识解题的关键是等腰三角形三线合一的性质的应用属于中考常考题型.10.【答案】C【解析】此题考查全等三角形的判定和性质关键是根据SSS证明△ABD与全等和利用SAS证明与全等.【解答】解:如图在△ABD与中故①正确;∴∠ADB=∠CDB在与中∴∠AOD=∠COD=90°∴AC⊥DB故②正确;故③错误.故选C.11.【答案】90【解析】本题考查了全等三角形的判定和性质能看懂图形是解题的关键.首先判定两个三角形全等然后根据全等三角形的性质及直角三角形的性质即可判断得出结论.【解答】解:如图所示:∵∠ACB=∠DCE=90°AC=DC BC=EC∴Rt△ACB≌Rt△DCE∴∠2=∠EDC在Rt△DCE中∠1+∠EDC=90°∴∠1+∠2=90°.12.【答案】3【解析】解:①△ABE≌△ACE∵AB=AC EB=EC∴△ABE≌△ACE;②△EBD≌△ECD∵△ABE≌△ACE∴∠ABE=∠ACE∴∠EBD=∠ECD∵EB=EC∴△EBD≌△ECD;③△ABD≌△ACD∵△ABE≌△ACE△EBD≌△ECD∴∠BAD=∠CAD∵∠ABC=∠ABE+∠BED∴∠ABC=∠ACB∵AB=AC∴△ABD≌△ACD∴图中全等的三角形共有3对.在线段AD的两旁猜想所有全等三角形再利用全等三角形的判断方法进行判定三对全等三角形是△ABE≌△ACE△EBD≌△ECD△ABD≌△ACD.本题考查学生观察猜想全等三角形的能力同时也要求会运用全等三角形的几种判断方法进行判断.13.【答案】90【解析】【解答】解:在△DCE和△ABD中∵{CE=BD=1∠E=∠ADB=90°DE=AD=3∴△DCE≌△ABD(SAS)∴∠CDE =∠DAB∵∠CDE +∠ADC =∠ADC +∠DAB =90°∴∠AFD =90°∴∠BAC +∠ACD =90°故【答案】90.【分析】本题网格型问题 考查了三角形全等的性质和判定及直角三角形各角的关系 本题构建全等三角形是关键.证明△DCE ≌△ABD(SAS) 得∠CDE =∠DAB 根据同角的余角相等和三角形的内角和可得结论. 14.【答案】6【解析】本题考查了全等三角形的判定与性质有关知识 由AAS 证明△ABC ≌△EFC 得出对应边相等AC =EC BC =CF =4 求出EC 即可得出AC 的长.【解答】解:∵AC ⊥BE∴∠ACB =∠ECF =90°在△ABC 和△EFC 中{∠ACB =∠ECF ∠A =∠E AB =EF∴△ABC ≌△EFC(AAS)∴AC =EC BC =CF =4∵EC =BE −BC =10−4=6∴AC =EC =6;故答案为6. 15.【答案】AB =ED【解析】解:添加AB =ED∵BF =CE∴BF +FC =CE +FC即BC =EF∵AB//DE∴∠B =∠E在△ABC 和△DEF 中{AB =ED∠B =∠E CB =FE,∴△ABC ≌△DEF(SAS)故【答案】AB =ED .根据等式的性质可得BC =EF 根据平行线的性质可得∠B =∠E 再添加AB =ED 可利用SAS 判定△ABC ≌△DEF .本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL .注意:AAA SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.16.【答案】45【解析】本题考查了全等三角形的判定与性质 余角的性质 等腰直角三角形 由三角形的高得到∠ADB =∠ADC =∠BEC =90° 结合余角的性质得到∠HBD =∠CAD 易证△HBD ≌△CAD 得到AD =BD 根据等腰直角三角形得到∠ABD =45° 即可得出结论.【解答】解:∵AD ⊥BC BE ⊥AC∴∠ADB =∠ADC =∠BEC =90°∴∠HBD +∠C =∠CAD +∠C =90°∴∠HBD =∠CAD∵在△HBD 和△CAD 中{∠HBD =∠CAD,HDB =∠CDA,DH =DC,∴△HBD ≌△CAD(AAS)∴AD =BD∵∠ADB =90°∴△ABD 为等腰直角三角形∴∠ABD =45° 即∠ABC =45°故答案为45.17.【答案】18【解析】本题考查全等三角形的判定和性质和三角形的面积.过点A 作AE ⊥AC 交CD 的延长线于点E.做出辅助线是解答本题的关键.过点A 作AE ⊥AC 交CD 的延长线于点E 证明△AED ≌△ACB 将四边形ABCD 的面积转化为△ACE 的面积 利用三角形面积公式求解即可.【解答】解:过点A 作AE ⊥AC 交CD 的延长线于点E∵∠EAC =∠BAD =90°∴∠EAD =∠CAB∵∠BAD =∠BCD =90∘∴∠ADC +∠ABC =360°−(∠BAD +∠BCD)=180°又∵∠ADE +∠ADC =180∘∴∠ADE =∠ABC在△AED 与△ACB 中{∠EAD =∠CABAD =AB ∠ADE =∠ABC∴△AED ≌△ACB(ASA)∴AE =AC =6 四边形ABCD 的面积等于△ACE 的面积故S 四边形ABCD =12AC ⋅AE =12×6×6=18.故答案为18. 18.【答案】10或20【解析】解:∵AX ⊥AC∴∠PAQ =90°∴∠C=∠PAQ=90°分两种情况:①当AP=BC=10时在Rt△ABC和Rt△QPA中{AB=PQBC=AP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时在△ABC和△PQA中{AB=PQAP=AC∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时△ABC与△APQ全等;故【答案】10或20.分两种情况:①当AP=BC=10时;②当AP=CA=20时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法本题需要分类讨论难度适中.19.【答案】6【解析】本题考查了全等三角形的判定与性质三角形的面积利用面积公式得出等式是解题的关键.先利用HL证明Rt△ADB≌Rt△ADC得出S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB又S△ABC=12AC⋅BF将AC=AB代入即可求出BF.【解答】解:在Rt△ADB与Rt△ADC中{AB=ACAD=AD ∴Rt△ADB≌Rt△ADC∴S△ABC=2S△ABD=2×12AB⋅DE=AB⋅DE=3AB∵S△ABC=12AC⋅BF∴12AC⋅BF=3AB ∵AC=AB∴12BF=3cm∴BF=6cm.故【答案】6.20.【答案】①③④【解析】此题考查了全等三角形的性质与判别考查了学生根据图形分析问题解决问题的能力.其中全等三角形的判别方法有:SSS SAS ASA AAS及HL.学生应根据图形及已知的条件选择合适的证明全等的方法.由∠E=∠F=90°∠B=∠C AE=AF利用“AAS”得到△ABE与△ACF全等根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等AE与AF相等AB与AC相等然后在等式∠EAB=∠FAC两边都减去∠MAN得到∠EAM与∠FAN相等然后再由∠E=∠F=90°AE=AF∠EAM=∠FAN利用“ASA”得到△AEM与△AFN全等利用全等三角形的对应边相等对应角相等得到选项①和③正确;然后再∠C=∠B AC=AB∠CAN=∠BAM利用“ASA”得到△ACN与△ABM全等故选项④正确;若选项②正确得到∠F与∠BDN相等且都为90°而∠BDN不一定为90°故②错误.【解答】解:在△ABE和△ACF中∠E=∠F=90°AE=AF∠B=∠C∴△ABE≌△ACF(AAS)∴∠EAB=∠FAC AE=AF AB=AC∴∠EAB−∠MAN=∠FAC−∠NAM即∠EAM=∠FAN在△AEM和△AFN中∠E=∠F=90°AE=AF∠EAM=∠FAN∴△AEM≌△AFN(ASA)∴EM=FN∠FAN=∠EAM故选项①和③正确;在△ACN和△ABM中∠C=∠B∠CAN=∠BAM AC=AB∴△ACN≌△ABM(ASA)故选项④正确;若AF//EB∠F=∠BDN=90°而∠BDN不一定为90°故②错误则正确的选项有:①③④.21.【答案】解:∵AB//DE∴∠A =∠EDF∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中{AB =DE∠A =∠EDF AC =DF∴△ABC ≌△DEF(SAS)∴BC =EF .【解析】先证明AC =DF 再根据SAS 推出△ABC ≌△DEF 便可得结论.本题考查了全等三角形的判定和性质的应用 证明三角形的边相等 往往转化证明三角形的全等. 22.【答案】解:CD//AB CD =AB理由是:∵CE =BF∴CE −EF =BF −EF∴CF =BE在△CFD 和△BEA 中{CF =BE∠CFD =∠BEA DF =AE∴△CFD ≌△BEA(SAS)∴CD =AB ∠C =∠B∴CD//AB .【解析】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角对应相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件. 求出CF =BE 根据SAS 证△CFD ≌△BEA 推出CD =AB ∠C =∠B 根据平行线的判定推出CD//AB .23.【答案】证明:∵AC//DE∴∠ACB =∠E ∠ACD =∠D∵∠ACD =∠B∴∠D =∠B在△ABC 和△EDC 中{∠B =∠D∠ACB =∠E AC =CE∴△ABC ≌△CDE(AAS).【解析】此题主要考查了全等三角形的判定 平行线的性质.首先根据AC//DE 利用平行线的性质可得:∠ACB =∠E ∠ACD =∠D 再根据∠ACD =∠B 证出∠D =∠B 然后根据全等三角形的判定定理AAS 证出△ABC ≌△CDE 即可.24.【答案】证明:∵BE ⊥AC CD ⊥AB∴∠BDC =∠CEB =90°在Rt △BCD 和Rt △CBE 中{BC =CB BD =CE∴Rt △BCD ≌Rt △CBE(HL)∴∠DBC =∠ECB即∠ABC =∠ACB .【解析】本题考查了全等三角形的判定与性质;证明三角形全等是解题的关键.证明Rt △BCD ≌Rt △CBE(HL) 即可得出结论.25.【答案】(1)证明:∵∠ABC =90°∴∠DBC =90°在△ABE 和△CBD 中{AB =CB∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS);(2)解:∵AB =CB ∠ABC =90°∴∠BCA =45°∴∠AEB =∠CAE +∠BCA =30°+45°=75°∵△ABE ≌△CBD∴∠BDC =∠AEB =75°.【解析】(1)由条件可利用SAS证得结论;(2)由等腰直角三角形的性质可先求得∠BCA利用三角形外角的性质可求得∠AEB再利用全等三角形的性质可求得∠BDC.本题主要考查全等三角形的判定和性质掌握全等三角形的判定方法(即SSS SAS ASA AAS和HL)和全等三角形的性质(即全等三角形的对应边相等对应角相等)是解题的关键.。
2020年人教版数学八年级上册学案12.2《三角形全等的判定》(含答案)

12.2三角形全等的判定第1课时用“SSS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法1-“SSS”.2.体会尺规作图.3.掌握简单的证明格式.预习阅读教材,完成预习内容.知识探究三边分别相等的两个三角形________(可以简写成“边边边”或“________”).自学反馈1.在△ABC、△DEF中,若AB=DE,BC=EF,AC=DF,则____________.2.已知AB=3,BC=4,CA=6,EF=3,FG=4,要使△ABC≌△EFG,则EG=________.3.如图,通常凳子腿活动后,木工师傅会在凳腿上斜钉一根木条,这是利用了三角形的________.点拨:两个三角形三角、三边六个元素中,满足一个或两个元素相等是无法判定全等的,我们这节课探讨的是三个元素相等中三边对应相等的情况.4.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是________.活动1小组讨论例1.如图,AB=AD,CB=CD,求证:△ABC≌△ADC.证明:在△ABC与△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS).例2.如图,C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.证明:∵C是AB的中点,∴AC=CB.在△ACD与△CBE中,∵AD=CE,CD=BE,AC=CB,∴△ACD≌△CBE(SSS).点拨:注意运用SSS证三角形全等时的证明格式;在证明过程中善于挖掘“公共边”这个隐含条件.例3.如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?解:结论:∠B=∠D.理由:连接AC,在△ADC与△ABC中,∵AD=AB,AC=AC,DC=BC,∴△ADC≌△ABC(SSS).∴∠B=∠D.点拨:要证∠B与∠D相等,可证这两个角所在的三角形全等,现有的条件并不满足,可以考虑添加辅助线证明.课堂小结1.本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.2.添加辅助线构造公共边,可以为证明两个三角形全等提供条件,证明两个三角形全等是证明线段相等或角相等的重要方法.第2课时用“SAS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法2——“SAS”.理解满足“SSA”的两个三角形不一定全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.预习阅读教材,完成预习内容.知识探究1.两边和它们的夹角分别相等的两个三角形________(可以简写成“边角边”或“________”).2.有两边和一个角对应相等的两个三角形________全等.点拨:如果给定两个三角形的类型(如两个钝角三角形),两边和其中一边的对角对应相等的两个三角形不一定全等.自学反馈1.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是( )A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠ABD=∠EBC2.如图,AO=BO ,CO=DO ,AD 与BC 交于E ,∠O=40°,∠B=25°,则∠BED 的度数是( )A .60°B .90°C .75°D .85° 3.已知:如图,AB 、CD 相交于O 点,AO=CO ,OD=OB. 求证:∠D=∠B.分析:要证∠D=∠B ,只要证△AOD ≌△COB. 证明:在△AOD 与△COB 中,⎩⎪⎨⎪⎧AO =CO (已知),∠ =∠ (对顶角相等),OD = (已知),∴△AOD ≌△________(SAS). ∴∠D=∠B(__________).4.已知:如图,AB=AC ,∠BAD=∠CAD.求证:∠B=∠C.点拨:1.利用SAS 证明全等时,要注意“角”只能是两组相等边的夹角;在书写证明过程时相等的角应写在中间;2.证明过程中注意隐含条件的挖掘,如“对顶角相等”、“公共角、公共边”等. 活动1 小组讨论例1.已知:如图,AB ∥CD ,AB=CD.求证:AD ∥BC.证明:∵AB ∥CD , ∴∠2=∠1.在△CDB 与△ABD 中,∵CD=AB ,∠2=∠1,BD=DB , ∴△CDB ≌△ABD.∴∠3=∠4. ∴AD ∥BC.点拨:可从问题出发,要证线段平行只需证角相等即可(∠3=∠4),而证角相等可证角所在的三角形全等.例2.如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的关系,并证明你的结论.解:结论:AE=CD,AE⊥CD.理由(提示):延长AE交CD于点F,先证△ABE≌△CBD,得AE=CD,∠BAE=∠BCD.又∠AEB=∠CEF,可得∠CFE=90°,即AE⊥CD.点拨:1.注意挖掘等腰直角三角形中的隐藏条件;2.线段的关系分数量与位置两种关系.课堂小结1.利用对顶角、公共角、直角用SAS证明三角形全等.2.用“分析法”寻找命题结论也是一种推理论证的方法,即从结论出发逐步递推到题中条件,常以此作为分析寻求推理论证的途径.第3课时用“ASA”或“AAS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法3——“ASA”,判定方法4——“AAS”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.预习:阅读教材,完成预习内容.知识探究1.两角和它们的夹边分别相等的两个三角形________(可以简写成“角边角”或“________”).2.两角和其中一个角的对边分别相等的两个三角形________(可以简写成“角角边”或“________”).3.试总结全等三角形的判定方法,师生共同总结.点拨:三角形全等的条件至少需要三对相等的元素(其中至少需要一条边相等).自学反馈1.能确定△ABC≌△DEF的条件是( )A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙3.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE=DF B .AE=AF C .BD=CD D .∠ADE=∠ADF4.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA=OB ,∠A=∠C.那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.解:△AOD ≌△COB.证明:在△AOD 和△COB 中, ⎩⎪⎨⎪⎧∠A =∠C (已知),OA =OB (已知),∠AOD =∠COB (对顶角相等),∴△AOD ≌△COB(ASA).问:这位同学的回答及证明过程正确吗?为什么?活动1 小组讨论例1 已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ=NQ.求证:HN=PM.证明:∵MQ ⊥PN , ∴∠MQP=∠MQN=90°. ∵NR ⊥MP ,∴∠MRN=90°.∴∠RMH +∠RHM=∠QHN +∠QNH=90°. 又∵∠RHM=∠QHN ,∴∠PMQ=∠QNH. 在△PMQ 与△HNQ 中,∵∠MQP=∠NQH=90°,MQ=NQ ,∠PMQ=∠QNH , ∴△PMQ ≌△HNQ. ∴HN=PM.例2 已知:如图,AB ⊥AE ,AD ⊥AC ,∠E=∠B ,DE=CB. 求证:AD=AC.证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°.∴∠CAD+∠BAD=∠BAE+∠BAD.∴∠CAB=∠DAE.在△ABC与△AED中,∵∠CAB=∠DAE,∠B=∠E,CB=DE,∴△ABC≌△AED.∴AD=AC.课堂小结1.本节内容是已知两个角和一条边对应相等得全等,三个角对应相等不能确定全等.2.三角形全等的判定和全等三角形的性质常在一起进行综合应用,有时还得反复用两次或两次以上,从而达到解决问题的目的.第4课时用“HL”判定直角三角形全等学习目标:1.掌握判定直角三角形全等的一种特殊方法——“斜边、直角边”(即“HL”).2.能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.预习:阅读教材,完成预习内容.知识探究1.判定两直角三角形全等的“HL”这种特殊方法指的是____________.2.直角三角形全等的判定方法有________(用简写).自学反馈1.如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则△ABC≌________,全等的根据是________.2.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由.①一个锐角和这个角的对边对应相等;( )②一个锐角和这个角的邻边对应相等;( )③一个锐角和斜边对应相等;( )④两直角边对应相等;( )⑤一条直角边和斜边对应相等.( )3.下列说法正确的是( )A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等点拨:直角三角形除了一般证全等的方法,“HL”可使证明过程简化,但前提是已知两个直角三角形,即在证明格式上表明“Rt△”.活动1小组讨论例1.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC;(2)AD∥BC.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°.在Rt△ABD与Rt△CDB中,∵AD=CB,BD=DB,∴Rt△ABD≌Rt△CDB(HL).∴AB=DC.(2)∵Rt△ABD≌Rt△CDB(已证),∴∠ADB=∠CBD.∴AD∥BC.例2.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC.证明:连接CD.∵AD⊥AC,BC⊥BD,∴∠A=∠B=90°.在Rt△ADC与Rt△BCD中,∵AC=BD,DC=CD,∴Rt△ADC≌Rt△BCD.∴AD=BC.课堂小结1.“HL”判别法是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形,但两个直角三角形全等的判定,也可以用前面的各种方法.2.证明两个三角形全等的方法有:SSS、SAS、ASA、AAS,以及用HL,注意SSA和AAA条件不能判定两个三角形全等.课堂小练一、选择题1.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D2.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF3.在△ABC和△A/B/C/中,已知∠A=∠A/,AB=A/B/,在下面判断中错误的是( )A.若添加条件AC=A/C/,则△ABC≌△△A/B/C/B.若添加条件BC=B/C/,则△ABC≌△△A/B/C/C.若添加条件∠B=∠B/,则△ABC≌△△A/B/C/D.若添加条件∠C=∠C/,则△ABC≌△△A/B/C/4.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以7.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC8.如图,已知△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙9.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′10.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二、填空题11.如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)12.如图,已知AB∥CD,AE=CF,则下列条件:①AB=CD;②BE∥DF;③∠B=∠D;④BE=DF.其中不一定能使△ABE≌△CDF的是(填序号)13.在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E,在BC上,BE=BF,连结AE,EF和CF,此时,若∠CAE=30°,那么∠EFC= .14.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)15.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)参考答案1.C2.C3.B4.C.5.C.6.B7.B8.B9.C10.B11.答案为:①②③.12.答案为:④.13.答案为:30°.14.答案为:BC=ED或∠A=∠F或AB∥EF.15.答案为:BC=BD。
人教版数学八年级上册:12.2.3 三角形全等的判定(三)ASA、AAS 同步练习(附答案)

第十二章全等三角形12.2.3 三角形全等的判定(三)ASA、AAS1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的是( ) A.甲B.乙C.甲和乙都是D.都不是2.如图,∠ABC=∠DCB,BD,CA分别是∠ABC,∠DCB的平分线.求证:AB=DC.3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.4.如图,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB,AC作垂线段,则能够说明△BDE≌△CDF的理由是( )A.SSS B.SASB.C.ASA D.AAS5.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,CE=BF,∠A =∠D.求证:AB=CD.6.如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF.(1)若以“SAS”为依据,还需添加的条件为;(2)若以“ASA”为依据,还需添加的条件为;(3)若以“AAS”为依据,还需添加的条件为.7.如图,AE∥DF,AE=DF,则添加下列条件还不能确定△EAC≌△FDB( ) A.AB=CD B.CE∥BF C.CE=BF D.∠E=∠F第7题图第8题图第9题图第10题图8.如图,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD =2,CF=5,则AB的长为( )A.2 B.5C.7 D.39.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.10.如图,要测量河两岸相对的两点A,B的距离,在AB的垂线BF上取两点C,D,使BC=CD,过点D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=,△ABC≌.若测得DE的长为25米,则河宽AB的长为.11.如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.求证:(1)BD=CE;(2)∠M=∠N.13.如图1,在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN 于点M,BN⊥MN于点N.(1)求证:MN=AM+BN;(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),(1)中的结论是否仍然成立?说明理由.参考答案1.B2.证明:∵∠ABC =∠DCB ,BD ,CA 分别是∠ABC ,∠DCB 的平分线,∴∠DBC =∠ACB.在△ABC 和△DCB 中,⎩⎪⎨⎪⎧∠ABC =∠DCB ,BC =CB ,∠ACB =∠DBC ,∴△ABC ≌△DCB(ASA ).∴AB =DC.3.证明:∵BD ⊥AC 于点D ,CE ⊥AB 于点E ,∴∠ADB =∠AEC =90°.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧∠ADB =∠AEC ,AD =AE ,∠A =∠A ,∴△ABD ≌△ACE(ASA ).∴AB =AC.又∵AD =AE ,∴AB -AE =AC -AD ,即BE =CD.4.D5.证明:∵AB ∥CD ,∴∠B =∠C.∵CE =BF ,∴CE +EF =BF +EF ,即CF =BE.在△ABE 和△DCF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠C ,BE =CF ,∴△ABE ≌△DCF(AAS ),∴AB =CD.6. (1) BC =EF 或BE =CF ;(2) ∠A =∠D ;(3) ∠ACB =∠F .7.C8.C9.AC =BC .10.25米.11.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB.(2)选△ABE ≌△CDF ,证明:∵AB ∥CD ,∴∠BAE =∠DCF.∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠BAE =∠DCF ,∠ABE =∠CDF ,AE =CF ,∴△ABE ≌△CDF(AAS ).12.证明:(1)在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ).∴BD =CE.(2)∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM.由(1),得△ABD ≌△ACE ,∴∠B =∠C. 在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN(ASA ).∴∠M =∠N.13.解:(1)证明:∵∠ACB =90°,∴∠ACM +∠BCN =90°.又∵AM ⊥MN ,BN ⊥MN ,∴∠AMC =∠CNB =90°.∴∠BCN +∠CBN =90°.∴∠ACM =∠CBN. 在△ACM 和△CBN 中,⎩⎪⎨⎪⎧∠ACM =∠CBN ,∠AMC =∠CNB ,AC =CB ,∴△ACM ≌△CBN(AAS ).∴MC =NB ,MA =NC.∵MN =MC +CN ,∴MN =AM +BN.(2)(1)中的结论不成立,结论为MN =AM -BN. 理由如下:同(1)中证明可得△ACM ≌△CBN ,∴CM=BN,AM=CN.∵MN=CN-CM,∴MN=AM-BN.。
`122 三角形全等的判定(第3课时)(人教版八年级上)

D O B
E
C
∴BD=CE
在△ABC和△DEF中,∠A=∠D,∠B=∠E ,BC=EF,
△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? A C B D
E
F
有两角和其中一个角所对的边对应相等的两个
三角形全等(简写成“角角边”或“AAS”).
有几种填法?
B
1.如图,应填什么就有 △AOC≌ △BOD C ∠A=∠B(已知) AC=BD (已知) _______ ∠C=∠D(已知) ∴△AOC≌△BOD( ASA )
=∠C(即使两角和它们的夹边对应相等).
(3)把你画好的Δ A′B′C′放到刚才同桌的Δ ABC上重叠 (对应角对齐,对应边对齐).你发现了什么? (4)所画得三角形和同桌画的三角形都能相互( 重合).
三角形全等判定三
两角和它们的夹边对应相等的两个三角形全等 (可以简写成“角边角”或“ASA”).
O D
A
B
如图,应填什么就有△AOC≌△BOD∠A源自∠B(已知)C O
)
CO=DO ________ (已知)
∠C=∠D (已知)
∴△AOC≌△BOD( AAS
D
A
B
如图,应填什么就有△AOC≌△BOD ∠A=∠B(已知)
C O D
AO=BO (已知) _______
∠C=∠D (已知) ∴△AOC≌△BOD( AAS )
A
4 2
1
E
3
F
D
B
C
G
【解析】 (1)∵四边形ABCD是正方形,∴AB=AD.
2 1 在△ABE和△DAF中, AB DA 4 3
∴△ABE≌△DAF(ASA).
初中数学人教版八年级上册第十二章《全等三角形》练习册(含答案12.2 三角形全等的判定

初中数学人教版八年级上册实用资料12.2三角形全等的判定基础巩固1.(题型三)如图12-2-1,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )______A.带①去B.带②去C.带③去D.带①和②去图12-2-12.(题型一)如图12-2-2,在∆ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )图12-2-2A.∆ABD≌∆ACDB.∆BDE≌∆CDEC.∆ABE≌∆ACED.以上都不对3.(题型一、四)如图12-2-3,∆BDC′是将长方形纸片ABCD沿着BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形( )图12-2-3A.1对B.2对C.3对D.4对4.(题型三)如图12-2-4,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE,AD=8,则AC= .图12-2-45.(题型二、三、四、五)如图12-2-5,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请你添加一个适当的条件,使∆ABC≌∆DEF.添加的条件是.图12-2-56.(题型三)如图12-2-6,AB∥CD,AD,BC交于点O,EF过点O分别交AB,CD于点E,F,且AE=DF.求证:O是EF的中点.图12-2-67.(题型二)[福建泉州中考]如图12-2-7,∆ABC,∆CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:∆CDA≌∆CEB.图12-2-7能力提升8.(题型一、二)下列说法中,正确的是()A.两边及一组角对应相等的两个三角形全等B.有两边分别相等,且有一角为30°的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等9.(题型四)如图12-2-8,在∆ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,AD=3,则点D到BC的距离是( )图12-2-8A.3B.4C.5D.610.(题型二)如图12-2-9,在∆ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.图12-2-9(1)求证:∆ABE≌∆CBD.(2)若∠CAE=30°,求∠BDC的度数.11.(题型三)[湖北宜昌中考]杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图12-2-10,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米,请根据上述信息求标语CD的长度.图12-2-1012.(题型四、五)如图12-2-11,CD⊥AB于点D,BE⊥AC于点E,且BD=CE,BE交CD于点O.求证:AO平分∠BAC.图12-2-1113.(题型二、三)如图12-2-12,AB∥CD,OA=OD,AE=DF.求证:EB∥CF.图12-2-1214.(题型四)在数学习题课后,老师布置了一道课后练习题:如图12-2-13,在Rt∆ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P,D分别在AO和BC上,PB=PD,DE⊥AC 于点E.求证:∆BPO≌∆PDE.图12-2-13(1)理清思路,完成解答,本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论:若PB平分∠ABO,其余条件不变.求证:AP=CD.答案基础巩固1. C 解析:③保留了原来三角形的两个角和它们的夹边,可以根据“ASA”来配一块与原来一样的玻璃,所以应带③去.故选C.2. C 解析:∵AB=AC,EB=EC,AE=AE,∴△ABE≌△ACE(SSS).故选C.3. D 解析:∵△BDC′是将长方形纸片ABCD沿对角线BD折叠得到的,∴△C′DB≌△CDB.∵AB=DC,AD=BC,BD=BD,∴△ABD≌△CDB(SSS),∴△ABD≌△C′DB.在△ABO和△C′DO中,易知AB=C′D,∠A=∠C′=90°.又∵∠AOB=∠C′OD,∴△ABO≌△C′DO(AAS).故选D.4. 8 解析:∵∠CBE=∠DBE,∴∠ABC=∠ABD.在△ABC和△ABD中,,,, ABC ABDAB ABCAB DAB∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC≌△ABD(ASA),∴AC=AD=8.5. BC=EF(或BF=CE或AC=DF或∠A=∠D或∠C=∠F或AC∥DF,答案不唯一) 解析:∵AB⊥CF,DE⊥CF,∴△ABC和△DEF都是直角三角形.又∵AB=DE,∴可以添加的条件有:BC=EF(或BF=CE),△ABC≌△DEF(SAS);AC=DF,Rt△ABC≌Rt△DEF (HL);∠A=∠D,△ABC≌△DEF(ASA);∠C=∠F(或AC∥DF),△ABC≌△DEF(AAS).6. 证明:∵AB∥CD,∴∠EAO=∠FDO,∠AEO=∠DFO.在△AEO和△DFO中,,,, EAO FDOAE DFAEO DFO ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△AEO≌△DFO(ASA),∴OE=OF. ∴O是EF的中点.7.证明:∵△ABC,△CDE均为等腰直角三角形,且∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∠ACB-∠ACE=∠DCE-∠ACE, ∴∠ECB=∠DCA.在△CEB和△CDA中,,,,BC ACECB DCA EC DC=∠=∠=⎧⎪⎨⎪⎩∴△CEB≌△CDA(SAS).能力提升8. C 解析:选项A属于“SSA”,不是判定三角形全等的条件,错误;选项B,如图D12-2-1的两个等腰三角形的腰长相等,且有一角为30°,但这两个等腰三角形不全等,错误;选项C可利用“SSS”和“SAS”证明两个三角形全等,正确;选项D中的高有可能在三角形内部,也有可能在三角形外部,是不确定的,不符合全等的条件,D错误.故选C.图D12-2-1图D12-2-29. A 解析:如图D12-2-2,过点D作DE⊥BC,垂足为E,则DE的长即是点D到BC的距离.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,90,,,A DEBABD EBDBD BD∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△ABD≌△EBD(AAS),∴DE=AD=3,即点D到BC的距离是3.故选A.10.(1)证明:∵∠ABC=90°,D为AB的延长线上一点,∴∠ABE=∠CBD=90°.在△ABE和△CBD中,,,,AB CBABE CBD BE BD=∠=∠=⎧⎪⎨⎪⎩∴△ABE≌△CBD(SAS).(2)解:∵AB=CB,∠ABC=90°,∴∠CAB=45°.∵∠CAE=30°,∴∠BAE=∠CAB-∠CAE=45°-30°=15°.∵△ABE≌△CBD,∴∠BCD=∠BAE=15°.∴∠BDC=90°-∠BCD=90°-15°=75°.11. 解:∵AB∥CD,∴∠ABO=∠CDO.∵OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.∵相邻两平行线间的距离相等,∴OD=OB.在△ABO和△CDO中,,,,ABO CDOAOB COD OB OD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABO≌△CDO(ASA),∴CD=AB=20米.12. 证明:∵OD⊥AB,OE⊥AC,∴∠BDO=∠CEO=90°.在△BOD和△COE中,90,,,BDO CEOBOD COEBD CE∠=∠=︒∠=∠=⎧⎪⎨⎪⎩∴△BOD≌△COE(AAS),∴OD=OE.在Rt△AOD和Rt△AOE中,OA=OA, OD=OE,∴Rt△AOD≌Rt△AOE(HL),∴∠DAO=∠EAO,即AO平分∠BAC.13. 证明:∵AB∥CD(已知),∴∠3=∠4(两直线平行,内错角相等).在△DCO和△ABO中,34(),,12, OD OA∠=∠=∠=∠⎧⎪⎨⎪⎩已证(已知)(对顶角相等)∴△DCO≌△ABO(ASA),∴OC=OB(全等三角形的对应边相等). ∵AE=DF,OA=OD,∴OD+DF=OA+AE,即OF=OE.在△COF和△BOE中,(),(),12, OC OBOF OE==∠=∠⎧⎪⎨⎪⎩已证已证(对顶角相等)∴△COF≌△BOE(SAS),∴∠F=∠E(全等三角形的对应角相等).∴EB∥CF(内错角相等,两直线平行).14. 证明:(1)∵PB=PD,∴∠2=∠PBD.∵AB=BC,∠ABC=90°,∴∠C=45°.∵BO⊥AC,∴∠1=45°.∴∠1=∠C=45°.∵∠3=∠PBC-∠1,∠4=∠2-∠C,∴∠3=∠4.∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°.在△BPO和△PDE中,34,,,BOP PED BP PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△BPO≌△PDE(AAS).(2)由(1)得,∠3=∠4.∵BP平分∠ABO,∴∠ABP=∠3.∴∠ABP=∠4.在△ABP和△CPD中,,4,,A CABPPB PD∠=∠∠=∠=⎧⎪⎨⎪⎩∴△ABP≌△CPD(AAS),∴AP=CD.。
八年级上册数学人教版课时练《12.2 三角形全等的判定》03(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!《12.2三角形全等的判定》课时练一、选择题(本大题共12道小题)1.如图,已知AB=AD,若利用SSS证明△ABC≌△ADC,则需要添加的条件是()A.AC=ACB.∠B=∠DC.BC=DCD.AB=CD2.如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3.如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A.①B.②C.③D.①和②5.如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对6.如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=ED B.∠A=∠DEF,AC=EDC.AC=ED,AB=EF D.∠A=∠DEF,BC=FD7.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠DB.∠ACB=∠DBCC.AC=DBD.AB=DC8.如图,AB=AC,AD=AE,BE=CD,∠2=110°,∠BAE=60°,则下列结论错误的是()A.△ABE≌△ACD B.△ABD≌△ACEC.∠C=30°D.∠1=70°9.如图,点A,E,B,F在同一直线上,在△ABC和△FED中,AC=FD,BC=ED,当利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE =BE;④BF=BE,可利用的是()A.①或②B.②或③C.①或③D.①或④10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A.2B.3C.2D.611.现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误12.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题共6道小题)13.如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.14.如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).15.如图,在四边形ABCD 中,∠B =∠D =90°,AB =AD ,∠BAC =65°,则∠ACD 的度数为________.16.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,DE ⊥AB ,垂足为E .若△DBE 的周长为20,则AB =________.17.如图,在Rt ABC △中,90C Ð=°,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A Ð=°,则BCD ABDS S =△△__________.18.如图,∠C =90°,AC =10,BC =5,AX ⊥AC ,点P 和点Q 是线段AC 与射线AX 上的两个动点,且AB =PQ ,当AP =________时,△ABC 与△APQ全等.三、解答题(本大题共3道小题)19.如图,BD ,CE 是△ABC 的高,且BE =CD .求证:Rt △BEC ≌Rt △CDB .20.如图,AD ∥BC ,AB ⊥BC 于点B ,连接AC ,过点D 作DE ⊥AC 于点E ,过点B 作BF ⊥AC 于点F .(1)若∠ABF =63°,求∠ADE 的度数;(2)若AB =AD ,求证:DE =BF +EF .21.如图,ABC △中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE Ð=Ð,连接EF ,EF 与AC 交于点G .(1)求证:EF BC =;(2)若65ABC Ð=°,28ACB Ð=°,求FGC Ð的度数.参考答案一、选择题1.C2.A3.B4.C5.C6.C7.C8.C9.A10.B 11.A12.D二、填空题13.AB=AC14.答案不唯一,如CE=CB15.25°16.2017.1 218.5或10三、解答题19.证明:∵BD,CE是△ABC的高,∴∠BEC=∠CDB=90°.在Rt△BEC和Rt△CDB中,=CB,=CD,∴Rt△BEC≌Rt△CDB(HL).20.解:(1)∵AD∥BC,AB⊥BC,∴∠ABC=∠BAD=90°.∵DE⊥AC,BF⊥AC,∴∠BFA=∠AED=90°.∴∠ABF+∠BAF=∠BAF+∠DAE=90°.∴∠DAE=∠ABF=63°.∴∠ADE=27°.(2)证明:由(1)得∠DAE=∠ABF,∠AED=∠BFA=90°.在△DAE和△ABF DAE=∠ABF,AED=∠BFA,=BA,∴△DAE≌△ABF(AAS).∴AE=BF,DE=AF.∴DE=AF=AE+EF=BF+EF.21.(1)∵CAF BAE Ð=Ð,∴BAC EAF Ð=Ð,∵AE AB AC AF ==,,∴BAC EAF △≌△,∴EF BC =.(2)∵65AB AE ABC =Ð=°,,∴18065250BAE Ð=°-°´=°,∴50FAG Ð=°,∵BAC EAF △≌△,∴28F C Ð=Ð=°,∴502878FGC Ð=°+°=°.。
12.2 三角形全等的判定 第3课时 用“ASA”或“AAS”判定三角形全等

17.如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形
槽中,使三角板的三个顶点A,B,C分别在槽的两壁及底边上滑
动,已知∠D=∠E=90°. (1)在滑动过程中你发现线段AD与BE有什么关系?试说明你的结 论; (2)若AD=a,EC=b,求槽底DE的宽度.
解:(1)AD=BE.证明:∵∠ABC=90°,∴∠ABD+∠CBE= 90°.∵∠DAB+∠ABD=90°,∴∠DAB=∠CBE.又∵∠D=
璃店去配一块完全一样的玻璃,那么最省事的办法是(
A.带①去 B.带②去 C.带③去 D.带①和②去
C)
11.如图,将正方形 OABC 放在平面直角坐标系中,点 O 是原点, 点 A 的坐标为(1, 3),则点 C 的坐标为( A.(- 3,1) B.(-1, 3) C.( 3,1) D.(- 3,-1)
A
)
12.如图,∠A=∠D,∠ACB=∠DBC,若BC=4,△AOB的周长 14 为10,则△DCB的周长为______.
13.如图,在△AFD和△CEB中,点A,E,F,C在一条直线上,AE
=CF,∠B=∠D,AD∥BC.求证:AD=BC.
解:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF, 即AF=CE,在△ADF和△CBE中,∵∠B=∠D,∠A=∠C,AF= CE,∴△ADF≌△CBE(AAS),∴AD=BC
八年级上册数学(人教版)
第十二章
第3课时
全等三角形
12.2 三角形全等的判定
用“ASA”或“AAS”判定三角形全 等
知识点1:用“ASA”判定两个三角形全等
1.如图①,已知△ABC的边和角,则图②中,甲、乙、丙三个三角 形和△ABC全等的是( A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于全等三角形的判定
一、选择题
1.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()
A.① B.② C.③ D.①和②
【答案】C.
【解析】解带③去可以利用“角边角”得到全等的三角形.
故选C.
2.如图,已知:∠A=∠D,∠1=∠2,下列条件中能使△ABC≌△DEF 的是()
A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD 【答案】D.
【解析】添加AF=CD,
∵AF=CD,
∴AF+FC=CD+FC,
∴AC=FD ,
在△ABC 和△DEF 中
12A D AC DF ∠=∠⎧⎪=⎨⎪∠=∠⎩
,
∴△ABC ≌△DEF (ASA ),
故选D .
3.下列关于两个三角形全等的说法:
①三个角对应相等的两个三角形全等;
②三条边对应相等的两个三角形全等;
③有两角和其中一个角的对边对应相等的两个三角形全等;
④有两边和一个角对应相等的两个三角形全等.
正确的说法个数是( )
A .1个
B .2个
C .3个
D .4个
【答案】B .
【解析】①不正确,因为判定三角形全等必须有边的参与;
②正确,符合判定方法SSS ;
③正确,符合判定方法AAS ;
④不正确,此角应该为两边的夹角才能符合SAS .
所以正确的说法有两个.
故选B .
4.在△ABC 和△A ˊB ′C ′中,已知∠A=∠A ′,AB=A ′B ′,在下面
判断中错误的是( )
A.若添加条件AC=A′C′,则△ABC≌△A′B′C′
B.若添加条件BC=B′C′,则△ABC≌△A′B′C′
C.若添加条件∠B=∠B′,则△ABC≌△A′B′C′
D.若添加条件∠C=∠C′,则△ABC≌△A′B′C′
【答案】B.
【解析】A,正确,符合SAS判定;
B,不正确,因为边BC与B′C′不是∠A与∠A′的一边,所以不能推出两三角形全等;
C,正确,符合AAS判定;
D,正确,符合ASA判定;
故选B.
5.如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D使AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()
A.80°B.70°C.60°D.45°
【答案】B.
【解析】如图所示,连接AE.
∵AE=DE,
∴∠ADE=∠DAE,
∵DE∥BC,
∴∠DAE=∠ADE=∠B,
∵AB=AC,∠BAC=20°,
∴∠DAE=∠ADE=∠B=∠ACB=80°,
在△ADE 与△CBA 中,
DAE ACB
AD BC ADE B
∠=∠⎧⎪=⎨⎪∠=∠⎩,
∴△ADE≌△CBA(ASA ),
∴AE=AC,∠AED=∠BAC=20°,
∵∠CAE=∠DAE﹣∠BAC=80°﹣20°=60°,
∴△ACE 是等边三角形,
∴CE=AC=AE=DE,∠AEC=∠ACE=60°,
∴△DCE 是等腰三角形,
∴∠CDE=∠DCE,
∴∠DEC=∠AEC﹣∠AED=40°,
∴∠DCE=∠CDE=(180﹣40°)÷2=70°.
故选B .
6.如图:AB=AC,∠B=∠C,且AB=5,AE=2,则EC的长为()
A.2 B.3 C.5 D.2.5
【答案】B.
【解析】在△ABE与△ACF中,
∵
A A A
B AC
B C
∠=∠
⎧
⎪
=
⎨
⎪∠=∠
⎩
,
∴△ABE≌△ACF(ASA),
∴AC=AB=5
∴EC=AC﹣AE=5﹣2=3,
故选B.
二、填空题.
7.如图,AB=AC,要使△ABE≌△ACD,依据ASA,应添加的一个条件
是.
【答案】∠C=∠B.
【解析】添加∠C=∠B,
在△ACD和△ABE中,
A A A
B A
C C B ∠=∠⎧⎪=⎨⎪∠=∠⎩
,
∴△ABE≌△ACD(ASA ).
8.如图,AB∥CF,E 为DF 中点,AB=20,CF=15,则
BD= 5 .
【答案】5.
【解析】∵AB∥FC,
∴∠ADE=∠EFC,
∵E 是DF 的中点,
∴DE=EF,
在△ADE 与△CFE 中,
ADE EFC
DE EF AED CEF
∠=∠⎧⎪=⎨⎪∠=∠⎩,
∴△ADE≌△CFE,
∴AD=CF,
∵AB=20,CF=15,
∴BD=AB﹣AD=20﹣15=5.
9.如图,∠1=∠2,∠3=∠4,BC=5,则
BD= .
【答案】5.
【解析】∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4, ∴∠ABD=∠ABC
在△ADB 和△ACB 中,
1=2AB AB
ABD ABC ∠∠⎧⎪=⎨⎪∠=∠⎩
, ∴△ADB≌△ACB(ASA ),
∴BD=BC=5.
10.如图,要测量一条小河的宽度AB 的长,可以在小河的岸边作AB 的垂线 MN ,然后在MN 上取两点C ,D ,使BC=CD ,再画出MN 的垂线DE ,并使点E 与点A ,C 在一条直线上,这时测得DE 的长就是AB 的
长,其中用到的数学原理是: .
【答案】ASA ,全等三角形对应边相等 .
【解析】∵AB⊥MN,DE⊥MN,
∴∠ABC=∠EDC=90°,
在△ABC 和△EDC 中,
ABC EDC BC DC
ACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△ABC≌△EDC(ASA ),
∴DE=AB.
11.如图,在四边形ABCD 中,AB∥DC,AD∥BC,对角线AC 、BD 相交于点O ,则图中的一对全等三角形
为 .(写出一对即可)
【答案】△ABC ≌△ADC.
【解析】△ABC≌△ADC,理由如下:
∵AB∥DC,AD∥BC,
∴∠BAC=∠D CA ,∠DAC=∠BCA,
在△ABC 与△ADC 中,
BAC DCA AC CA
DAC BCA ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△ABC≌△ADC(ASA ),
∴AB=DC,BC=DA ,
在△ABO 与△CDO 中,
BAO DCO AOB COD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△ABO≌△CDO(AAS ),
同理可得:△BCO≌△DAO,
三、解答题
12.如图,点A ,B ,C ,D 在同一条直线上,AB=FC ,∠A=∠F,∠EBC=∠FCB.求证:BE=CD .
【答案】证明见解析.
【解析】∵∠EBC=∠FCB,∠EBC+∠ABE=180°,∠FCB+∠FCD=180°, ∴∠ABE=∠FCD,
在△ABE 与△FCD 中,
A F A
B FC
ABE FCD ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴△ABE≌△FCD(ASA ),
∴BE=CD.
13.如图,点D 在AB 上,DF 交AC 于点E ,CF∥AB,AE=EC .求证:AD=CF .
【答案】答案见解析.
【解析】∵CF∥AB,
∴∠A=∠ACF,∠ADE=∠CFE.
在△ADE 和△CFE 中,
A ACF ADE CFE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴△ADE≌△CFE(AAS ).
∴AD=CF.
14. 如图,锐角△ABC 中,∠BAC=60°,O 是BC 边上的一点,连接AO ,以AO 为边向两侧作等边△AOD 和等边△AOE,分别与边AB ,AC 交于点F ,G .求证:AF=AG .
【答案】答案见解析.
【解析】∵△AOD 和△AOE 是等边三角形,
∴∠E=∠AOF=60°,AE=AO ,∠OAE=60°,
∵∠BAC=60°,
∴∠FAO=∠EAG=60°﹣∠CAO,
在△AFO 和△AGE 中,
FAO EAG AO AE
AOF E ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△AFO≌△AGE(ASA ),
∴AF=AG.
15.如图所示,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,连接AD ,E 、F 分别是AB 、AC 边上的点,且DE⊥DF,若BE=12,CF=5.
11 (1)求证:△ADE≌△CDF;
(2)求线段EF 的长?
【答案】(1)答案见解析.(2)13.
【解析】(1)∵∠BAC=90°,AB=AC , 又∵AD 为△ABC 的中线,
∴AD=DC=DB.AD⊥BC,
∴∠BAD=∠C=45°,
∵∠EDA+∠ADF=90°,
又∵∠CDF+∠ADF=90°,
∴∠EDA=∠CDF,在△AED 与△CFD 中, EDA CDF
AD CD EAD C
∠=∠⎧⎪=⎨⎪∠=∠⎩,
∴△AED≌△CFD(ASA ).
(2)解:由(1)△AED≌△CFD 得: ∴AE=FC=5,
同理:AF=BE=12,
∵∠EAF=90°,
∴EF 2=AE 2+AF 2=52+122=169.
∴EF=13.。