高考物理专题:电磁感应中的动力学和能量综合问题及参考答案

合集下载

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题(含答案)

12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。

一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。

金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。

求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。

二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。

导轨顶端连接一个阻值为1 Ω的电阻。

在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。

质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。

金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。

(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。

三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。

高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

高中物理新高考考点复习40 电磁感应中的动力学、能量与动量问题

考点规范练40电磁感应中的动力学、能量与动量问题一、单项选择题1.如图所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,磁场区域宽度大于线圈宽度,则( )A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时即已停下C.线圈在磁场中某个位置停下D.线圈能通过场区不会停下2.如图所示,两光滑平行金属导轨间距为l ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。

电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。

现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( )A.电容器两端的电压为零B.电阻两端的电压为BlvC.电容器所带电荷量为CBlvD.为保持MN 匀速运动,需对其施加的拉力大小为B 2l 2vR3.(2021·辽宁模拟)如图所示,间距l=1 m 的两平行光滑金属导轨固定在水平面上,两端分别连接有阻值均为2 Ω的电阻R 1、R 2,轨道有部分处在方向竖直向下、磁感应强度大小为B=1 T 的有界匀强磁场中,磁场两平行边界与导轨垂直,且磁场区域的宽度为d=2 m 。

一电阻r=1 Ω、质量m=0.5 kg 的导体棒ab 垂直置于导轨上,导体棒现以方向平行于导轨、大小v 0=5 m/s 的初速度沿导轨从磁场左侧边界进入磁场并通过磁场区域,若导轨电阻不计,则下列说法正确的是( )A.导体棒通过磁场的整个过程中,流过电阻R 1的电荷量为1 CB.导体棒离开磁场时的速度大小为2 m/sC.导体棒运动到磁场区域中间位置时的速度大小为3 m/sD.导体棒通过磁场的整个过程中,电阻R 2产生的电热为1 J4.如图所示,条形磁体位于固定的半圆光滑轨道的圆心位置,一半径为R 、质量为m 的金属球从半圆轨道的一端沿半圆轨道由静止下滑,重力加速度大小为g 。

高考物理一轮复习 专题46 电磁感应中的动力学和能量问题(练)(含解析)

高考物理一轮复习 专题46 电磁感应中的动力学和能量问题(练)(含解析)

专题46 电磁感应中的动力学和能量问题1.如图所示,光滑的金属导轨间距为L ,导轨平面与水平面成α角,导轨下端接有阻值为R 的电阻.质量为m 的金属细杆ab 与绝缘轻质弹簧相连静止在导轨上,弹簧劲度系数为k ,上端固定,弹簧与导轨平面平行,整个装置处在垂直于导轨平面斜向上的匀强磁场中,磁感应强度为B .现给杆一沿导轨向下的初速度v 0,杆向下运动至速度为零后,再沿导轨平面向上运动达最大速度v 1,然后减速为零,再沿导轨平面向下运动,一直往复运动到静止(金属细杆的电阻为 r ,导轨电阻忽略不计).试求:(1)细杆获得初速度的瞬间,通过R 的电流大小; (2)当杆速度为v 1时,离最初静止位置的距离L 1;(3)杆由v 0开始运动直到最后静止,电阻R 上产生的焦耳热Q .【答案】(1)rR BLv I +=00(2))(1221r R k v L B L +=(3))(220r R Rmv Q R +=所以:)(22r R Rmv Q R +=【名师点睛】本题是导体棒在导轨上滑动的类型,分析杆的状态,确定其受力情况是关键.综合性较强.2.如图所示,一对平行光滑轨道水平放置,轨道间距L =0.20 m ,电阻R =10 Ω,有一质量为m =1kg 的金属棒平放在轨道上,与两轨道垂直,金属棒及轨道的电阻皆可忽略不计,整个装置处于垂直轨道平面竖直向下的匀强磁场中,磁感应强度B=5T ,现用一拉力F 沿轨道方向拉金属棒,使之做匀加速运动,加速度a =1m/s 2,试求: (1)力F 随时间t 的变化关系。

(2)F =3N 时,电路消耗的电功率P 。

(3)若金属棒匀加速运动的时间为T 时,拉力F 达到最大值F m =5N ,此后保持拉力F m =5N 不变,求出时间T ,并简述在时间T 前后,金属棒的运动情况。

【答案】(1)F =0.1t+1(2)40W (3)40s 前,金属棒以加速度1m/s 2做匀加速直线运动; 40s 后,金属棒做加速度逐渐减小、速度逐渐增大的变加速直线运动,直到速度达到50 m/s 时,金属棒的加速度减小到0,金属棒做匀速直线运动3.如图,两条间距L =0.5m 且足够长的平行光滑金属直导轨,与水平地面成30°角固定放置,磁感应强度B =0.4T 的匀强磁场方向垂直导轨所在的斜面向上,质量、的金属棒ab 、cd 垂直导轨放在导轨上,两金属棒的总电阻r =0.2Ω,导轨电阻不计。

高考物理复习:电磁感应中的动力学与能量问题

高考物理复习:电磁感应中的动力学与能量问题

为h。初始时刻,磁场的下边缘和线框上边缘的高度差为2h,将重物从静止
开始释放,线框上边缘刚进磁场时,恰好做匀速直线运动,滑轮质量、摩擦
阻力均不计。下列说法正确的是(ABD)
A.线框进入磁场时的速度为 2ℎ
2
2
B.线框的电阻为2
2ℎ
C.线框通过磁场的过程中产生的热量 Q=2mgh
D.线框通过磁场的过程中产生的热量 Q=4mgh
热量等于系统重力势能的减少量,即 Q=3mg×2h-mg×2h=4mgh,C 错误, D 正
确。
能力形成点3
整合构建
电磁感应中的动量综合问题——规范训练
电磁感应中的有些题目可以从动量角度着手,运用动量定理或动量守恒
定律解决。
(1)应用动量定理可以由动量变化来求解变力的冲量。如在导体棒做非
匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问
解析:(1)由ab、cd棒被平行于斜面的导线相连,故ab、cd速度大小总是相
等,cd也做匀速直线运动。设导线的拉力的大小为FT,右斜面对ab棒的支持
力的大小为FN1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力
大小为FN2,对于ab棒,受力分析如图甲所示。
由力的平衡条件得2mgsin θ=μFN1+FT+F ①
电动势,该导体或回路就相当于电源。
(2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。
(3)根据能量守恒列方程求解。
训练突破
2.(多选)如图所示,质量为3m的重物与一质量为m的线框用一根绝缘细线
连接起来,挂在两个高度相同的定滑轮上。已知线框的横边边长为l,水平
方向匀强磁场的磁感应强度为B,磁场上下边界的距离、线框竖直边长均

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻不计)从轨道上由静止滑下.经过足够长的时间,金属杆的速度趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变大,v m 将变大答案:BCD解析:当加速度为零时,速度最大,则有mg sin α=BIL ,又I =BL v m R ,解得v m =mgR sin αB 2L 2,如果B 增大,v m 将变小;如果α变大,v m 将变大;如果R 变大,v m 将变大;如果m 变大,v m 将变大,B 、C 、D 正确.2.(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小答案:AD解析:OP 转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 匀速转动产生的感应电动势,产生的感应电流由M 到N 通过MN 棒,由左手定则可知,MN 棒会向左运动,MN 棒运动会切割磁感线,产生的电动势与原来电流方向相反,让回路电流减小,MN 棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.3.(多选)如图,横截面积为S 的n 匝线圈,线圈总电阻为R ,其轴线与大小均匀变化的匀强磁场B 1平行.间距为L 的两平行光滑倾斜轨道PQ 、MN 足够长,轨道平面与水平面的夹角为α,底部连有一阻值2R 的电阻,磁感应强度B 2的匀强磁场与轨道平面垂直.K 闭合后,质量为m 、电阻也为2R 的金属棒ab 恰能保持静止,金属棒始终与轨道接触良好,其余部分电阻不计,下列说法正确的是( )A .B 1均匀减小B .B 1的变化率为ΔB 1Δt =4mgR sin αnB 2SLC .断开K 之后,金属棒ab 将做匀加速直线运动D .断开K 之后,金属棒的最大速度为v =4Rmg sin αB 22 L 2 答案:ABD解析:由平衡条件知金属棒所受安培力的方向应平行轨道向上,电流大小恒定,磁场B 1均匀变化;根据左手定则判断金属棒中电流方向由b 指向a ,线圈中感应电流磁场方向与原磁场方向相同,则可判断B 1减小,A 正确;设B 1的变化率为ΔB 1Δt,螺线管中感应电动势E =n ΔB 1Δt S ,回路中总电阻R 总=R +R =2R ,电路中总电流I =E R 总 =E 2R,安培力F =B 2IL 2 ,由平衡条件得F =mg sin α,解得ΔB 1Δt =4mgR sin αnB 2SL,B 正确;断开K 之后,金属棒ab 将做变加速直线运动,C 错误;断开K 之后,金属棒速度最大时,受力平衡,有B 2I ′L =mg sin α,且电流I ′=E 4R =B 2L v 4R ,联立解得v =4Rmg sin αB 22 L 2 ,D 正确. 4.如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2 g,长度L=0.5 m,宽度d=0.02 m,电阻R=0.01 Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差h=0.2 m,磁场上、下水平边界间的距离D=0.27 m,铜框进入磁场的过程恰好做匀速直线运动.取重力加速度大小g=10 m/s2,不计空气阻力.下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5 TC.铜框下边刚离开磁场时的速度大小为3 m/sD.铜框下边刚离开磁场时的感应电流为0.3 A答案:C解析:铜框下边进入磁场过程,由右手定则判断感应电流为逆时针方向,A错误;铜框下边刚进入磁场时的速度大小v1=2gh ,此时感应电动势E=BL v1,电流I=ER,铜框受的安培力大小F=BIL,由平衡条件得F=mg,解得磁感应强度B=0.2 T,B错误;铜框全部进入磁场后开始做加速度为g的匀加速直线运动,设铜框下边刚离开磁场时速度大小为v2,根据运动学公式得v22-v21=2g(D-d),解得v2=3 m/s,C正确;铜框下边刚离开磁场时,感应电流大小I′=BL v2R=3 A, A、D错误.5.(多选)如图所示,两条足够长的平行光滑长直导轨MN、PQ固定于同一水平面内,它们之间的距离为l;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨接触良好.两杆的电阻皆为R.cd的中点系一轻绳,绳的另一端绕过定滑轮悬挂一质量为M的重物,滑轮与杆cd之间的轻绳处于水平伸直状态并与导轨平行.不计滑轮与转轴、细绳之间的摩擦,不计导轨的电阻.导轨和金属细杆都处于匀强磁场中,磁感应强度大小为B,方向竖直向上.现将两杆及重物同时由静止释放,下列说法正确的是()A.释放重物瞬间,其加速度大小为Mg m+MB.最终回路中的电流为MmgBl(m+M)C.最终ab杆所受安培力的大小为mMg2m+MD .最终ab 和cd 两杆的速度差恒为2MmgR B 2l 2(2m +M )答案:ACD解析:释放重物瞬间,ab 杆和cd 杆均不受安培力,设重物的加速度大小为a 1,则对重物,有Mg -T 1=Ma 1;对cd 杆,有T 1=ma 1,解得a 1=Mg m +M,A 项正确;最终ab 杆、cd 杆和重物三者的加速度大小相等,设其为a ,对重物,有Mg -T 2=Ma ;对cd 杆,有T 2-BIl =ma ;对ab 杆,有BIl =ma ,解得I =Mmg (2m +M )Bl ,F 安=BIl =Mmg 2m +M,B 项错误,C 项正确;设最终两杆速度差为Δv ,回路中感应电动势为E =Bl Δv ,I =E 2R,解得Δv =2MmgR B 2l 2(2m +M ),D 项正确. 6.(多选)如图所示,倾角θ=30°的斜面上放置一间距为L 的光滑U 形导轨(电阻不计),导轨上端连接电容为C 的电容器,电容器初始时不带电,整个装置放在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场中.一质量为2m 、电阻为R 的导体棒垂直放在导轨上,与导轨接触良好,另一质量为m 的重物用一根不可伸长的绝缘轻绳通过光滑的定滑轮与导体棒拴接,定滑轮与导体棒间的轻绳与斜面平行.将重物由静止释放,在导体棒到达导轨底端前的运动过程中(电动势未到达电容器的击穿电压),已知重力加速度为g ,下列说法正确的是( )A .电容器M 板带正电,且两极板所带电荷量随时间均匀增加B .经时间t 导体棒的速度为v =2mgt 3m +CB 2L 2C.回路中电流与时间的关系为I =2BLmg (3m +CB 2L 2)Rt D .重物和导体棒在运动过程中减少的重力势能转化为动能和回路的焦耳热答案:AB解析:设运动过程中经时间Δt ,导体棒的速度增加Δv ,对电容器,两极板的充电电流I =ΔQ Δt =C ΔU Δt =CBL Δv Δt,对导体棒受力分析,由牛顿第二定律有2mg sin 30°+F T -BIL =2ma ;对重物分析,有mg -F T =ma ,又Δv Δt =a ,解得a =2mg 3m +CB 2L 2,加速度恒定,所以导体棒在到达导轨底端前做匀加速直线运动,电容器两极板所带电荷量随时间均匀增加,由右手定则可知,M 板带正电,A 项正确;经时间t ,导体棒的速度v =2mgt 3m +CB 2L 2,B 项正确;由A 项分析可知回路中电流恒定,C 项错误;重物和导体棒在运动过程中减少的重力势能一部分转化为动能和回路的焦耳热,一部分转化为电容器储存的电能,D 项错误.7.[2024·河北省邢台市五岳联盟联考]游乐园中的过山车因能够给游客带来刺激的体验而大受欢迎.为了保证过山车的进站安全,过山车安装了磁力刹车装置,将磁性很强的铷磁铁安装在轨道上,正方形导体框安装在过山车底部.磁力刹车装置的工作原理可简化为如图所示的模型:质量m =5 kg 、边长L =2 m 、电阻R =1.8 Ω的单匝导体框abcd 沿着倾角为θ的光滑斜面由静止开始下滑x 0=4.5 m 后,下边框bc 进入匀强磁场区域时导体框开始减速,当上边框ad 进入磁场时,导体框刚好开始做匀速直线运动.已知磁场的上、下边界与导体框的上、下边框平行,磁场的宽度也为L =2 m ,磁场方向垂直斜面向下、磁感应强度大小B =3 T ,sin θ=0.4,取重力加速度大小g =10 m/s 2,求:(1)上边框ad 进入磁场时,导体框的速度大小v ;(2)下边框bc 进入磁场时,导体框的加速度大小a 0.答案:(1)1 m/s (2)20 m/s 2解析:(1)当导体框的上边框ad 进入磁场时,上边框ad 切割磁感线产生的感应电动势为E =BL v导体框中的感应电流为I =E R导体框的上边框在磁场中受到的安培力大小F A =BIL导体框刚好做匀速直线运动,根据受力平衡有mg sin θ=F A联立解得v =1 m/s(2)导体框沿斜面由静止开始到下边框bc 进入匀强磁场的过程中,根据机械能守恒定律有mgx 0sin θ=12m v 20 当导体框的下边框进入磁场时,导体框的下边框在磁场中受到的安培力大小F A0=B2L2v0 R对导体框受力分析,根据牛顿第二定律有F A0-mg sin θ=ma0联立解得a0=20 m/s2.。

电磁感应中的动力学和能量问题(含答案)

电磁感应中的动力学和能量问题(含答案)

专题10电磁感应中的动力学和能量问题导学目标 1.会分析计算电磁感应中的安培力参与的导体的运动及平衡问题.2.会分析计算电磁感应中能量的转化与转移.考点一电磁感应中的动力学问题分析考点解读导体两种状态及处理方法(1)导体的平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件合外力等于零列式分析.(2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.典例剖析例1(2011·四川理综·24)如图1所示,间距l=0.3 m的平行金属导轨a1b1c1和a2b2c2分别固定在两个竖直面内.在水平面a1b1b2a2区域内和倾角θ=37°的斜面c1b1b2c2区域内分别有磁感应强度B1=0.4 T、方向竖直向上和B2=1 T、方向垂直于斜面向上的匀强磁场.电阻R=0.3 Ω、质量m1=0.1 kg、长为l的相同导体杆K、S、Q分别放置在导轨上,S杆的两端固定在b1、b2点,K、Q杆可沿导轨无摩擦滑动且始终接触良好.一端系于K杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m2=0.05 kg的小环.已知小环以a=6 m/s2的加速度沿绳下滑,K杆保持静止,Q杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:图1(1)小环所受摩擦力的大小;(2)Q杆所受拉力的瞬时功率.思维突破解决电磁感应中的动力学问题的一般思路是“先电后力”,即:先作“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r;再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;接着进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.跟踪训练1如图2所示,电阻为R,其他电阻均可忽略,ef是一电阻可不计的水平放置的导体棒,质量为m,棒的两端分别与ab、cd保图3持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S闭合后 ( )A .导体棒ef 的加速度可能大于gB .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒考点二 电磁感应中的能量问题分析 考点解读1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能. 典例剖析例2 如图3所示,空间存在竖直向上、磁感应强度B =1 T 的匀强磁场,ab 、cd 是相互平行间距L =1 m 的长直导轨,它们处在同一水平面内,左边通过金属杆ac 相连.质量m =1 kg 的导体棒MN 水平放置在导轨上,已知MN 与ac 的总电阻R =0.2 Ω,其他电阻 不计.导体棒MN 通过不可伸长的细线经光滑定滑轮与质量也为m 的重物相连,现将重物由静止状态释放后与导体棒MN 一起运动,并始终保持导体棒与导轨接触良好.已知导体棒与导轨间的动摩擦因数μ=0.5,其他摩擦不计,导轨足够长,重物离地面足够高,重力加速度g 取10 m/s 2.(1)请定性说明:导体棒MN 在达到匀速运动前,速度和加速度是如何变化的?达到匀速运动时MN 受到的哪些力的合力为零?并定性画出棒从静止至匀速运动的过程中所受的安培力大小随时间变化的图象(不需说明理由及计算达到匀速运动的时间);(2)若已知重物下降高度h =2 m 时,导体棒恰好开始做匀速运动,在此过程中ac 边产生的焦耳热Q =3 J ,求导体棒MN 的电阻值r .思维突破1.电磁感应过程往往涉及多种能量的转化(1)如图中金属棒ab 沿导图4图5 轨由静止下滑时,重力势能减少,一部分用来克服安培力做功,转化为感应电流的电能,最终在R 上转化为焦耳热,另一部分转化为金属棒的动能.(2)若导轨足够长,棒最终达到稳定状态匀速运动时,重力势能的减小则完全用来克服安培力做功,转化为感应电流的电能.因此,从功和能的观点入手,分析清楚电磁感应过程中能量转化的关系,是解决电磁感应中能量问题的重要途径之一.2.安培力做功和电能变化的特定对应关系“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.3.在利用功能关系分析电磁感应的能量问题时,首先应对研究对象进行准确的受力分析,判断各力做功情况,利用动能定理或功能关系列式求解.4.利用能量守恒分析电磁感应问题时,应注意明确初、末状态及其能量转化,根据力做功和相应形式能的转化列式求解.跟踪训练2 两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图4所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放.则 ( )A .金属棒的动能、重力势能与弹簧的弹性势能的总和保持不变B .金属棒最后将静止,静止时弹簧伸长量为mg kC .金属棒的速度为v 时,所受的安培力大小为F =B 2L 2v RD .金属棒最后将静止,电阻R 上产生的总热量为mg ·mg k12.电磁感应中“杆+导轨”模型问题例3 (2011·天津理综·11)如图5所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何?(2)棒ab 受到的力F 多大?图6(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?建模感悟跟踪训练3 如图6所示,两根足够长的光滑直金属导轨MN 、PQ 平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L =1m ,导轨的电阻可忽略.M 、P 两点间接有阻值为R 的电阻.一根质量m =1 kg 、电阻r =0.2 Ω的均匀直金属杆ab 放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B =0.5 T 的匀强 磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab 受到大小为F =0.5v +2(式中v 为杆ab 运动的速度,力F 的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R 的电流随时间均匀增大.g 取10 m/s 2,sin 37°=0.6.(1)试判断金属杆ab 在匀强磁场中做何种运动,并请写出推理过程;(2)求电阻R 的阻值;(3)求金属杆ab 自静止开始下滑通过位移x =1 m 所需的时间t .A 组 电磁感应中的动力学问题图7图8图9图10 1. 如图7所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是 ()2.如图8所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变B 组 电磁感应中的能量问题3. 如图9所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程 ( ) A .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4. 如图10所示,在水平桌面上放置两条相距L 的平行且无限长的粗糙金属导轨ab 和cd ,阻值为R 的电阻与导轨的a 、c端相连,其余电路电阻不计,金属滑杆MN 垂直于导轨并可在导轨上滑动.整个装置放于匀强磁场中,磁场方向竖直向上,磁 感应强度的大小为B .滑杆的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一质量为m 的物块相连,绳处于拉直状态,现若从静止开始释放物块,用I 表示稳定后回路中的感应电流,g 表示重力加速度,设滑杆在运动中所受阻力恒为F f ,则在物体下落过程中 ( )A .物体的最终速度(mg -F f )RB 2L 2图11 B .物体的最终速度I 2R mg -F fC .稳定后物体重力的功率I 2RD .物体重力的最大功率可能为mg (mg -F f )R B 2L 2C 组 “杆+导轨”模型应用5.(2011·全国·24)如图11,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计.在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下落过程中保持水平,且与导轨接触良好.已知某时刻后两灯泡保持正常发光.重力加速度为g .求: (1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.图1图2图3图4课时规范训练(限时:60分钟)一、选择题1. 如图1所示,在一匀强磁场中有一U 形导线框abcd ,线框处于水平面内,磁场与线框平面垂直,R 为一电阻,ef 为垂直于ab的一根导体杆,它可以在ab 、cd 上无摩擦地滑动.杆ef 及线框中导线的电阻都可不计.开始时,给ef 一个向右的初速度,则( )A .ef 将减速向右运动,但不是匀减速B .ef 将匀减速向右运动,最后停止C .ef 将匀速向右运动D .ef 将往返运动2.如图2所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过 程中,下列说法正确的是 ( )A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12m v 2 3.如图3所示,两根水平放置的相互平行的金属导轨ab 、cd 表面光滑,处在竖直向上的匀强磁场中,金属棒PQ 垂直于导轨放在上面,以速度v 向右匀速运动,欲使棒PQ 停下来,下面的措施可 行的是(导轨足够长,棒PQ 有电阻) ( )A .在PQ 右侧垂直于导轨再放上一根同样的金属棒B .在PQ 右侧垂直于导轨再放上一根质量和电阻均比棒PQ 大的金属棒C .将导轨的a 、c 两端用导线连接起来D .在导轨的a 、c 两端用导线连接一个电容器4.(2011·福建理综·17)如图4所示,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接图5图6图7入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( )A .运动的平均速度大小为12v B .下滑的位移大小为qR BLC .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2v Rsin θ 5.如图5所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 ( )A .若B 2=B 1,金属棒进入B 2区域后将加速下滑B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑6. 一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域继续下落,如图6所示,则 ( )A .若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动B .若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动C .若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动D .若线圈进入磁场过程是减速运动,则离开磁场过程是加速运动7.如图7所示,在水平面内固定着U 形光滑金属导轨,轨道间距为50 cm ,金属导体棒ab 质量为0.1 kg ,电阻为0.2 Ω,横放在导轨上,电阻R 的阻值是0.8 Ω(导轨其余部分电阻不计).现加上竖直向下的磁感应强度为0.2 T 的匀强磁场.用水 平向右的恒力F =0.1 N 拉动ab ,使其从静止开始运动,则 ( )A .导体棒ab 开始运动后,电阻R 中的电流方向是从P 流向MB .导体棒ab 运动的最大速度为10 m/sC .导体棒ab 开始运动后,a 、b 两点的电势差逐渐增加到1 V 后保持不变D .导体棒ab 开始运动后任一时刻,F 的功率总等于导体棒ab 和电阻R 的发热功率之和8.如图8所示,间距为L 的光滑平行金属导轨弯成“∠”形,底部导轨面水平,倾斜部分与水平面成θ角,导轨与固定电阻相连,图10整个装置处于竖直向上的大小为B 的匀强磁场中,导体棒ab 和cd 均垂直于导轨放置,且与导轨间接触良好.两导体棒的电阻皆与阻值为R 的固定电阻相等,其余部分电阻不计.当导体棒cd 沿底部导轨向右以速度为v 匀速滑动时,导体棒ab 恰好在倾斜导轨上处于静止状态,导体棒ab 的重力为mg ,则( )A .导体棒cd 两端电压为BL vB .t 时间内通过导体棒cd 横截面的电荷量为2BL v t 3RC .cd 棒克服安培力做功的功率为B 2L 2v 2RD .导体棒ab 所受安培力为mg sin θ9.如图9(a)所示,在光滑水平面上用恒力F 拉质量为m 的单匝均匀正方形铜线框,边长为a ,在1位置以速度v 0进入磁感应强度为B 的匀强磁场并开始计时,若磁场的宽度为b (b >3a ),在3t 0时刻线框到达2位置速度又为v 0,并开始离开匀强磁场.此过程中v -t 图象如图(b)所示,则 ()(a) (b)图9A .t =0时,线框右侧边MN 两端的电压为Ba v 0B .在t 0时刻线框的速度为v 0-2Ft 0/mC .线框完全离开磁场的瞬间位置3速度一定比t 0时刻线框的速度大D .线框完全离开磁场的瞬间位置3速度一定比t 0时刻线框的速度小10.如图10所示,水平放置的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在方向竖直向上磁感应强度大小为B 的匀强磁场中.一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为μ.现杆在水平向左、垂直于杆的恒力 F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直).设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g .则此过程( )A .杆运动速度的最大值为(F -μmg )RB 2d 2图11图12图13B .流过电阻R 的电荷量为BdL R +rC .恒力F 做的功与摩擦力做的功之和等于杆动能的变化量D .恒力F 做的功与安培力做的功之和大于杆动能的变化量二、非选择题11.(2010·江苏单科·13)如图11所示,两足够长的光滑金属导轨竖直放置,相距为L ,一理想电流表与两导轨相连,匀强磁场与导轨平面垂直.一质量为m 、有效电阻为R 的导体棒在距磁场上边界h 处静止释放.导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为I .整个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻.求:(1)磁感应强度的大小B ;(2)电流稳定后,导体棒运动速度的大小v ;(3)流经电流表电流的最大值I m .12.(2011·上海单科·32)电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的匀强磁场垂直轨道平面向上,如图12所示.阻值r =0.5 Ω,质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑 至底端,在此过程中金属棒产生的焦耳热Q 1=0.1 J .(取g =10 m/s 2)求:(1)金属棒在此过程中克服安培力的功W 安;(2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W G -W 安=12m v 2m, ….由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解答.13.如图13所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ角固定,轨间距为d .空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B .P 、M 间所接电阻阻值为R .质量为m 的金属杆ab 水平放置在轨道上,其有效电阻为r .现从静止释放ab ,当它沿轨道下滑距离s 时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g .求:(1)金属杆ab 运动的最大速度;(2)金属杆ab 运动的加速度为12g sin θ时,电阻R 上的电功率; (3)金属杆ab 从静止到具有最大速度的过程中,克服安培力所做的功.复习讲义课堂探究例1 (1)0.2 N (2)2 W跟踪训练1 AD例2 (1)见解析 (2)0.13 Ω解析 (1)当MN 棒匀速运动时,悬挂重物的细线的拉力与安培力及摩擦力三力的合力为零;在达到稳定速度前,导体棒的加速度逐 渐减小,速度逐渐增大;安培力大小随时间变化的图象如图所 示,匀速运动时,由平衡条件可知mg =F 安+μmg 得F 安=5 N. 跟踪训练2 BC例3 (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J跟踪训练3 (1)匀加速运动 (2)0.3 Ω (3)0.5 s分组训练1.ACD2.BC3.AC4.ABD5.(1)mg 2L R P (2)2Pmg课进规范训练1.A2.D3.C4.B5.BCD6.C7.B8.B9.B10.BD11.(1)mg IL (2)I 2R mg (3)mg 2gh IR12.(1)0.4 J (2)3.2 m/s 2 (3)见解析13.(1)mg (R +r )sin θB 2d 2 (2)m 2g 2sin 2 θR 4B 2d 2(3)mgs sin θ-m 3g 2(R +r )2sin 2 θ2B 4d 4。

2025高考物理总复习电磁感应中的动力学、能量和动量问题

2025高考物理总复习电磁感应中的动力学、能量和动量问题

返回目录
专题二十一
电磁感应中的动力学、能量和动量问题
3. “四步法”分析电磁感应中的动力学问题
返回目录
专题二十一
命题点1
电磁感应中的动力学、能量和动量问题
“单棒+导轨”模型
1. 如图所示,水平面(纸面)内间距为l的平行金属导轨间接一电阻,质量为m、长度
为l的金属杆置于导轨上.t=0时,金属杆在水平向右、大小为F的恒定拉力作用下由
培力方向沿导轨向,大小为f1=BLi
Δ
设在时间间隔t~t+Δt内流经金属棒的电荷量为ΔQ,按定义有i=
Δ
ΔQ也是平行板电容器在时间间隔t~t+Δt内增加的电荷量,由(1)中结果可知ΔQ=
CBLΔv
返回目录
专题二十一
电磁感应中的动力学、能量和动量问题
Δ
式中,Δv为金属棒的速度变化量,按定义有a=
电磁感应中的动量问题
2022:辽宁T15;
2019:全国ⅢT19
返回目录
专题二十一
电磁感应中的动力学、能量和动量问题
高考中常通过导体棒+导轨、导体框等模型考查电磁感应中力与
运动、功与能、动量等力电综合问题,选择题和计算题都有考
命题分析预测 查,近年主要为计算题形式,试题综合性较强,难度较大.预计
2025年高考可能会出现导体棒的受力及运动分析、电磁感应与动
返回目录
专题二十一
电磁感应中的动力学、能量和动量问题
最终状态
运动形式
匀速直线运动
力学特征

a=0,v最大,vm= 2 2

电学特征

I=
恒定

返回目录
专题二十一
电磁感应中的动力学、能量和动量问题

电磁感应中的动力学问题和能量转换问题(一)参考答案

电磁感应中的动力学问题和能量转换问题(一)参考答案

电磁感应中的动力学问题和能量转换问题(一)例1〖解析〗ab 沿导轨下滑过程中受四个力作用,即重力mg ,支持力F N 、摩擦力F f 和安培力F 安,如图所示,ab 由静止开始下滑后,将是↓↑→↑→↑→↑→a F I E v 安(↑为增大符号),所以这是个变加速过程,当加速度减到a=0时,其速度即增到最大v=v m ,此时必将处于平衡状态,以后将以v m 匀速下滑。

E=BLv ①;I=E/R ②安培力F 安方向如图示,其大小为:F 安=BIL ③ 由①②③可得R v L B F 22=安 以ab 为研究对象,根据牛顿第二定律应有:mgsinθ–μmgcosθ-R vL B 22=maab 做加速度减小的变加速运动,当a=0时速度达最大,ab 达到v m 时应有:mgsinθ –μmgcosθ-R v L B 22=0 ④ ;由④式可解得()22cos sin L B R mg v m θμθ-=(1)电磁感应中的动态分析,要抓住“速度变化引起磁场力的变化”这个相互关联关系,从分析物体的受力情况与运动情况入手是解题的关键,要学会从动态分析的过程中来选择是从动力学方面,还是从能量、动量方面来解决问题。

(2)在分析运动导体的受力时,常画出平面示意图和物体受力图。

例2〖解析〗给ab 冲量后,ab 获得速度向右运动,回路中产生感应电流,cd 受安培力作用而加速,ab 受安培力而减速;当两者速度相等时,都开始做匀速运动。

所以开始时cd 的加速度最大,最终cd 的速度最大。

全过程系统动能的损失都转化为电能,电能又转化为内能。

由于ab 、cd 横截面积之比为2∶1,所以电阻之比为1∶2,根据Q=I 2Rt ∝R ,所以cd 上产生的电热应该是回路中产生的全部电热的2/3。

又根据已知得ab的初速度为v 1=I/m ,因此有:2/,,2,1m F a BLI F r r E I BLv E m ==+== ,解得rm I L B a m 22232=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考专题:电磁感应中的动力学和能量综合问题一.选择题。

(本题共6小题,每小题6分,共36分。

1—3为单选题,4—6为多选题)1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中.ab 棒以水平初速度v 0向右运动,下列说法正确的是( ) A.ab 棒做匀减速运动 B.回路中电流均匀减小 C.a 点电势比b 点电势低 D.ab 棒受到水平向左的安培力2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。

已知在t=0到t=t 1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。

设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( )3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动.t =0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v ­t 图象中,可能正确描述上述过程的是( )A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 kg 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,则( )班级 姓名 出题者 徐利兵 审题者 得分密封线图1A.金属棒刚开始运动时的加速度大小为3 m/s2B.金属棒刚开始运动时的加速度大小为4 m/s2C.金属棒稳定下滑时的速度大小为9.6 m/sD.金属棒稳定下滑时的速度大小为4.8 m/s5.如图甲所示,在一个倾角为θ的绝缘斜面上有一“U”形轨道abcd,轨道宽度为L,在轨道最底端接有一个定值电阻R,在轨道中的虚线矩形区域有垂直于斜面向下的匀强磁场B.现让一根长为L、质量为m、电阻也为R的导体棒PQ从轨道顶端由静止释放,从导体棒开始运动到恰好到达轨道底端的过程中其机械能E和位移x间的关系如图乙所示,图中a、b、c均为直线段.若重力加速度g及图象中E1、E2、x1、x2均为已知量,则下列说法正确的是( ) A.导体棒切割运动时P点比Q点电势高B.图象乙中的a和c是平行的C.导体棒在磁场中做匀变速直线运动D.可以求出导体棒切割运动时回路中产生的焦耳热6.如图所示,有两根平行光滑导轨EF、GH,导轨间距离为L,与水平面成θ角,电阻不计,其上端接有定值电阻R.导轨间加有一磁感应强度为B的匀强磁场,磁场方向垂直导轨平面向上.m、p、n、q是导轨上的四个位置,mp与nq平行,且与导轨垂直,mp与nq的间距为2L.电阻为R、长为L、质量为m的导体棒从mp处由静止开始运动,导体棒到达nq处恰好能匀速运动.已知重力加速度为g,下列说法正确的是( )A.流过定值电阻R的电流方向为G→EB.导体棒在nq处的速度大小为2mgRsin θB 2L2C.导体棒在nq处的热功率为2m2g2Rsin θB2L2D.导体棒从mp运动到nq,通过定值电阻的电荷量为BL2R二.计算题(本题共3小题)7.(16分)如图2所示,两根相距L =1 m 的足够长的光滑金属导轨,一组导轨水平,另一组导轨与水平面成37°角,拐角处连接一阻值R =1 Ω的电阻.质量均为m =2 kg 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,导轨电阻不计,两杆的电阻均为R =1 Ω.整个装置处于磁感应强度大小B =1 T 、方向垂直于导轨平面的匀强磁场中.当ab 杆在平行于水平导轨的拉力作用下沿导轨向右匀速运动时,cd 杆静止.g =10m/s 2,sin 37°=0.6,cos 37°=0.8,求:(1)水平拉力的功率;(2)现让cd 杆静止,求撤去拉力后ab 杆产生的焦耳热.图28.(16分)如图3甲所示,两根足够长平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角为α,金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m.导轨处于匀强磁场中,磁场的方向垂直于导轨平面向上,磁感应强度大小为B.金属导轨的上端与开关S 、定值电阻R 1和电阻箱R 2相连.不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g.现在闭合开关S ,将金属棒由静止释放.图3(1)判断金属棒ab 中电流的方向;(2)若电阻箱R 2接入电路的阻值为0,当金属棒下降高度为h 时,速度为v ,求此过程中定值电阻上产生的焦耳热Q ;班级 姓名 出题者 徐利兵 审题者 得分密 封线9.(24分)如图4所示,两平行光滑金属导轨倾斜放置且固定,两导轨间距为L,与水平面间的夹角为θ,导轨下端有垂直于轨道的挡板,上端连接一个阻值R=2r的电阻,整个装置处在磁感应强度为B、方向垂直导轨向上的匀强磁场中,两根相同的金属棒ab、cd放在导轨下端,其中棒ab靠在挡板上,棒cd在沿导轨平面向上的拉力作用下,由静止开始沿导轨向上做加速度为a的匀加速运动.已知每根金属棒质量为m、电阻为r,导轨电阻不计,棒与导轨始终接触良好.求:(1)经多长时间棒ab对挡板的压力变为零;(2)棒ab对挡板压力为零时,电阻R的电功率;(3)棒ab运动前,拉力F随时间t的变化关系.图4选择题答案题号 1 2 3 4 5 6答案高考专题:电磁感应中的动力学和能量综合问题参考答案1.答案 D解析:棒具有向右的初速度,根据右手定则,产生b指向a的电流,则a点的电势比b点的电势高.根据左手定则,安培力向左,ab棒做减速运动,因为电动势减小,电流减小,则安培力减小,根据牛顿第二定律,加速度减小,做加速度减小的减速运动,由于速度不是均匀减小,则电流不是均匀减小,故A、B、C错误,D正确.2.答案 A3.答案 D解析:导线框刚进入磁场时速度设为v0,此时产生的感应电动势E=BLv,感应电流I=ER=BLvR,线框受到的安培力F=BLI=B2L2vR.由牛顿第二定律F=ma知,B2L2vR=ma,由楞次定律知线框开始减速,随v减小,其加速度a减小,故进入磁场时做加速度减小的减速运动.当线框全部进入磁场开始做匀速运动,在出磁场的过程中,仍做加速度减小的减速运动,故只有D选项正确.4.答案BD解析: 金属棒刚开始运动时初速度为零,不受安培力作用,由牛顿第二定律得mgsin θ-μmgcos θ=ma,代入数据得a=4 m/s2,故选项A错误,B正确;设金属棒稳定下滑时速度为v,感应电动势为E,回路中的电流为I,由平衡条件得mgsin θ=BIL+μmgcos θ,由闭合电路欧姆定律得I=E-Ur,由法拉第电磁感应定律得E=BLv,联立解得v=4.8 m/s,故选项C错误,D正确.5.答案 BD解析:导体棒进入磁场后做切割运动,由右手定则知电流由P向Q,故Q点的电势高,即A项错误;导体棒进入磁场前沿导轨下滑克服摩擦力做功,机械能线性减小,进入磁场后切割磁感线,回路中有安培力,因图线b仍是线性关系,故安培力为恒力;若有加速度,则安培力会变,故导体棒在磁场中是匀速的,即C项错误;出场后导体棒的受力情况与进入磁场前的受力情况相同,故图线a和c是平行的,即B项正确;由(mgsin θ-f)x1=12mv2,mgsin θ=f+F,F=B2L2v2R,(f+F)(x2-x1)=E1-E2,Q=F(x2-x1)可求焦耳热,即D项正确.6.答案 BD解析:导体棒下滑切割磁感线,由右手定则可判定m点电势高,流过定值电阻R的电流方向为E→G,选项A错误;因导体棒到达nq处匀速下滑,所以mgsin θ=BIL =B2L2vR+R,联立得v=2mgRsin θB2L2,选项B正确;导体棒的热功率P=I2R=⎝⎛⎭⎪⎫BLvR+R2R=m2g2Rsin2θB2L2,选项C错误;导体棒从mp运动到nq,通过定值电阻的电荷量q=It =BL2R,选项D正确.7.答案(1)864 W (2)864 J解析(1)cd杆静止,由平衡条件可得mgsin θ=BIL,解得I=12 A由闭合电路欧姆定律得2I=BLvR+R2,得v=36 m/s水平拉力F=2BIL=24 N,水平拉力的功率P=Fv=864 W(2)撤去外力后ab杆在安培力作用下做减速运动,安培力做负功,先将棒的动能转化为电能,再通过电流做功将电能转化为整个电路产生的焦耳热,即焦耳热等于杆的动能的减小量,有Q=ΔEk=12mv2=1 296 J而Q=I′2·32R·t,ab杆产生的焦耳热Q′=I′2·R·t,所以Q′=23Q=864 J.8.答案 (1)b →a (2)mgh -12mv 2 (3)2.0 Ω 0.1 kg解析 (1)由右手定则可知,金属棒ab 中的电流方向为由b 到a.(2)由能量守恒定律知,金属棒减少的重力势能等于增加的动能和电路中产生的焦耳热,即 mgh =12mv 2+Q则Q =mgh -12mv 2.9.答案 (1)5mgrsin θ2B 2L 2a (2)m 2g 2rsin 2θ2B 2L 2(3)F =m(gsin θ+a)+3B 2L 2a5rt解析 (1)棒ab 对挡板的压力为零时,受力分析可得 BI ab L =mgsin θ设经时间t 0棒ab 对挡板的压力为零,棒cd 产生的电动势为E ,则 E =BLat 0 I =E r +R 外R 外=Rr R +r =23r I ab =R R +rI 解得t 0=5mgrsin θ2B 2L 2a(2)棒ab 对挡板压力为零时,cd 两端电压为 U cd =E -Ir 解得U cd =mgrsin θBL此时电阻R 的电功率为 P =U 2cd R解得P =m 2g 2rsin 2θ2B 2L 2(3)对cd 棒,由牛顿第二定律得 F -BI ′L -mgsin θ=ma I ′=E ′r +R 外E ′=BLat解得F =m(gsin θ+a)+3B 2L 2a5r t.。

相关文档
最新文档