2019新人教版八年级下册数学期末试卷(常考题型)

合集下载

最新人教版八年级下册数学《期末考试试题》(含答案)

最新人教版八年级下册数学《期末考试试题》(含答案)

人教版八年级下册期末考试数 学 试 卷一、单项选择题(将题中唯一正确答案的序号填在题后的括号内.每小题2分,共12分) 1.要使25x +有意义,x 必须满足( ) A. 52x ≥- B. 52x ≤- C. x 为任何实数 D. x 为非负数 2.下列二次根式①12,②22,③23,④27,能与3合并的是( ) A. ①和② B. ②和③ C. ①和④ D. ③和④ 3.如果p(2,m),A (1,1),B (4,0)三点在同一条直线,那么m 的值为( )A. 2B. -23C. 23D. 14.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A. B. C. D. 5.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④ 6.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()+的值为( )A. 13B. 19C. 25D. 169二、填空题(每小题3分,共24分)7.化简:22738⨯= . 8.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的表示的数为_____.9.如图,函数2y x =和4y ax +=的图象交于点()3A m ,,则不等式24x ax +<的解集是_____.10.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).11.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.12.一次函数y kx b =+(k ,b 为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.13.如图,菱形ABCD 中,AE 垂直平分BC ,垂足为E ,2AB cm =.那么菱形ABCD 的对角线BD 的长是_____cm .14.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得60B ∠︒=,接着活动学具成为图2所示正方形,并测得正方形的对角线40AC cm =,则图1中对角线AC 的长为_____cm .三、解答题(每题5分,共20分)15.化简:1(312248)233-+÷. 16.计算:2(21)(21)(32)+-+-.17.已知23x =-,23y +=,求代数式22x y -的值.18.已知,正比例函数1y k x=的图象与一次函数23y k x -=的图象交于点6(3)P -,. (1)求1k ,2k 的值; (2)求一次函数23y k x -=的图象与3y =,3x =围成的三角形的面积.四、解答题(每小题7分,共28分)19.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.操作发现:小颖在图 1 中画出△ABC ,其顶点 A ,B ,C 都是格点,同时构造正方形 BDEF , 使它的顶点都在格点上,且它的边 DE ,EF 分别经过点 C ,A ,她借助此图求出了△ABC 的面积.(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB = ,BC = ,AC= ;△ABC 的面积为 . 解决问题:(2)已知△ABC 中,AB 10,BC =2 5AC =5 2,请你根据小颖的思路,在图 2的正方形网格中画出△ABC,并直接写出△ABC 的面积.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.21.如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.22.如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.证=.明:FD AB五、解答题(每小题8分,共16分)23.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个; (2)求出甲厂印刷费y 甲与证书数量x 的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.24. 如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE=DF ,∠A=∠D,AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.六、解答题(每小题10分,共20分)25.如图,直线6y kx +=分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(80)-,,点A 的坐标为(03),.(1)求k 的值;(2)若点()P x y ,是第二象限内的直线上的一个动点,当点P 运动过程中,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,OPA ∆的面积为278,并说明理由.26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么?运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.答案与解析一、单项选择题(将题中唯一正确答案的序号填在题后的括号内.每小题2分,共12分)1.x必须满足()A.52x≥- B.52x≤- C. x为任何实数 D. x为非负数【答案】A【解析】【分析】根据二次根式有意义的条件可得2x+5≥0,再解不等式即可.2x+5≥0,解得:52x≥-.故选A.【点睛】本题考查二次根式有意义条件,关键是掌握二次根式中的被开方数是非负数.2.合并的是()A. ①和②B. ②和③C. ①和④D. ③和④【答案】C【解析】【分析】先化简各个二次根式,根据只有同类二次根式才能合并即可得出结果.,是同类二次根式,故选:C.【点睛】本题考查了二次根式的化简和同类二次根式的概念,属于基础题,熟练掌握相关知识是解题的关键.3.如果p(2,m),A(1,1),B(4,0)三点在同一条直线,那么m的值为()A. 2B. -23C.23D. 1【答案】C【解析】【分析】先设直线的解析式为y=kx+b (k≠0),再把A (1,1),B (4,0)代入求出k 的值,进而得出直线AB 的解析式,把点P (2,m )代入求出m 的值即可.【详解】解:设直线的解析式为y=kx+b (k≠0),∵A(1,1),B (4,0),∴104k b k b =+⎧⎨=+⎩,解得1343k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为y=13-x+43, ∵P(2,m )在直线上,∴m=(13-)×2+43=23. 故选C .“点睛”本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( ) A. B. C. D.【答案】D【解析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D5.如图,点 E ,F 是▱ABCD 对角线上两点,在条件①DE =BF ;②∠ADE =∠CBF ; ③AF =CE ;④∠AEB =∠CFD 中,添加一个条件,使四边形 DEBF 是平行四边形,可添加 的条件是( )A. ①②③B. ①②④C. ①③④D. ②③④【答案】D【解析】 分析:分别添加条件①②③④,根据平行四边形的判定方法判定即可.详解:添加条件①,不能得到四边形DEBF 是平行四边形,故①错误;添加条件②∠ADE =∠CBF .∵ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠DAC =∠BCA ,∴△ADE ≌△CBF ,∴DE =BF ,∠DEA =∠BFC ,∴∠DEF =∠BFE ,∴DE ∥BF ,∴DEBF 是平行四边形,故②正确;添加条件③AF =CE .易得AD =BC ,∠DAC =∠BCA ,∴△ADF ≌△CBE ,∴DF =BE ,∠DFE =∠BEF ,∴DF ∥BE ,∴DEBF 是平行四边形,故③正确;添加条件④∠AEB =∠CFD .∵ABCD 是平行四边形,DC =AB ,DC ∥AB ,∴∠DCF =∠BAE .∵∠AEB =∠CFD ,∴△ABE ≌△CDF ,∴DF =BE .∵∠AEB =∠CFD ,∴∠DFE =∠BEF ,∴DF∥BE ,∴DEBF 是平行四边形,故④正确.综上所述:可添加的条件是:②③④.故选D .点睛:本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.6.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a ,较长直角边为b ,那么2a b ()+的值为( )A. 13B. 19C. 25D. 169【答案】C【解析】 试题分析:根据题意得:222c a b =+=13,4×12ab=13﹣1=12,即2ab=12,则2()a b +=222a ab b ++=13+12=25,故选C .考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.二、填空题(每小题3分,共24分)7.化简:22738⨯= . 【答案】32. 【解析】试题分析:原式=227933842⨯==. 考点:二次根式的乘除法.8.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的表示的数为_____.101【解析】 【分析】首先根据勾股定理计算出AC 的长,进而得到AM 的长,再根据A 点表示1-,可得M 点表示的数.【详解】解:由勾股定理得:22223110AC AB CB =++=则10AM =, A Q 点表示1-,M ∴101,101.【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.9.如图,函数2y x =和4y ax +=的图象交于点()3A m ,,则不等式24x ax +<的解集是_____.【答案】3x <【解析】【分析】观察图象,写出直线2y x =在直线4y ax =+的下方所对应的自变量的范围即可.【详解】解:观察图象得:当3x <时,24x ax <+,即不等式24x ax <+的解集为3x <.故答案为:3x <.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的解集.10.已知函数y=3x 的图象经过点A(-1,y 1),点B(-2,y 2),则y 1____y 2(填“>”或“<”或“=”).【答案】>【解析】【分析】分别把点A (-1,y 1),点B (-2,y 2)的坐标代入函数y =3x ,求出点y 1,y 2的值,并比较出其大小即可.【详解】∵点A (-1,y 1),点B (-2,y 2)是函数y =3x 的图象上的点,∴y 1=-3,y 2=-6,∵-3>-6,∴y 1>y 2.11.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树树梢飞到另一颗树的树梢,问小鸟至少飞行_____米.【答案】10米【解析】【分析】根据实际问题抽象出数学图形,作垂线构造直角三角形,利用勾股定理求出结果.【详解】解:如图,设大树高为AB=10米,小树高为CD=4米,过C 点作CE ⊥AB 于E ,则EBDC 是矩形,连接AC ,∴EB=4m ,EC=8m ,AE=AB-EB=10-4=6米,在Rt △AEC 中,AC=22AE EC +=10米故答案为10.【点睛】本题考查勾股定理的应用,即222a b c +=.12.一次函数y kx b =+(k ,b为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.【答案】x =3【解析】【分析】直接根据图象找到y =kx +b =4的自变量的值即可.【详解】观察图象知道一次函数y =kx +b (k 、b 为常数,且k≠0)的图象经过点(3,4),所以关于x 的方程kx +b =4的解为x =3,故答案为x =3.【点睛】本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键. 13.如图,菱形ABCD 中,AE 垂直平分BC ,垂足为E ,2AB cm =.那么菱形ABCD 的对角线BD 的长是_____cm .【答案】23 【解析】 【分析】 由AE 垂直平分BC 可得AC AB =,再由菱形的性质得出OA ,根据勾股定理求出OB ,即可得出BD .【详解】解:Q AE 垂直平分BC ,AB =2cm ,∴AB AC ==2cm ,在菱形ABCD 中,12OA AC =,12OB BD =,AC BD ⊥, 1OA ∴=, 22213OB ∴=-=,223BD OB ∴==;故答案为:23.【点睛】本题考查了垂直平分线的性质、菱形的性质、勾股定理的运用;熟练掌握菱形的性质,运用勾股定理求出OB 是解决问题的关键.14.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得60B ∠︒=,接着活动学具成为图2所示正方形,并测得正方形的对角线40AC cm =,则图1中对角线AC 的长为_____cm .【答案】202【解析】【分析】如图1,2中,连接AC .在图2中,利用勾股定理求出BC ,在图1中,只要证明ABC ∆是等边三角形即可解决问题.【详解】解:如图1,2中,连接AC .在图2中,Q 四边形ABCD 是正方形,AB BC ∴=,90B ∠=︒,∵40AC cm =,202AB BC ∴==cm ,在图1中,四边形ABCD 是菱形,BA BC =, 60B ∠=︒Q ,ABC ∆∴是等边三角形,202AC BC ∴==cm , 故答案为:202 【点睛】本题考查菱形的性质、正方形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(每题5分,共20分)15.化简:1(312248)233÷. 【答案】143. 【解析】试题分析:先进行二次根式的化简,然后进行二次根式的除法运算. 试题解析:原式=(3333÷3 =3﹣13+2 =143.16.计算:21)2)+.【答案】8-【解析】【分析】首先利用平方差公式和完全平方公式计算,然后合并同类二次根式即可.【详解】解:原式=21(34)-+-=17+-=8-【点睛】本题考查了二次根式的混合运算,正确理解平方差公式和完全平方公式的结构是关键.17.已知2x =,2y +=22x y -的值.【答案】-【解析】【分析】先将22x y -分解因式,然后将2x =-2y =代入求值即可.【详解】解:∵22()()x y x y x y -=+-将2x =2y +=原式(22(22=+⨯4(=⨯-=-【点睛】本题考查了因式分解和二次根式混合运算,熟练掌握因式分解和运算法则是解题的关键.18.已知,正比例函数1y k x =的图象与一次函数23y k x -=的图象交于点6(3)P -,. (1)求1k ,2k 的值;(2)求一次函数23y k x -=的图象与3y =,3x =围成的三角形的面积.【答案】(1)12k =-,21k =-;(2)40.5【解析】【分析】(1)把交点P 的坐标代入两个函数解析式计算即可得解;(2)设直线3y =与3x =交于点C ,则(3,3)C ,一次函数3y x =--与3x =,3y =分别交于点A 、B ,求出A 、B 两点的坐标,再根据三角形的面积公式列式计算即可.【详解】解:(1)Q 正比例函数1y k x =的图象与一次函数23y k x =-的图象交于点(3,6)P -, 136k ∴=-,2336k -=-,解得12k =-,21k =-;(2)如图,设直线3y =与3x =交于点C ,则(3,3)C .一次函数的解析式为3y x =--.设直线3y x =--与3x =,3y =分别交于点A 、B ,当3x =时,336y =--=-,(3,6)A ∴-.当3y =时,33x =--,解得6x =-,(6,3)B ∴-. 11·9940.522ABC S BC AC ∆∴==⨯⨯=.【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.四、解答题(每小题7分,共28分)19.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图 1,图 2 都是 8×8 的正方形网格,每个小正方形的边长均为 1,每个小正方形的顶点称为格点.操作发现:小颖在图 1 中画出△ABC ,其顶点 A ,B ,C 都是格点,同时构造正方形 BDEF , 使它的顶点都在格点上,且它的边 DE ,EF 分别经过点 C ,A ,她借助此图求出了△ABC 的面积.(1)在图 1 中,小颖所画的△ABC 的三边长分别是 AB = ,BC = ,AC= ;△ABC 的面积为 . 解决问题:(2)已知△ABC 中,AB 10,BC =2 5AC =5 2,请你根据小颖的思路,在图 2的正方形网格中画出△ABC ,并直接写出△ABC 的面积.【答案】(1)1317,10,2;(2)图见解析,5 【解析】【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【详解】解:(1)AB 223+4=5,BC 221+417,AC 221+310, △ABC 的面积为:4×4﹣12×3×4-12×1×4﹣12×3×1= 132, 故答案为5; 1710132;(2)△ABC 的面积:7×2﹣12×3×1﹣12×4×2﹣12×7×1=5.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员.【答案】(1)a=7,b=7.5,c=4.2;(2)派乙队员参赛,理由见解析【解析】【分析】(1)根据加权平均数的计算公式,中位数的确定方法及方差的计算公式即可得到a、b、c的值;(2)根据平均数、中位数、众数、方差依次进行分析即可得到答案.【详解】(1)5162748291712421a⨯+⨯+⨯+⨯+⨯==++++,将乙射击的环数重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击的中位数787.52b +==, ∵乙射击的次数是10次,∴2222222(37)(47)(67)2(77)3(87)(97)(107)c ⎡⎤=-+-+-+⨯-+⨯-+-+-⎣⎦=4.2;(2)从平均成绩看,甲、乙的成绩相等,都是7环;从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多,而乙射中8环的次数最多;从方差看,甲的成绩比乙稳定,综合以上各因素,若派一名同学参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大.【点睛】此题考查数据的统计计算,根据方程作出决策,掌握加权平均数的计算公式,中位数的计算公式,方差的计算公式是解题的关键.21.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.【答案】(1)(0,3);(2)112y x =-. 【解析】【分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222(13)OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.22.如图,在平行四边形ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 的延长线于点F .证明:FD AB =.【答案】见解析【解析】【分析】由在平行四边形ABCD 中,E 是AD 边上的中点,易证得()ABE DFE AAS ∆≅∆,从而证得FD AB =.【详解】证明:Q 四边形ABCD 是平行四边形,//AB CD ∴,则AB ∥CF ,ABE F ∴∠=∠,E Q 是AD 边上的中点,AE DE ∴=,在ABE ∆和DFE ∆中,ABE F AEB DEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE DFE AAS ∴∆≅∆,FD AB ∴=.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定是解题的关键.五、解答题(每小题8分,共16分)23.某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲乙两厂的印刷费用y (千元)与证书数量x (千个)的函数关系图象分别如图中甲、乙所示.(1)填空:甲厂的制版费是________千元,当x≤2(千个)时乙厂证书印刷单价是________元/个; (2)求出甲厂的印刷费y 甲与证书数量x 的函数关系式,并求出其证书印刷单价;(3)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元.【答案】(1)1;1.5(2)y=0.5x+1(3)选择乙厂节省费用,节省费用500元.【解析】【分析】(1)根据纵轴图象判断即可,用2到6千个时费用除以证件个数计算即可得解;(2)设甲厂的印刷费y 甲与证书数量x 的函数关系式为y=kx+b ,利用待定系数法解答即可;(3)用待定系数法求出乙厂x >2时的函数解析式,再求出x=8时的函数值,再求出甲厂印制1个的费用,然后求出8千个的费用,比较即可得解.【详解】解:(1)(1)由图可知,甲厂的制版费为1千元; 当x≤2(千个)时,乙厂证书印刷单价是3÷2=1.5元/个;故答案为1;1.5;(2)解:设甲厂的印刷费y 甲与证书数量x 的函数关系式为y=kx+b ,可得: 146b k b =⎧⎨=+⎩,解得: 0.51k b =⎧⎨=⎩, 所以甲厂的印刷费y 甲与证书数量x 的函数关系式为:y=0.5x+1;(3)解:设乙厂x >2时的函数解析式为y=k 2x+b 2 ,则 22222364k b k b +=⎧⎨+=⎩,解得 220.252.5k b =⎧⎨=⎩, ∴y=0.25x+2.5,x=8时,y=0.25×8+2.5=4.5千元,甲厂印制1个证件的费用为:(4﹣1)÷6=0.5元, 印制8千个的费用为0.5×8+1=4+1=5千元, 5﹣4.5=0.5千元=500元,所以,选择乙厂节省费用,节省费用500元.【点睛】本题主要考查了一次函数和一元一次不等式的实际应用,是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.24. 如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AD 的两侧,且AE=DF ,∠A=∠D,AB=DC .(1)求证:四边形BFCE 是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE 是菱形.【答案】(1)证明见试题解析;(2)4.【解析】【详解】试题分析:(1)由AE=DF ,∠A=∠D ,AB=DC ,易证得△AEC ≌△DFB ,即可得BF=EC ,∠ACE=∠DBF ,且EC ∥BF ,即可判定四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE=CE ,根据菱形的性质即可得到结果.试题解析:(1)∵AB=DC ,∴AC=DB ,在△AEC 和△DFB 中{AC DBA D AE DF=∠=∠=,∴△AEC ≌△DFB (SAS ),∴BF=EC ,∠ACE=∠DBF ,∴EC ∥BF ,∴四边形BFCE 是平行四边形;(2)当四边形BFCE 是菱形时,BE=CE ,∵AD=10,DC=3,AB=CD=3,∴BC=10﹣3﹣3=4,∵∠EBD=60°,∴BE=BC=4,∴当BE=4时,四边形BFCE 是菱形,故答案为4.【考点】平行四边形的判定;菱形的判定.六、解答题(每小题10分,共20分)25.如图,直线6y kx +=分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(80)-,,点A 的坐标为(03),.(1)求k 的值;(2)若点()P x y ,是第二象限内的直线上的一个动点,当点P 运动过程中,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,OPA ∆的面积为278,并说明理由.【答案】(1)34;(2)3(80)2=--<<S x x ;(3)P 点坐标为969(,)416-时,OPA ∆的面积为278,理由见解析【解析】【分析】 (1)把E 的坐标为(−8,0)代入y=kx +6中即可求出k 的值;(2)如图,OA 的长度可以根据A 的坐标求出,OA 作为△OP A 的底,P 点横坐标的绝对值作为高的长度,那么根据三角形的面积公式就可以求出△OP A 的面积S 与x 的函数关系式,自变量x 的取值范围可以利用点P (x ,y )是第二象限内的直线上的一个动点来确定;(3)可以利用(2)的结果求出P 的横坐标,然后就可以求出P 的纵坐标.【详解】解:(1)Q 直线6y kx =+分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为(8,0)-, 086k ∴=-+,34k ∴=; (2)如图,过P 作PH OA ⊥于H ,Q 点3(,6)4P x x +是第二象限内的直线上的一个动点,则80x -<<, PH x x ∴==-,∵点A 的坐标为(0,3),∴OA =3,∴1133()(80)222=⋅⋅=⨯⨯-=--<<S OA PH x x x ; (3)当P 点坐标为969(,)416-时,OPA ∆的面积为278,理由如下: 当278S =时,即32728-=x , 解得:94x =-, 6916y ∴=. P ∴坐标为9(4-,69)16. 【点睛】此题把一次函数与三角形的面积相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目.解答此题的关键是根据一次函数的特点,分别求出已知各点的坐标再计算.26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么?运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.【答案】(1)见解析;(2)GE=BE+GD 成立,理由见解析;(3)685【解析】【分析】 (1)利用已知条件,可证出△BCE ≌△DCF (SAS ),即可得到CE=CF ;(2)借助(1)的结论得出∠BCE =∠DCF ,再通过角的计算得出∠GCF =∠GCE ,由SAS 可得△ECG ≌△FCG ,则EG=GF ,从而得出GE=DF+GD=BE+GD ;(3)过C 作CG ⊥AD ,交AD 延长线于G ,先证四边形ABCG 是正方形(有一组邻边相等的矩形是正方形),再设DE =x ,利用(1)、(2)的结论,在Rt △AED 中利用勾股定理构造方程即可求出DE .【详解】(1)证明:如图①,在正方形ABCD 中,BC=CD ,∠B =∠ADC =90°,∴∠CDF=90°,即∠B =∠CDF =90°,在△BCE 和△DCF 中,BC DC B CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),∴CE=CF ;(2)解:如图①,GE=BE+GD 成立,理由如下:由(1)得△BCE ≌△DCF ,∴∠BCE=∠DCF ,∴∠ECD +∠ECB=∠ECD +∠FCD ,即∠ECF =∠BCD =90°,又∵∠GCE =45°,∴∠GCF =∠ECF −∠ECG =45°,则∠GCF=∠GCE ,在△GEC 和△GFC 中,CE CF GCE GCF GC GC =⎧⎪∠=∠⎨⎪=⎩,∴△GEC ≌△GFC (SAS ),∴EG=GF ,∴GE=DF+GD=BE+GD ;(3)解:如图②,过C 作CG ⊥AD 于G ,∴∠CGA=90°,在四边形ABCD 中,AD ∥BC ,∠A =∠B =90°,∴四边形ABCG 为矩形,又∵AB=BC ,∴四边形ABCG 为正方形,∴AG =BC=AB =16,∵∠DCE =45°,由(1)和(2)的结论可得:ED=BE+DG ,设DE=x ,∵4BE =,∴AE =12,DG=x −4,∴AD =AG −DG =20−x在Rt △AED 中,由勾股定理得:DE 2=AD 2+AE 2,即x 2=(20−x )2+122 解得:685=x , 即685=DE . 【点睛】本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.。

人教版初中数学八年级下册期末测试题(2019-2020学年天津市滨海新区

人教版初中数学八年级下册期末测试题(2019-2020学年天津市滨海新区

2019-2020学年天津市滨海新区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若是二次根式,则x的取值范围是()A.x≥1B.x≤1C.x<1D.x≥02.(3分)下列各式中,是最简二次根式的是()A.B.C.D.3.(3分)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,2,3B.2,3,4C.3,4,5D.4,5,64.(3分)下列各式中,y不是x的函数的是()A.y=x B.|y|=x C.y=2x+1D.y=x25.(3分)如图,在▱ABCD中,若∠B=70°,则∠D=()A.35°B.70°C.110°D.130°6.(3分)在平面直角坐标系中,下列各点在直线y=2x﹣1上的是()A.P(﹣2.5,﹣4)B.Q(1,3)C.M(2.5,4)D.N(﹣1,0)7.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC8.(3分)由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m9.(3分)下列命题中,为真命题的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.一组邻边相等的菱形是正方形D.对角线相等的菱形是正方形10.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<011.(3分)如图所示,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,若BC =6,则OE的长为()A.2B.2.5C.3D.412.(3分)如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)之间对应关系.根据图象:下列说法错误的是()A.食堂离小明家0.6kmB.小明在图书馆读报用了30minC.食堂离图书馆0.2kmD.小明从图书馆回家平均速度是0.02km/min二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)化简:=,=,=.14.(3分)一次函数y=﹣x+5是由正比例函数向平移个单位得到的.15.(3分)如图,利用函数图象回答下列问题:方程组的解为.16.(3分)当x=﹣1时,代数式x2+2x+1的值是.17.(3分)如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.则AF=;CF=;DE =.18.(3分)在如图所示的7×7网格中,每个小正方形的边长均为1,点A、B均落在格点上.(Ⅰ)AB的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为边的正方形ABCD,并简要说明画图的方法(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(Ⅰ);(Ⅱ).20.(8分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.21.(10分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.22.(10分)已知,矩形ABCD的对角线AC、BD相交于点O.(Ⅰ)如图①,若AB=6,BC=8,则BD=,OD=;(Ⅱ)如图②,DE∥AC,CE∥BD,求证:四边形OCED是菱形.23.(10分)已知正比例函数y=kx(k≠0)的图象经过点(3,﹣6).(Ⅰ)求这个函数的解析式;(Ⅱ)画出这个函数的图象;(Ⅲ)图象上有两点(﹣1,y1),(2,y2),比较y1与y2的大小.24.(10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.516…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.25.(10分)如图,在平面直角坐标系中,O为原点,已知直线y=﹣x+4与x轴交于点A,与y轴交于点B.(Ⅰ)点A的坐标为,点B的坐标为;(Ⅱ)如图①,若点M(x,y)在线段AB上运动(不与端点A、B重合),连接OM,设△AOM的面积为S,写出S关于x的函数解析式,并写出自变量x的取值范围;(Ⅲ)如图②,若四边形OADC是菱形,求菱形对角线OD的长.2019-2020学年天津市滨海新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若是二次根式,则x的取值范围是()A.x≥1B.x≤1C.x<1D.x≥0【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,1﹣x≥0,解得x≤1.故选:B.【点评】本题考查二次根式.解题的关键是掌握二次根式的被开方数是非负数.2.(3分)下列各式中,是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A.,故本选项不合题意;B.,故本选项不合题意;C.是最简二次根式,故本选项符合题意;D.,故本选项不合题意.故选:C.【点评】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.3.(3分)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,2,3B.2,3,4C.3,4,5D.4,5,6【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、22+22≠32,不能构成直角三角形,故此选项错误;B、22+32≠42,不能构成直角三角形,故此选项错误;C、32+42=52,能构成直角三角形,故此选项正确;D、42+52≠62,不能构成直角三角形,故此选项错误.故选:C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.(3分)下列各式中,y不是x的函数的是()A.y=x B.|y|=x C.y=2x+1D.y=x2【分析】根据对于x的每一个确定的值,y是否有唯一的值与其对应进行判断.【解答】解:A、y=x,y是x的函数,故此选项不符合题意;B、|y|=x,对于x的每一个确定的值,y不是有唯一的值与其对应,∴y不是x的函数,故此选项符合题意;C、y=2x+1,y是x的函数,故此选项不符合题意;D、y=x2,y是x的函数,故此选项不符合题意;故选:B.【点评】本题考查了函数的定义.解题的关键是掌握函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数.5.(3分)如图,在▱ABCD中,若∠B=70°,则∠D=()A.35°B.70°C.110°D.130°【分析】根据平行四边形的对角相等即可得出∠D的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=70°,故选:B.【点评】此题主要考查了平行四边形的性质,熟练掌握平行四边形的对角相等是解题关键.6.(3分)在平面直角坐标系中,下列各点在直线y=2x﹣1上的是()A.P(﹣2.5,﹣4)B.Q(1,3)C.M(2.5,4)D.N(﹣1,0)【分析】分别代入各选项中点的横坐标求出y值,再与点的纵坐标比较后即可得出结论.【解答】解:A、当x=﹣2.5时,y=2x﹣1=﹣6,∴点P(﹣2.5,﹣4)不在直线y=2x﹣1上;B、当x=1时,y=2x﹣1=1,∴点Q(1,3)不在直线y=2x﹣1上;C、当x=2.5时,y=2x﹣1=4,∴点M(2.5,4)在直线y=2x﹣1上;D、当x=﹣1时,y=2x﹣1=﹣3,∴点N(﹣1,0)不在直线y=2x﹣1上.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.(3分)由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.【点评】熟练运用勾股定理.熟记6,8,10是勾股数,简便计算.9.(3分)下列命题中,为真命题的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.一组邻边相等的菱形是正方形D.对角线相等的菱形是正方形【分析】根据矩形、菱形、正方形的判定定理判断即可.【解答】解:A、对角线互相垂直的平行四边形是菱形,本选项说法是假命题;B、对角线相等的平行四边形是矩形,本选项说法是假命题;C、一组邻边相等的矩形是正方形,本选项说法是假命题;D、对角线相等的菱形是正方形,本选项说法是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【分析】根据一次函数的性质及一次函数图象上点的坐标特点,对各选项进行逐一分析即可.【解答】解:A.由于直线y=﹣2x+1与直线y=2x+1的k值不相等,所以它们不平行,故本选项错误;B.函数y=﹣2x+1中,k=﹣2<0,y随x的增大而减小,故本选项错误;C.函数y=﹣2x+1中,k=﹣2<0,b=1>0,此函数的图象经过一、二、四象限,故本选项错误;D.函数y=﹣2x+1可化为x=,依据>,可得y<0,故本选项正确;故选:D.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方.11.(3分)如图所示,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,若BC =6,则OE的长为()A.2B.2.5C.3D.4【分析】先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=6,∴OE=BC=3.故选:C.【点评】本题考查了平行四边形的性质:对角线互相平分这一性质和三角形的中位线定理.12.(3分)如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)之间对应关系.根据图象:下列说法错误的是()A.食堂离小明家0.6kmB.小明在图书馆读报用了30minC.食堂离图书馆0.2kmD.小明从图书馆回家平均速度是0.02km/min【分析】根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:A、食堂离小明家0.6km,正确,不符合题意;B、小明在图书馆读报用了58﹣28=30min,正确,不符合题意;C、食堂离图书馆0.8﹣0.6=0.2km,正确,不符合题意;D、小明从图书馆回家平均速度是km/min,错误,符合题意;故选:D.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)化简:=3,=3,=﹣3.【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:=3,=3,=﹣3.故答案为:3,3,﹣3.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.14.(3分)一次函数y=﹣x+5是由正比例函数y=﹣x向上平移5个单位得到的.【分析】根据平移法则上加下减可得出平移后的解析式.【解答】解:由题意得:一次函数y=﹣x+5的图象可由正比例函数y=﹣x的图象向上平移5个单位长度得到.故答案为:y=﹣x,上,5.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.15.(3分)如图,利用函数图象回答下列问题:方程组的解为.【分析】观察函数的图象y=2x与y=﹣x+3相交于点(1,2),从而求解;【解答】解:观察图象可知,x+y=3与y=2x相交于(1,2),可求出方程组的解为,故答案为:.【点评】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.16.(3分)当x=﹣1时,代数式x2+2x+1的值是3.【分析】利用完全平方公式得到x2+2x+1=(x+1)2,然后把x的值代入计算即可.【解答】解:∵x=﹣1,∴x2+2x+1=(x+1)2=(﹣1+1)2=3.故答案为3.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.17.(3分)如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.则AF=10;CF=4;DE=5.【分析】根据折叠的性质得AF=AD=10;根据矩形的性质得AD=CB=10,则CF=BC ﹣BF=4,设DE=x,则EF=x,EC=8﹣x,然后在Rt△ECF中根据勾股定理得到42+(8﹣x)2=x2,再解方程即可得到DE的长.【解答】解:根据折叠可得AF=AD=10,∵四边形ABCD是矩形,∴BC=AD=10,∴FC=10﹣6=4,设DE=x,则EF=x,EC=8﹣x,在Rt△ECF中,∵CE2+FC2=EF2,∴42+(8﹣x)2=x2,解得x=5.则DE=5.故答案为:10,4,5.【点评】本题考查了图形的折叠,矩形的性质和勾股定理,解题的关键是熟练掌握折叠的性质.18.(3分)在如图所示的7×7网格中,每个小正方形的边长均为1,点A、B均落在格点上.(Ⅰ)AB的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为边的正方形ABCD,并简要说明画图的方法(不要求证明).【分析】(Ⅰ)利用勾股定理计算即可.(Ⅱ)利用数形结合的思想解决问题即可.【解答】解:(Ⅰ)AB==.故答案为.(Ⅱ)如图,取格点C,D,依次连接AD,DC,CB,四边形ABCD即为所求.【点评】本题考查作图﹣复杂作图,勾股定理,正方形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(Ⅰ);(Ⅱ).【分析】(Ⅰ)先把二次根式化为最简二次根式,然后合并即可;(Ⅱ)利用平方差公式计算.【解答】解:(Ⅰ)原式=3﹣4=﹣;(Ⅱ)原式=(2)2﹣()2=18.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(8分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.【分析】根据平行四边形的性质:平行四边的对边相等,可得AB∥CD,AB=CD;根据一组对边平行且相等的四边形是平行四边形,可得AN=CM.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=CD,AM=AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.【点评】本题考查了平行四边形的判定与性质,根据条件选择适当的判定方法是解题关键.21.(10分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【分析】连接BD,根据已知分别求得△ABD的面积与△BDC的面积,即可求四边形ABCD【解答】解:连接BD,∵AB=3cm,AD=4cm,∠A=90°∴BD=5cm,S△ABD=×3×4=6cm2又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用,还涉及了三角形的面积计算.连接BD,是关键的一步.22.(10分)已知,矩形ABCD的对角线AC、BD相交于点O.(Ⅰ)如图①,若AB=6,BC=8,则BD=10,OD=5;(Ⅱ)如图②,DE∥AC,CE∥BD,求证:四边形OCED是菱形.【分析】(1)由矩形ABCD对角线AC、BD相交于点O,根据矩形的对角线相等,且互相平分,即可求得答案;(2)由矩形ABCD对角线AC、BD相交于点O,易证得OC=OD,又由DE∥AC,CE ∥BD,可证得四边形OCED是平行四边形,即可判定四边形OCED是菱形;【解答】(1)解:∵矩形ABCD对角线AC、BD相交于点O,∵AB=6,BC=8,由勾股定理得:AC=BD=10,∴OD=BD=5;故答案为:10,5;(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AB=CD,OA=OC,OB=OD,∴OC=OD,∴四边形OCED是菱形;【点评】此题考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质等知识.注意掌握矩形的对角线相等且互相平分定理的应用是解此题的关键.23.(10分)已知正比例函数y=kx(k≠0)的图象经过点(3,﹣6).(Ⅰ)求这个函数的解析式;(Ⅱ)画出这个函数的图象;(Ⅲ)图象上有两点(﹣1,y1),(2,y2),比较y1与y2的大小.【分析】(Ⅰ)把(3,﹣6)代入正比例函数y=kx可得k的值,进而可得函数解析式;(Ⅱ)正比例函数图象必过(0,0),然后过(0,0)和(3,﹣6)画出图象即可;(Ⅲ)利用正比例函数的性质可得答案.【解答】解:(Ⅰ)∵y=kx(k≠0)的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴正比例函数解析式为y=﹣2x;(Ⅱ)如图所示:(Ⅲ)解:方法一(代入法):把(﹣1,y1),(2,y2)分别代入y=﹣2x,y1=﹣2×(﹣1)=2,y2=﹣2×2=﹣4,∴y1>y2.方法二(增减性):∵k=﹣2<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2.【点评】此题主要考查了一次函数图象上点的坐标特点,以及画函数图象和正比例函数的性质,关键是掌握凡是图象经过的点必能满足解析式.24.(10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5101618…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.【分析】(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.【解答】解:(Ⅰ)10,18;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>10,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.【点评】本题考查了一次函数的应用,分类讨论是解题关键.25.(10分)如图,在平面直角坐标系中,O为原点,已知直线y=﹣x+4与x轴交于点A,与y轴交于点B.(Ⅰ)点A的坐标为(3,0),点B的坐标为(0,4);(Ⅱ)如图①,若点M(x,y)在线段AB上运动(不与端点A、B重合),连接OM,设△AOM的面积为S,写出S关于x的函数解析式,并写出自变量x的取值范围;(Ⅲ)如图②,若四边形OADC是菱形,求菱形对角线OD的长.【分析】(Ⅰ)分别令y=0,和令x=0,可得出答案;(Ⅱ)由点M(x,y)在直线上,可将其纵坐标用x表示出来,然后根据三角形面积公式可写出S关于x的函数关系式;(Ⅲ)先由勾股定理求得AB的长,再根据菱形的性质和面积法可求得OE的长,然后根据菱形的性质可得对角线OD的长.【解答】解:(Ⅰ)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B,∴令y=0,得x=3;令x=0,得y=4,∴A(3,0),B(0,4).故答案为:(3,0),(0,4);(Ⅱ)∵点M(x,y)在直线上,∴M(x,).∴S=AO•y M=×3×()=﹣2x+6(0<x<3);(Ⅲ)由(Ⅰ)得,OA=3,OB=4.∴在Rt△AOB中,AB===5.∵四边形OADC是菱形,∴AC⊥OD,.∴.∵AB×OE=OA×OB,∴5OE=3×4,∴.∵,∴.∴菱形对角线OD的长为.【点评】本题属于一次函数综合题,考查了一次函数与坐标轴的交点、直线上的动点与两定点所围成的三角形的面积问题及一次函数与菱形的有关计算.。

2019-2020学年内江市八年级下学期期末数学试卷(含解析)

2019-2020学年内江市八年级下学期期末数学试卷(含解析)

2019-2020学年内江市八年级下学期期末数学试卷一、选择题(本大题共12小题,共48.0分)1.在1a ,2xyπ,3a2b3c4,x7+y8,10y中,分式的个数是()A. 1B. 2C. 3D. 42.广东省进出口总额在“十二五”末达到71400亿元,将数据71400亿用科学记数法表示为()A. 7.1400×1012B. 0.7140×1012C. 71.400×1011D. 7.140×10113.如图,是某次射击比赛中,一位选手五次射击成绩的条形统计图,则关于这位选手的成绩(单位:环),下列说法错误的是()A. 众数是8B. 平均数是8C. 中位数是8D. 方差是1.044.若y=√x−2+√4−2x−3,则x+y=()A. 1B. 5C. −5D. −15.如图,已知直线y1=x+a与y2=kx+b相交于点P(−1,2),则关于x的不等式x+a>kx+b的解集正确的是()A. x>−1B. x>1C. x<1D. x<−16.如图,点A(−2,1)到x轴的距离为()A. −2B. 1C. 2D. √57.如图,在□ABCD中,E为AD的三等分点,连接BE,交AC于点F,AC=8,则AF为()A. 3B. 3.2C. 3.8D. 48.若一次函数y=kx+b图象经过第一、三、四象限,则关于x的方程x2−2x+kb+1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 只有一个实数根9.如图,在矩形ABCD中,AB=3,AD=6,将AD边绕点A顺时针旋转,使点D恰好落在BC边上的点D′处,则阴影部分的扇形面积为()A. 9B. 3πC. 9πD. 1810.如图,在Rt△ABC中,∠BAC=90°,∠ACB=30°,AB=6,点P为BC上任意一点,连结PA,以PA,PC为邻边作平行四边形PAQC,连结PQ,则PQ的最小值为()A. 3B. 2√3C. 6D. 3√311.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,则下列四个判断中错误的是()A. 四边形ADEF不一定是平行四边形B. 若∠A=90°,则四边形ADEF是矩形C. 若四边形ADEF是菱形,则△ABC是等腰三角形D. 若四边形ADEF是正方形,则△ABC是等腰直角三角形12.在下列各点中,与点A(−2,−4)的连线平行于x轴的是()A. (2,−4)B. (4,−2)C. (−2,4)D. (−4,2)二、填空题(本大题共4小题,共16.0分)13.已知,如图在四边形ABCD中,AB=CD,则添加一个______条件(只需填写一种)可以使得四边形ABCD为平行四边形.14.若一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的方差为______.(x>0)上,过点A作AB⊥x轴,垂足为B,15.如图,点A在曲线y=3xOA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长是____________.16.如图,有一块直角三角形纸片,两直角边AC=12,BC=16,现将直角边AC沿AD折叠,使它落在斜边AB上,且与AE重合,则△ADB的面积为______三、计算题(本大题共1小题,共10.0分))−2+3.140.17.计算:−12016+cos60°−(12四、解答题(本大题共5小题,共46.0分)18.如图,已知AB=CD,AD=CB,E、F分别是AB、CD的中点连结AF、CE.求证:△CBE≌△ADF.19.某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况表2:乙调查三个年级各10位同学植树情况根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是______棵;表2中的众数是______棵;(2)你认为同学______(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?20. 开学初,某文化用品商店减价促销,全场8折.购买规格相同的铅笔套装,折价后用32元买到的数量刚好比按原价用50元买到的数量少2套.求原来每套铅笔套装的价格是多少元?(k≠0)与直线y=ax+b(a≠0)交于A、B两21. 如图1,在平面直角坐标系xOy中,双曲线y=kx点,直线AB分别交x轴、y轴于C、D两点,E为x轴上一点.已知OA=OC=OE,A点坐标为(3,4).(1)将线段OE沿x轴平移得线段O′E′(如图1),在移动过程中,是否存在某个位置使|BO′−AE′|的值最大?若存在,求出|BO′−AE′|的最大值及此时点O′的坐标;若不存在,请说明理由;(x>0)的图象于点M(M不与A重合),交x轴于(2)将直线OA沿射线OE平移,平移过程中交y=kx点N(如图3).在平移过程中,是否存在某个位置使△MNE为以MN为腰的等腰三角形?若存在,求出M的坐标;若不存在,请说明理由.22. 如图,将矩形纸片ABCD沿对角线BD向上折叠,请利用尺规作出折叠后得到的图形(保留作图痕迹,不写作法)【答案与解析】1.答案:B解析:解:在所列代数式中,分式有1a ,10y 这2个, 故选:B .根据分式的定义求解即可.本题主要考查分式的定义,分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.2.答案:A解析:解:71400亿用科学记数法表示为7.140×1012, 故选:A .科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.答案:B解析:解:由题意可得, 这位选手的平均成绩是:7×1+8×2+9×1+10×15=8.4(环),故选项B 错误,众数是8,故选项A 正确, 中位数是8,故选项C 正确, 方差是:(7−8.4)2+(8−8.4)2×2+(9−8.4)2+(10−8.4)25=1.04,故选项D 正确;故选:B .根据题意和条形统计图中的数据,可以计算出各个选项中的数据是否正确,从而可以解答本题. 本题考查条形统计图、加权平均数、中位数、众数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.4.答案:D解析:解:由题意,得{x −2≥04−2x ≥0解得x =2,所以y=−3,所以x+y=2−3=−1.故选:D.根据二次根式的被开方数是非负数求得x=2,则y=−3,代入求值即可.考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.答案:A解析:解:因为直线y1=x+a与y2=kx+b相交于点P(−1,2),所以当x>−1时,x+a>kx+b,所以关于x的不等式x+a>kx+b的解集是x>−1,故选:A.观察函数图象得到即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.6.答案:B解析:解:点A(−2,1)到x轴的距离为:1.故选:B.直接利用图形结合A点坐标得出答案.此题主要考查了点的坐标,正确数形结合是解题关键.7.答案:B解析:本题考查平行四边形性质,相似三角形的性质.由平行四边形ABCD得BC//AD,BC=AD,∴△AFE∽△CBF,∴AF:CF=AE:BC,CF=AC−AF,于是可求得解.解:∵平行四边形ABCD,∴BC=AD,BC//AD,即BC//AD,∴△AFE∽△CBF,∴AF:CF=AE:BC,即AF:(AC−AF)=AE:AD,∵AC=8,∴AF:(8−AF)=,∴AF=3.2,故选B.8.答案:A解析:本题主要考查一次函数的图象与系数的关系,根的判别式,正确判断出根的判别式的符号是解题的关键.由一次函数图象的位置可确定出k、b的符号,再计算方程的判别式即可.解:∵一次函数y=kx+b图象经过第一、三、四象限,∴k>0,b<0,∴kb<0,∴△=(−2)2−4(kb+1)=4−4kb−4=−4kb>0,∴关于x的方程x2−2x+kb+1=0有两个不相等的实数根,故选A.9.答案:B解析:解:∵线段AD′由线段AD旋转而成,AD=6,∴AD′=AD=6.∵AB=3,∠ABD=90°,∴∠AD′B=30°.∵AD//BC,∴∠DAD′=∠AD′B=30°,∴S阴影=30⋅π×62360=3π.故选:B.先根据图形旋转的性质得出AD′的长,再根据直角三角形的性质得出∠AD′B的度数,进而得出∠DAD′的度数,由扇形的面积公式即可得出结论.本题考查的是矩形的性质,旋转的性质,扇形面积的计算,熟记扇形的面积公式是解答此题的关键.10.答案:D解析:解:设PQ与AC交于点O,作OP′⊥BC于P′.如图所示:在Rt△ABC中,∠ACB=30°,∴BC=2AB=12,AC=√3AB=6√3,∵四边形PAQC是平行四边形,∴OA=OC=3√3,∵OP′⊥BC,∠ACB=30°,∴OP′=12OC=3√32,当P与P′重合时,OP的值最小,则PQ的值最小,∴PQ的最小值=2OP′=3√3.故选:D.设PQ与AC交于点O,作OP′⊥BC于P′.首先求出OP′,当P与P′重合时,PQ的值最小,PQ的最小值=2OP′.本题考查了勾股定理的运用、平行四边形的性质、相似三角形的判定和性质以及垂线段最短的性质,证明三角形相似是解题的关键.11.答案:A解析:解:∵点D,E,F分别是AB,BC,AC的中点,∴EF=AD=DB=12AB,DE=AF=FC=12AC,EF//AB,DE//AC,∴四边形ADEF是平行四边形,故A错误,若∠B+∠C=90°,则∠A=90°∴四边形ADEF是矩形,故B正确,若四边形ADEF是菱形,则AD=AF,∴AB=AC,∴△ABC是等腰三角形,故C正确,若四边形ADEF是正方形,则AD=AF,∠A=90°,∴AB=AC,∠A=90°,∴△ABC是等腰直角三角形,故D正确,故选:A.利用正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定进行依次推理,可求解.本题考查了正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定,熟练运用这些性质进行推理是本题的关键.12.答案:A解析:解:∵与点A(−2,−4)的连线平行于x轴上的点的纵坐标都相等,∴所求点的纵坐标为−4.故选:A.根据平行于x轴的直线上的点的纵坐标相等解答即可.本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键.13.答案:AD=BC解析:解:添加AD=BC,∵AD=BC,AB=CD,∴四边形ABCD为平行四边形,故答案为:AD=BC.根据两组对边分别相等的四边形是平行四边形进行解答即可.此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.14.答案:83解析:解:∵一组数据4,x,5,y,7,9的平均数为6,众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴16(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数据的方差为16[(4−6)2+2(5−6)2+(6−6)2+(7−6)2+(9−6)2]=83;故答案为:83.此题考查了众数、平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为x−,则方差S2=1n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2];解答本题的关键是掌握各个知识点的概念.根据众数的定义先判断出x,y中至少有一个是5,再根据平均数的计算公式求出x+y=11,然后代入方差公式即可得出答案.15.答案:4解析:解:∵点A在曲线y=3x(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为:4.依据点A在曲线y=3x(x>0)上,AB⊥x轴,AB=1,可得OB=3,再根据CD垂直平分AO,可得OC=AC,再根据△ABC的周长=AB+BC+AC=1+BC+OC=1+OB进行计算即可.此题考查了线段垂直平分线的性质以及反比例函数的性质.解题时注意运用线段垂直平分线上任意一点,到线段两端点的距离相等.16.答案:60解析:解:∵AC=12,BC=16,∴AB=20,∵AE=12(折叠的性质),∴BE=8,设CD=DE=x,则在Rt△DEB中,82+x2=(16−x)2,解得x=6,即DE等于6,所以△ADB的面积=12×AB×DE=12×20×6=60,故答案为:60先根据勾股定理求得AB的长,再根据折叠的性质求得AE,BE的长,从而利用勾股定理可求得DE 的长,进而利用三角形面积解答.本题考查了翻折变换(折叠问题),以及利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方.17.答案:解:原式=−1+12−4+1=−312.解析:原式利用乘方的意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.答案:证明:在△ABC和△CDA中{AB=CD CB=AD AC=CA,∴△ABC≌△CDA(SSS),∴∠B=∠D,BC=DA,∵E、F分别是AB、CD的中点,而AB=CD,∴BE=DF,在△CBE和△ADF中{BE=DF ∠B=∠D BC=DA,∴△CBE≌△ADF(SAS).解析:先利用“SSS”判断△ABC≌△CDA得到∠B=∠D,BC=DA,再利用线段中点的定义得到BE= DF,然后根据“SAS”证明△CBE≌△ADF.本题考查了全等三角形的判定:灵活应用全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.19.答案:解:(1)9,9;(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.解析:(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.此题主要考查了抽样调查,以及中位数,关键是掌握中位数定义,掌握抽样调查抽取的样本要具有代表性.解:(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为乙;(3)见答案.20.答案:解:设原来每套铅笔套装的价格是x元,现在每套铅笔套装的价格是0.8x元,依题意得:50x −2=320.8x.解得x=5.经检验:x=5是原方程的解,且符合题意.答:原来每套铅笔套装的价格是5元.解析:此题考查了分式方程的应用.注意分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.首先设原来每套铅笔套装的价格是x元,现在每套铅笔套装的价格是0.8x元,即可根据“折价后用32元买到的数量刚好比按原价用50元买到的数量少2套”列出方程并解答.21.答案:解:(1)如图1中,∴OA =√32+42=5,∵OA =OC =OE ,∴OA =OC =OE =5,∴C(−5,0),E(5,0),把A 、C 两点坐标代入y =ax +b 得到{3a +b =4−5a +b =0, 解得{a =12b =52, ∴直线的解析式为y =12x +52,把A(3,4)代入y =k x 中,得到k =12,∴反比例函数的解析式为y =12x ,把A 向左平移5个单位得A 1(−2,4),作B 关于x 轴的对称点B 1,则有|BO′−AE′|=|BO′−A 1O′|=B 1O′−A 1O′|≤A 1B 1,直线AC :y =12x +52,双曲线:12x∴B(−8,−32),B 1(−8,32),∴A 1B 1=√(−2+8)2+(4−32)2=132,直线A 1B 1:y =512x +296,令y =0,可得x =−585,∴O′(−585,0).∴|BO′−AE′|的最大值为132,此时点O′的坐标(−585,0). (2)设M(m,12m ),则N(m −9m ,0),NE 2=(5−m +9m )2,ME 2=(5−m)2+(12m )2,MN 2=(9m )2+(12m )2 若MN =ME ,则有,(5−m)2+(12m )2=(9m )2+(12m )2,方程无解,不存在.若MN =NE ,则有(5−m +9m )2=(9m )2+(12m )2,解得m =8或3,∴M(8,32)或(3,4).解析:(1)把A 向左平移5个单位得A 1(−2,4),作B 关于x 轴的对称点B 1,则有|BO′−AE′|=|BO′−A 1O′|=B 1O′−A 1O′|≤A 1B 1,想办法求出A 1B 1,直线A 1B 1的解析式即可解决问题.(2)设M(m,12m ),则N(m −9m ,0),NE 2=(5−m +9m )2,ME 2=(5−m)2+(12m )2,MN 2=(9m )2+(12m )2,分MN =EM ,MN =NE 两种情形,分别构建方程即可解决问题.本题属于反比例函数综合题,考查了一次函数的性质,反比例函数的性质,待定系数法,等腰三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,学会利用参数构建方程解决问题,属于中考压轴题. 22.答案:解:如图,作∠C′DB =∠CDB ,且截取DC′=DC ,连结BC′,解析:作∠C′DB =∠CDB ,且截取DC′=DC ,连结BC′即可得.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形性质.。

人教版初2数学8年级下册 第17章(勾股定理)常考题型专题训练(含答案)

人教版初2数学8年级下册 第17章(勾股定理)常考题型专题训练(含答案)

人教版八年级数学下册第17章勾股定理常考题型专题训练(附答案)1.由下列条件不能判定△ABC为直角三角形的是( )A.∠A:∠B:∠C=3:4:5B.∠A﹣∠B=∠CC.a=1,b=2,c=D.(b+c)(b﹣c)=a22.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是( )A.14B.13C.14D.143.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,则平板车的长最多为( )A.2B.2C.4D.44.如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为( )A.B.C.D.55.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN 等于( )A.1.5B.2.4C.2.5D.3.56.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若ab=8,大正方形的边长为5,则小正方形的边长为( )A.1B.2C.3D.47.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是( )A.1.5B.1.8C.2D.2.58.如图,有一个池塘,其底面是边长为10尺的正方形,一个芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′.则这根芦苇的长度是( )A.10尺B.11尺C.12尺D.13尺9.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是( )A.12B.15C.20D.3010.如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为( )A.3B.4C.5D.611.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为 .12.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.13.如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯 米.14.在Rt△ABC中,斜边AB=3,则AB2+BC2+CA2= .15.如图,在△ABC中,AB=AC=10,BD是边AC上的高,CD=2,则BD= .16.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2= .17.如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BAC+∠CDE= °.18.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,点C 到AB边的距离为 .19.已知:直角△ABC的三边分别为a,b,c,且周长为9,斜边为4,则△ABC的面积 .20.如图,一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,则木杆折断之前的高为 (m).21.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计)22.如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,测得CB=1.5千米,CH =1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求新路CH比原路CA少多少千米?23.某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.24.已知:如图,△ABC的面积为84,BC=21,现将△ABC沿直线BC向右平移a(0<a<21)个单位到△DEF的位置.(1)求BC边上的高;(2)若AB=10,①求线段DF的长;②连接AE,当△ABE时等腰三角形时,求a的值.25.阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC 的形状吗?请说明理由.26.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.27.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?参考答案1.解:A、由题意:∠C=×180°=75°,△ABC是锐角三角形,本选项符合题意.B、∵∠A﹣∠B=∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,本选项不符合题意.C、∵a=1,b=2,c=,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,本选项不符合题意.D、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,∴b2=a2+c2,∴△ABC是直角三角形,本选项不符合题意.故选:A.2.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.3.解:设平板手推车的长度为x米,当x为最大值,且此时平板手推车所形成的△CBP为等腰直角三角形.连接PO,与BC交于点N.∵直角通道的宽为2m,∴PO=4m,∴NP=PO﹣ON=4﹣2=2(m).又∵△CBP为等腰直角三角形,∴AD=BC=2CN=2NP=4(m).故选:C.4.解:S阴影=AC2+BC2+AB2=(AB2+AC2+BC2),∵AB2=AC2+BC2=5,∴AB2+AC2+BC2=10,∴S阴影=×10=5.故选:D.5.解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又S△AMC=MN•AC=AM•MC,∴MN===2.4.故选:B.6.解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=52,∴(a﹣b)2=25﹣16=9,∵正方形的边长a﹣b>0,∴a﹣b=3,故选:C.7.解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故选:A.8.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即水深12尺,芦苇长13尺.故选:D.9.解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.10.解:如图所示:以AB为一边画△ABC,其中是直角三角形的格点C共有4个,故选:B.11.解:∵点A(﹣3,4),∴它到坐标原点的距离==5,故答案为:5.12.解:由勾股定理,得路长==5,少走(3+4﹣5)×2=4步,故答案为:4.13.解:根据勾股定理,楼梯水平长度为=12米,则红地毯至少要12+5=17米长,故答案为:17.14.解:∵△ABC为直角三角形,AB为斜边,∴AC2+BC2=AB2,又AB=3,∴AC2+BC2=AB2=9,则AB2+BC2+CA2=AB2+(BC2+CA2)=9+9=18.故答案为:1815.解:由已知得:AD=AC﹣CD=8,AB=10,∵BD是高,∴△ADB是直角三角形,∴BD2+AD2=AB2,∴BD==6.16.解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.17.解:连接AD,由勾股定理得:AD2=12+32=10,CD2=12+32=10,AC2=22+42=20,∴AD=CD,AD2+CD2=AC2,∴∠ADC=90°,∴∠DAC=∠ACD=45°,∵AB∥DE,∴∠BAD+∠ADE=180°,∴∠BAC+∠CDE=180°﹣90°﹣45°=45°,故答案为:45°.18.解:∵S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=,AB==,∴点C到AB边的距离==.故答案为:.19.解:根据题意,得a+b=5,a2+b2=16,则ab=[(a+b)2﹣(a2+b2)]=(52﹣16)=.故答案是:.20.解:∵一木杆在离地面1.5m处折断,木杆顶端落在离木杆底端2m处,∴折断的部分长为=2.5,∴折断前高度为2.5+1.5=4(m).故答案为:4.21.解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.22.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(1.2)2+(0.9)2=2.25,BC2=2.25,∴CH2+BH2=BC2,∴CH⊥AB,所以CH是从村庄C到河边的最近路;(2)设AC=x千米,在Rt△ACH中,由已知得AC=x,AH=x﹣0.9,CH=1.2,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣0.9)2+(1.2)2,解这个方程,得x=1.25,1.25﹣1.2=0.05(千米)答:新路CH比原路CA少0.05千米.23.证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴△ACD是直角三角形.24.解:(1)作AM⊥BC于M,∵△ABC的面积为84,∴×BC×AM=84,解得,AM=8,即BC边上的高为8;(2)①在Rt△ABM中,BM==6,∴CM=BC﹣BM=15,在Rt△ACM中,AC==17,由平移的性质可知,DF=AC=17;②当AB=BE=10时,a=BE=10;当AB=AE=10时,BE=2BM=12,则a=BE=12;当EA=EB=a时,ME=a﹣6,在Rt△AME中,AM2+ME2=AE2,即82+(a﹣6)2=a2,解得,a=,则当△ABE时等腰三角形时,a的值为10或12或.25.解:(1)AB==;(2)AB=丨5﹣(﹣1)丨=6;(3)△ABC是直角三角形理由:∵AB==,BC==5,AC==,∴AB2+AC2=()2+()2=25,BC2=52=25.∴△ABC是直角三角形.26.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.27.解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:,∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米。

八年级数学全等三角形常考题型例题

八年级数学全等三角形常考题型例题

八年级数学全等三角形常考题型例题单选题1、如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=4,AB=6,则S△ABD:S△ACD=()A.3:2B.2:3C.1:1D.4:3答案:A解析:过点D作DE⊥AB于点E,根据角平分线的性质得,DE=DC再根据三角形面积公式即可求解.解:过点D作DE⊥AB于点E,在Rt△ABC中,∠C=90°∴DC⊥AC,∵AD是∠BAC的平分线,∴DE=DC,∵S△ABDS△ACD =12AB·DE12AC·DC=ABAC,∵AC=4,AB=6,S△ABD S△ACD =ABAC=64=32,所以答案是:A.小提示:本题考查了角平分线的性质,三角形的面积,正确理解角平分线的性质是解本题的关键.2、作∠AOB的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D 为圆心,适当的长度为半径作弧使两弧在∠AOB的内部相交于一点,则这个适当的长度()A.大于12CD B.等于12CD C.小于12CD D.以上都不对答案:A解析:根据作已知角的角平分线的方法即可判断.因为分别以C,D为圆心画弧时,要保证两弧在∠AOB的内部交于一点,所以半径应大于12CD,故选:A.小提示:本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).3、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A .①②③B .①②④C .①③④D .①②③④答案:D解析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD+∠ABE=12(∠BAC+∠ABC)=12(180°-∠ACB)=12(180°-90°)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB ,又∵∠ABP=∠FBP ,BP=BP ,∴△ABP ≌△FBP(ASA),∴∠BAP=∠BFP ,AB=FB ,PA=PF ,故②正确.在△APH 和△FPD 中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP ,PA=PF ,∴△APH ≌△FPD(ASA),∴PH=PD,故③正确.连接CP,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.小提示:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.4、作∠AOB平分线的作图过程如下:作法:(1)在OA和OB上分别截取OD、OE,使OD=OE.DE的长为半径作弧,两弧交于点C.(2)分别以D,E为圆心,大于12(3)作射线OC,则OC就是∠AOB的平分线.用下面的三角形全等的判定解释作图原理,最为恰当的是()A.SSS B.SAS C.ASA D.AAS答案:A解析:根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明△OCE≌△OCD,即可得答案.∵分别以D,E为圆心,大于12DE的长为半径作弧,两弧交于点C;∴CE=CD,在△OCE和△OCD中,{OE=OD CD=CE OC=OC,∴△OCE≌△OCD(SSS),故选:A.小提示:本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键.5、如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB 和AD,使它们分别落在角的两边上,过点A、C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是()A .SSSB .SASC .ASAD .AAS答案:A解析:根据题意两个三角形的三条边分别对应相等,即可利用“边边边”证明这两个三角形全等,即可选择. 在△ABC 和△ADC 中,{AB =ADBC =DC AC =AC,∴△ABC ≅△ADC(SSS),∴∠BAC =∠DAC ,即∠QAE =∠PAE .∴此角平分仪的画图原理是SSS .故选:A .小提示:本题考查了三角形全等的判定和性质.根据题意找到可证明两三角形全等的条件是解答本题的关键.6、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带( )A .第1块B .第2块C .第3块D .第4块答案:B解析:本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.小提示:本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7、如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14B.13C.12D.10答案:C解析:∵平行四边形ABCD∴AD∥BC,AD=BC,AO=CO∴∠EAO=∠FCO∵在△AEO和△CFO中,{∠AEO=∠CFO AO=CO ∠AOE=∠COF∴△AEO≌△CFO∴AE=CF,EO=FO=1.5∵C四边形ABCD=18∴CD+AD=9∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C小提示:本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.8、如图,在△ABC中,AQ=PQ,PR=PS,若PR⊥AB,PS⊥AC,垂足分别为点R,S,给出下列三个结论:①AS=AR;②QP∥AR;③△BPR≌△QPS.其中正确的是 ( )A.①②③B.①C.①②D.①③答案:C解析:先求证两个三角形全等,可得角、边对应相等,再根据同位角相等从而得出平行关系即可解题.如图在RT△APR和RT△APS中,PS=PR,AP=AP,∴RT△APR≅RT△APS,∴AS=AR,①正确;因为AQ=PQ∴∠PAQ=∠QPA,又因为∠PAQ=∠PAR,∴∠PQC=∠PAQ+∠QPA=∠BAC,∴QP∥AR,②正确;△ BRP和△QPS中只有一个条件PR=PS,没有别的条件可以证明这两个三角形全等,③错误;所以正确答案选C.小提示:本题考查了全等三角形的判定,考查了全等三角形对应边对应角相等的性质,本题中求证RT△APR≅RT△APS 是解题的关键填空题9、如图,在ΔABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为_______.答案:9.解析:根据等腰三角形的性质及全等三角形的判定与性质即可求解.因为△ABC是等腰三角形,所以有AB=AC,∠BAD=∠CAE,∠ABD=∠ACE,所以△ABD≅△ACE(ASA),所以BD=EC,EC=9.小提示:此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.10、如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件____,使△ABC≌△ADC.答案:∠D=∠B(答案不唯一)解析:本题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可.解:添加的条件为∠D=∠B,理由是:在△ABC和△ADC中,{∠BAC=∠DAC∠D=∠BAC=AC,∴△ABC≌△ADC(AAS),所以答案是:∠D=∠B.小提示:本题主要考查全等三角形的判定定理,能熟记全等三角形的判定定理是解决本题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.11、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.答案:120解析:根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,所以答案是:120.小提示:此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.12、如图,在Rt△ABC与Rt△DEF中,∠B=∠E=90°,AC=DF,AB=DE,若∠A=50°,则∠DFE的度数为________.答案:40°解析:先利用HL定理证明Rt△ABC≌Rt△DEF,得出∠D的度数,再根据直角三角形两锐角互余即可得出∠DFE的度数.解:在Rt△ABC与Rt△DEF中,∵∠B=∠E=90°,AC=DF,AB=DE,∴Rt△ABC≌Rt△DEF(HL)∴∠D=∠A=50°,∴∠DFE=90°-∠D=90°-50°=40°.所以答案是:40°.小提示:此题主要考查直角三角形全等的HL定理.理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键.13、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是____.答案:SSS##边边边解析:由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.解:∵在△ONC和△OMC中{ON=OM CO=CO NC=MC,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,所以答案是:SSS.小提示:本题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.解答题14、已知:AB//CD,AB=CD,AE=CF.求证:BF//DE.答案:见解析解析:根据AB∥CD,得到∠A=∠C,然后推出AF=CE,即可证明△ABF≌△CDE得到∠AFB=∠CED,则BF∥DE.解:∵AB∥CD,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,{AB=CD ∠A=∠C AF=CE,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴BF∥DE.小提示:本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知全等三角形的性质与判定条件是解题的关键.15、如图,∠C=∠E,AC=AE,点D在BC边上,∠1=∠2,AC和DE相交于点O.求证:△ABC≌△ADE.答案:见解析解析:先利用三角形外角性质证明∠ADE=∠B,然后根据“AAS”判断△ABC≌△ADE.∵∠ADC=∠1+∠B,即∠ADE+∠2=∠1+∠B,而∠1=∠2,∴∠ADE=∠B,在△ABC和△ADE中,{∠C=∠E ∠B=∠ADE AC=AE∴△ABC≌△ADE(AAS).小提示:本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.选用哪一种方法,取决于题目中的已知条件.。

新八年级下学期期末考试数学试题(含答案)

新八年级下学期期末考试数学试题(含答案)

新八年级下学期期末考试数学试题(含答案)一、选择题(本大题共10小题,共30.0分)1.如果有意义,那么实数x的取值范围是A. B. C. D.【答案】A【解析】解:由题意可知:,故选:A.根据二次根式有意义的条件即可求出x的取值范围.本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件.2.以下列各组数为三角形的三边,能构成直角三角形的是A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23【答案】B【解析】解:A、,故不是直角三角形,故此选项错误;B、,故是直角三角形,故此选项正确;C、,故不是直角三角形,故此选项错误;D、,故不是直角三角形,故此选项错误.故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.下列计算正确的是A. B. C. D.【答案】D【解析】解:A、,无法计算,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确.故选:D.直接利用二次根式混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.4.如图,在中,,,,点D,E分别是边AB,CB的中点,那么DE的长为A. B. 2 C. 3 D. 4【答案】B【解析】解:点D,E分别是边AB,CB的中点,,故选:B.根据三角形中位线定理解答即可.本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5.下列各式中,最简二次根式是A. B. C. D.【答案】C【解析】解:A、,不是最简二次根式,故本选项不符合题意;B、,不是最简二次根式,故本选项不符合题意;C、是最简二次根式,故本选项符合题意;D、,不是最简二次根式,故本选项不符合题意;故选:C.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.6.某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是销量平均数中位数众数方差【答案】C【解析】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:C.众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.关于函数,下列说法错误的是A. 它是正比例函数B. 图象经过C. 图象经过一、三象限D. 当,【答案】D【解析】解:关于函数,A、它是正比例函数,说法正确,不合题意;B、当时,,图象经过,说法正确,不合题意;C、图象经过一、三象限,说法正确,不合题意;D、当时,,说法错误,符合题意;故选:D.根据正比例函数的定义与性质判定即可.此题考查了正比例函数的性质和定义,熟练掌握正比例函数的定义与性质是解题关键.8.关于四边形ABCD:两组对边分别平行;两组对边分别相等;有一组对边平行且相等;对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:符合平行四边形的定义,故正确;两组对边分别相等,符合平行四边形的判定条件,故正确;由一组对边平行且相等,符合平行四边形的判定条件,故正确;对角线互相平分的四边形是平行四边形,故错误;所以正确的结论有三个:,故选:C.平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形按照平行四边形的判定方法进行判断即可.本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定方法是解答此类题目的关键.9.将直线向上平移1个单位长度,得到的一次函数解析式为A. B. C. D.【答案】A【解析】解:由“上加下减”的原则可知,将直线向上平移1个单位长度,得到的一次函数解析式为.故选:A.根据函数解析式“上加下减”的原则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知函数解析式“上加下减”的原则是解答此题的关键.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿的路径匀速移动,设P点经过的路径长为x,A、P、D三点连线所围成图形的面积是y,则能大致反映y与x之间的函数关系的图象是A. B.C. D.【答案】B【解析】解:根据题意,当点P由A到D过程中,,当点P由C到B时,,故选:B.根据题意研究图象代表意义即可.本题为动点问题的函数图象探究题,考查了函数图象所代表的实际意义,应用了数形结合的数学思想.二、填空题(本大题共6小题,共18.0分)11.计算:______.【答案】4【解析】解:原式.故答案为:4原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.12.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,,则成绩比较稳定的是______填“甲”或“乙”【答案】甲【解析】解:,,,成绩比较稳定的是甲;故答案为:甲.根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.【答案】4【解析】解:由题意得:解得:.故答案为4.根据算术平均数的计算方法列方程求解即可.考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.14.边长为2的等边三角形的面积为______.【答案】【解析】解:等边三角形高线即中点,,,在中,,,,,故答案为:.根据等边三角形三线合一的性质可得D为BC的中点,即,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.15.如图,矩形ABCD的两条对角线相交于点O,若,,则AC的长为______.【答案】6【解析】解:在矩形ABCD中,,,,,又,.故答案为:6.根据矩形的对角线互相平分且相等可得,再根据三角形的一个外角等于与它不相邻的两个内角的和求出,然后根据直角三角形角所对的直角边等于斜边的一半解答.本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.16.在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为______用含n的代数式表示,n为正整数.【答案】【解析】解:令一次函数中,则,点的坐标为,.四边形为正整数均为正方形,,,,.令一次函数中,则,即,,.轴,.,,,.,,,,为正整数.故答案为:.结合正方形的性质结合直线的解析式可得出:,,,,结合三角形的面积公式即可得出:,,,,根据面积的变化可找出变化规律“为正整数”,依此规律即可得出结论.本题考查了一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,此题属规律性题目,比较复杂.三、计算题(本大题共1小题,共7.0分)17.计算:【答案】解:原式;原式.【解析】先把二次根式化为最简二次根式,然后合并即可;先把二次根式化为最简二次根式,然后把可能内合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共8小题,共65.0分)18.化简:;【答案】解:原式.【解析】先把二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.已知:如图,在平行四边形ABCD中,,,垂足分别为点E,点求证:【答案】解:四边形ABCD是平行四边形,,,,,,在和中,≌,;【解析】根据平行四边形的性质可得,,然后利用AAS定理证明≌可得;此题主要考查了平行四边形的性质和判定,平行四边形的判定与性质的作用:平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法.20.下表是小华同学一个学期数学成绩的记录根据表格提供的信息,回答下列的问题:成绩小明6次成绩的众数是______,中位数是______;求该同学这个同学这一学期平时成绩的平均数;总评成绩权重规定如下:平时成绩占,期中成绩占,期末成绩占,请计算出小华同学这一个学期的总评成绩是多少分?【答案】,90 ;该同学这个同学这一学期平时成绩的平均数为分;小华同学这一个学期的总评成绩是分.【解析】解:将小明6次成绩从小到大重新排列为:78、85、90、90、91、94,所以小明6次成绩的众数是90分、中位数为分,故答案为:90、90;见答案;见答案.根据众数和中位数的定义计算即可;根据平均数的定义计算即可;根据加权平均数公式计算即可.本题考查平均数、中位数、加权平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,在正方形ABCD中,对角线AC,BD相较于点O,的角平分线BF交CD于点E,交AC于点F求证:;若,求AB的值【答案】证明:,BD是正方形的对角线,,平分,,,,,;解解:如图,作交BD于点H.四边形ABCD是正方形,,,,,,,,,平分,,,,.【解析】根据正方形的性质得到,由角平分线的定义得到,求得,于是得到结论;如图作交BD于点首先证明是等腰直角三角形,推出,求出OB即可解决问题.本题考查正方形的性质、角平分线的定义、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.已知一次函数的图象经过点和求函数的解析式;求直线上到x轴距离为4的点的坐标.【答案】解:把,分别代入得:,解得:,,一次函数解析式为;当时,,解得,此时满足条件的点的坐标为;当时,,解得,此时满足条件的点的坐标为;综上所述,直线上到x轴距离为4的点的坐标为或.【解析】把两个点的坐标代入函数关系式中求出k,b即可确定函数关系式,到x轴的距离为4的点,可能在x轴上方或x轴下方的直线上,因此分两种情况进行解答,即令或时求出相应的x的值即可确定坐标.考查待定系数法求一次函数的关系式以及点到直线的距离的意义,分情况讨论解答是数学中常见的方法,注意分类不重复不重叠不遗漏.23.某文具店从市场得知如下信息:进价售价x 台,这两种品牌计算器全部销售完后获得利润为y元.求y与x之间的函数关系式;若全部销售完后,获得的利润为1200元,则购进A、B两种品牌计算器的数量各是多少台?若购进计算器的资金不超过4100元,求该文具店可获得的最大利润是多少元?【答案】解设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器台,A品牌计算器的单个利润为元,A品牌计算器销售完后利润,B品牌计算器的单个利润为元,B品牌计算器销售完后利润,总利润,整理后得:,答:y与x之间的函数关系式为;把代入得:,解得:,则A种品牌计算器的数量为40台,B种品牌计算器的数量为台,答:购进A种品牌计算器的数量是40台,购进A种品牌计算器的数量是10台;根据题意得:,解得:,一次函数随x的增大而减小,x为最小值时y取到最大值,把代入得:,答:该文具店可获得的最大利润是1400元.【解析】该文具店计划一次性购进这两种品牌计算器共50台,设该经销商购进A品牌计算器x台,则该经销商购进B品牌计算器台,根据利润单个利润销售量,分别求出A、B的利润,二者之和便是总利润,即可得到答案,把代入y与x之间的函数关系式即可,根据购进计算器的资金不超过4100元,列出关于x的不等式,求出x的取值范围后,根据一次函数的增减性求得最大利润.本题综合考察了一次函数的应用及一元一次不等式的相关知识,找出函数的等量关系及掌握解不等式得相关知识是解决本题的关键.24.如图,在中,AD是BC边上的中线,点E是AD的中点,过点A作交BE的延长线于F,BF交AC于G,连接CF.求证:≌;若,试判断四边形ADCF的形状,并证明你的结论;求证:.【答案】证明:,,在和中,≌;解:四边形ADCF是菱形,理由如下:≌,,,,又,四边形ADCF是平行四边形,,AD是BC边上的中线,,四边形ADCF是菱形;∽【解析】由“AAS”可证≌;由全等三角形的性质可得,可证四边形ADCF是平行四边形,由直角三角形的性质可得,可证四边形ADCF是菱形;通过证明∽,可得,即可得结论.本题是四边形综合题,考查了菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.25.如图,在平面直角坐标系中,直线:分别与x轴、y轴交于点B、C,且与直线:交于点A.求出点A的坐标.若D是线段OA上的点,且的面积为12,求直线CD的函数表达式.在的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.【答案】解:解方程组,得,;设,的面积为12,,解得:,,设直线CD的函数表达式是,把,代入得:,解得:,直线CD解析式为;在直线:中,当时,,,存在点P,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:当四边形为菱形时,由,得到四边形为正方形,此时,即;当四边形为菱形时,由C坐标为,得到纵坐标为3,把代入直线直线的解析式中,可得,解得,此时;当四边形为菱形时,则有,设,,解得或舍去,此时;综上可知存在满足条件的点的P,其坐标为或或.【解析】联立两直线解析式求出A的坐标即可;根据D在直线OA上,设出D坐标,表示出三角形COD面积,把已知面积代入求出x的值,确定出D坐标,利用待定系数法求出CD解析式即可;在的条件下,设P是射线CD上的点,在平面内存在点Q,使以O、C、P、Q为顶点的四边形是菱形,如图所示,分三种情况考虑:当四边形为菱形时,由,得到四边形为正方形;当四边形为菱形时;当四边形为菱形时;分别求出P坐标即可.本题为一次函数的综合应用,涉及一次函数与坐标轴的交点、待定系数法确定一次函数解析式、一次函数图象的交点、一次函数图象与性质、菱形的性质及分类讨论思想等在中求得D点坐标是解题的关键,在中确定出P点的位置是解题的关键本题考查知识点较多,综合性较强,难度适中.新人教版八年级(下)期末模拟数学试卷(含答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,63. 已知□ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.60°D.80°4. 要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生的10次数学测试成绩进行数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是()A.甲B.乙C.丙D.无法确定5.函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,在矩形ABCD中,点M从点B出发沿BC向点C运动,点E、F分别是AM、MC的中点,则EF的长随着M点的运动()A.不变B.变长C.变短D.先变短再变长第6题7.已知x =+1,y =﹣1,则x 2+xy +y 2的值为( ) A .4B .6C .8D .108. 将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变. 当∠B =60°时,如图(1),测得AC =2;当∠B =90°时,如图(2),此时AC 的长为( ) A .B .2C .D .9. 已知张强家、体育场、文具店在同一直线上.如图的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离.则下列说法错误的是( )A.体育场离张强家2.5千米B.体育场离文具店1千米C.张强在文具店逗留了15分D.张强从文具店回家的平均速度是703千米/分 10.正方形111A B C O 、2221A B C C 、3332A B C C …按如图所示的方式放置.点1A 、2A 、3A …和点1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2019A 的坐标是( ) A. )2,2(20192018B. )2,1-2(20182018C. )22(20182019, D. )2,1-2(20192018二、填空题(本题共5小题,每小题3分,共15分)11. 若二次根式m -3有意义,则实数m 的取值范围是 .12.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6名进入决赛,如果小亮知道了自己的成绩后,要判断能否进入决赛,在平均数、众数、中位数和方差四个统计量中,小亮应该最关注的一个统计量是 .13.如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而_______.(填“增大”或“减小”)第8题第10题第9题14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若25)2=+b a (,大正方形的面积为13,则小正方形的面积为 .15.如图,已知正方形ABCD 的边长为7,点E 、F 分别在AD 、DC上,AE =DF =3,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 . 三、解答题(本题共8小题,满分75分) 16.(8分)计算: )(1-22-182-3217.(9分)某学生本学期6次数学考试成绩如下表所示: (1)6次考试成绩的中位数为 ,众数为 . (2)求该生本学期四次月考的平均成绩.(3)如果本学期的总评成绩按照月考平均成绩占20﹪、期中成绩占30﹪、期末成绩占50﹪计算,那么该生本学期的数学总评成绩是多少?18.(9分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC =24cm ,CB =18cm ,两轮中心的距离AB =30cm ,求点C 到AB 的距离.(结果保留整数)第14题第15题19.(9分)问题:探究函数1-1+=x y 的图象与性质.小明根据学习函数的经验,对函数1-1+=x y 的图象与性质进行了研究. 下面是小明的研究过程,请补充完成.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值列表如下:其中,m = n = ;(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.20.(9分)如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (4,-3),且与y 轴相交于点B ,与正比例函数y =21x 的图象交于点C ,点C 的横坐标为2. (1)求k 、b 的值;(2)若点D 在x 轴上,且满足S △COD =S △BOC ,求点D 的坐标.(1)(2)21.(10分)如图,在四边形ABCD 中,AB ∥CD ,AC 垂直平分BD ,交BD 于点F ,延长DC 到点E ,使得CE =DC ,连接BE . (1)求证:四边形ABCD 是菱形. (2)填空:①当∠ADC = °时,四边形ACEB 为菱形; ②当∠ADC =90°,BE =4时,则DE =22.(10分)某体育用品商店,准备用不超过2800元购买足球和篮球共计60个,已知一个篮球的进价为50元,售价为65元;一个足球的进价为40元,售价为50元. (1)若购进x 个篮球,购买这批球共花费y 元,求y 与x 之间的函数关系式; (2)设售出这批球共盈利w 元,求w 与x 之间的函数关系式;(3)体育用品商店购进篮球和足球各多少个时,才能获得最大利润?最大利润是多少?23.(11分)已知正方形ABCD 与正方形CEFG (点C 、E 、F 、G 按顺时针排列),M 是AF 的中点,连接DM ,EM .(1)如图1,点E 在CD 上,点G 在BC 的延长线上,求证:DM =EM ,DM ⊥EM .简析: 由M 是AF 的中点,AD ∥EF ,不妨延长EM 交AD 于点N,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE 是 三角形,进而得出结论.(2)如图2, E 在DC 的延长线上,点G 在BC 上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB =5,CE =3时,正方形CEFG 的顶点C 、E 、F 、G 按顺时针排列.若点E 在直线CD 上,则DM = ;若点E 在直线BC 上,则DM = .备用图BA图1图2八年级数学参考答案及评分标准一.1. B 2. C 3. D 4. C 5.B 6.A 7.D 8. A 9. C 10. B 二.11. m ≤3 12. 中位数 13. 减小 14. 1 15.265 三.16.解:原式=222-26-24+………………………5分 =224-+ ………………………8分 17.(1)109 , 108. …………………2分(2)(105+110+113+108)÷4=109∴该生本学期四次月考的平均成绩为109分…………………5分 (3)109×20﹪+108×30﹪+112×50﹪=110.2∴该生本学期的数学总评成绩为110.2分…………………9分18.解:过点C 作CE ⊥AB 于点E,则CE 的长即点C 到AB 的距离. ……………1分 在△ABC 中,∵AC =24,CB =18 ,AB =30,∴90018242222=+=+CB AC ,9003022==AB ,∴ 222AB CB AC =+,∴△ABC 为直角三角形,即∠ACB =90°.…………………4分 ∵AB CE BC AC S ABC ⨯=⨯=∆2121, ∴AB CE BC AC ⨯=⨯,即301824⨯=⨯CE , ∴CE =14.4≈14 . …………………8分E答:点C 到AB 的距离约为14cm . …………………9分19.解:(1)m = 2, n = -1 ;…………………2分 (2)如图所示…………………5分(3)(答案不唯一,合理即可)…………………9分20.解:(1)将x =2代入y =21x ,得到y =1, ∴点C 的坐标为(2,1)………………………2分 将A (4,-3),C (2,1)代入y =kx +b , 得⎩⎨⎧+=+=bk bk 2143-,解得⎩⎨⎧=-=52b k ,∴k 的值为﹣2,b 的值为5;………………………5分 (2)y =-2x +5与y 轴交点B 坐标为(0,5), ∴55221=⨯⨯=BOC S △.………………………6分 ∵S △COD =OD ⨯⨯121=S △BOC =5,∴OD =10.………………………8分 ∵点D 在x 轴上,∴点D 坐标为(-10,0)或(10,0)………………………9分21.(1)证明:∵AC 垂直平分BD ,∴AB =AD ,BF =DF ,∵AB ∥CD ,∴∠ABD =∠CDB.∵∠AFB =∠CFD ,∴△AFB ≌△CFD (ASA ),………………………3分∴AB =CD .又∵AB ∥CD ,∴四边形ABCD 是平行四边形 . ……………………5分 ∵AB =AD ,∴平行四边形ABCD 是菱形 . ………………………6分(2)①60 ; ………………………8分4. ………………………10分②222.解:(1)设购进x个篮球,则购进了(60-x)个足球.y=50x+40(60-x)=10x+2400,∴y与x之间的函数关系式为y=10x+2400 ;………………………3分(2)w=(65-50)x+(50 - 40)(60-x)=15x+10(60-x)=5x+600 ,∴w与x之间的函数关系式w=5x+600;………………………6分(3)由题意,10x+2400≤2800,解得,x≤40 ,………………………8分在 w=5x+600中,∵k=5>0 ,∴ y随x的增大而增大,∴当x=40时,w最大为800元.………………………9分∴当购买40个篮球,20个足球时,获得的利润最大,最大利润为800元………10分23.(1)△AMN ≌△FME ,等腰直角.………………2分(2)结论仍成立. ………………3分如图,延长EM交DA的延长线于点H,∵四边形ABCD与四边形CEFG都是正方形,∴∠ADE=∠DEF=90°,AD=CD,∴AD∥EF,∴∠MAH=∠MFE.∵AM=FM,∠AMH=∠FME,∴△AMF≌△FME(ASA),………………6分∴MH=ME,AH=FE=CE,∴DH=DE.在△DHE中,DH=DE,∠EDH=90°,MH=ME,∴DM=EM,DM⊥EM . ………………………9分4;(3)若点E在直线CD上,则DM =2或2若点E在直线BC上,则DM=17.………………………11分最新八年级下册数学期末考试试题【答案】一、选择题(共10小题,每小题4分,共40分)1.点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)2.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A.B.C.D.3.一元二次方程x(x﹣1)=0的解是()A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=14.抛物线y=(x﹣2)2+3的顶点坐标是()A.(﹣2,3)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)5.用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3B.(x﹣1)2=4C.(x﹣1)2=5D.(x+1)2=36.如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是()A.30°B.45°C.60°D.90°7.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A.289(1﹣2x)=256B.256(1+x)2=289C.289(1﹣x)2=256D.289﹣289(1﹣x)﹣289(1﹣x)2=2568.将抛物线y=2(x﹣7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移正确的是( ) A .向上平移3个单位 B .向下平移3个单位C .向左平移7个单位D .向右平移7个单位9.二次函数y 1=ax 2+bx +c 与一次函数y 2=mx +n 的图象如图所示,则满足ax 2+bx +c >mx +n 的x 的取值范围是( ) A .﹣3<x <0B .x <﹣3或x >0C .x <﹣3D .0<x <310.在同一平面直角坐标系中,函数y =ax 2+bx 与y =﹣bx +a 的图象可能是( )A .B .C .D .二、填空题(共6小题,每小题4分,共24分)11.关于x 的方程012=+-mx x 的一个解为1,则m 的值为_____________.12.如图.将平面内Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AC =2,BC =1,则线段BE 的长为 . 13.二次函数()5122---=x y 的最大值是____________.14.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则可列方程为 ______________.15.求代数式1241124112++-+-⎪⎪⎭⎫ ⎝⎛-+c a aca ac a 的值是____________. 16.小明对自己上学路线的长度进行了20次测量,得到20个数据x 1,x 2,…,x 20,已知x 1+x 2+…+x 20=2019,当代数式(x ﹣x 1)2+(x ﹣x 2)2+…+(x ﹣x 20)2取得最小值时,x 的值为___________.三、解答题(共9小题,共86分) 17.计算:(10分)(1)0642=--x x (2)()033=-+-x x x。

人教版初二数学轴对称常考题型例题

人教版初二数学轴对称常考题型例题

人教版初二数学轴对称常考题型例题单选题1、如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD 为()A.50°B.70°C.75°D.80°答案:B解析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.小提示:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B度数为()A.30°B.60°C.90°D.120°答案:C解析:由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°−30°-60°=90°.故选:C.小提示:主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.3、下列图形中,是轴对称图形的是()A.B.C.D.答案:C解析:依据轴对称图形的定义逐项分析即可得出C选项正确.解:因为选项A、B、D中的图形都不能通过沿某条直线折叠直线两旁的部分能达到完全重合,所以它们不符合轴对称图形的定义和要求,因此选项A、B、D中的图形都不是轴对称图形,而C选项中的图形沿上下边中点的连线折叠后,折痕的左右两边能完全重合,因此符合轴对称图形的定义和要求,因此C选项中的图形是轴对称图形,故选:C.小提示:本题主要考查了轴对称图形的定义,学生需要掌握轴对称图形的定义内容,理解轴对称图形的特征,方能解决问题找对图形,同时也考查了学生对图形的感知力和空间想象的能力.4、一个三角形具备下列条件仍不是等边三角形的是()A.一个角的平分线是对边的中线或高线B.两边相等,有一个内角是60°C.两角相等,且两角的和是第三个角的2倍D.三个内角都相等答案:A解析:根据等边三角形的判定方法即可解答.选项A,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B,两边相等,有一个内角是60°,根据有一个角为60°的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C,两角相等,且两角的和是第三个角的2倍,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60°,即可判定该三角形是等边三角形;选项D,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60°,即可判定该三角形是等边三角形.故选A.小提示:本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.AB的长为半径作弧相交于点D和点E,5、如图,在Rt△ABC中,∠ABC=90°,分别以点A和点B为圆心,大于12直线DE交AC于点F,交AB于点G,连接BF,若BF=3,AG=2,则BC=()A.5B.4√3C.2√5D.2√13答案:C解析:利用线段垂直平分线的性质得到FB=FA,AG=BG=2,再证明FC=FB=FA=3,利用勾股定理即可解决问题.解:由作图方法得GF垂直平分AB,∴FB=FA,AG=BG=2,∴∠FBA=∠A,∵∠ABC=90°,∴∠A+∠C=90°,∠FBA+∠FBC=90°,∴∠C=∠FBC,∴FC=FB,∴FB=FA=FC=3,∴AC=6,AB=4,∴BC=√AC2−AB2=√62−42=2√5.故选:C.小提示:本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质.6、已知点P(−3,2)与点Q关于x轴对称,则Q点的坐标为()A.(−3,2)B.(−3,−2)C.(3,2)D.(3,−2)答案:B解析:根据关于x轴对称的性质:横坐标相等,纵坐标互为相反数,即可得解.由题意,得与点P(−3,2)关于x轴对称点Q的坐标是(−3,−2),故选:B.小提示:此题主要考查关于x轴对称的点坐标的求解,熟练掌握,即可解题.7、已知等腰三角形两边的长分别为3和7,则此等腰三角形的周长为()A.13B.17C.13或17D.13或10答案:B解析:等腰三角形两边的长为3和7,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解:①当腰是3,底边是7时,3+3<7不满足三角形的三边关系,因此舍去.②当底边是3,腰长是7时,7+7>3能构成三角形,则其周长=3+7+7=17.故选:B.小提示:本题考查了等腰三角形的性质和三角形的三边关系,解题时注意:若没有明确腰和底边,则一定要分类进行讨论,还应验证各种情况是否能构成三角形,这是解题的关键.8、如图图形分别是贵州、旅游、河北、黑龙江卫视的图标,其中属于轴对称图形的是()A.B.C.D.答案:A解析:根据轴对称性质出发,对题意进行理解并根据选项的不同来选择出正确的答案.解:轴对称的性质:把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称.选项A符合此条件.故答案选A.小提示:本题考察轴对称的性质,根据性质进行解题即可.填空题9、若点A(1+m,1−n)与点B(−3,2)关于y轴对称,则(m+n)2021=值是________.答案:1解析:直接利用关于y轴对称点的性质得出m,n的值,进而得出答案.解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,解得:m=2,n=-1则(m+n)2021=(2-1)2021=1.所以答案是:1.小提示:此题主要考查了关于y轴对称点的性质,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.10、如图, 在△ABC中, ∠ACB的平分线交AB于点D, DE⊥AC于点E, F为BC上一点,若DF=AD, △ACD与△CDF 的面积分别为10和4, 则△AED的面积为______答案:3解析:如图(见解析),过点D作DG⊥BC,根据角平分线的性质可得DE=DG,再利用三角形全等的判定定理得出ΔCDE≅ΔCDG,ΔADE≅ΔFDG,从而有SΔCDE=SΔCDG,SΔADE=SΔFDG,最后根据三角形面积的和差即可得出答案.如图,过点D作DG⊥BC∵CD平分∠ACB,DE⊥AC∴DE=DG∵CD=CD∴ΔCDE≅ΔCDG(HL)∴SΔCDE=SΔCDG又∵AD=FD∴ΔADE≅ΔFDG(HL)∴SΔADE=SΔFDG∴{SΔACD=SΔADE+SΔCDE=10SΔCDE=SΔCDG=SΔCDF+SΔFDG=4+SΔADE则SΔADE+4+SΔADE=10解得SΔADE=3所以答案是:3.小提示:本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.11、∠AOB内部有一点P,OP=5,点P关于OA的对称点为M,点P关于OB的对称点为N,若∠AOB=30°,则△MON的周长为___________.答案:15解析:根据轴对称的性质可证∠MON=2∠AOB=60°;再利用OM=ON=OP,即可求出△MON的周长.解:根据题意可画出下图,∵OA垂直平分PM,OB垂直平分PN.∴∠MOA=∠AOP,∠NOB=∠BOP;OM=OP=ON=5cm.∴∠MON=2∠AOB=60°.∴△MON为等边三角形。

2022—2023年人教版八年级数学(下册)期末试卷及答案(一套)

2022—2023年人教版八年级数学(下册)期末试卷及答案(一套)

2022—2023年人教版八年级数学(下册)期末试卷及答案(一套) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.已知一个多边形的内角和等于900º,则这个多边形是( ) A .五边形 B .六边形 C .七边形D .八边形 5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .248.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,▱ABCD 的对角线AC 、BD 相交于点O ,且AC+BD=16,CD=6,则△ABO 的周长是( )A .10B .14C .20D .22二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____.3.计算22111m m m ---的结果是________. 4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A . x ≥ - , 且x ≠ 1
B . x ≠ 1
C . x ≥ -
D . x > - , 且x ≠ 1
数 学 测 试 题
一、选择题(本大题共 12 个小题,每小题 3 分,共 36 分)
1.( 2013 娄 底 ) 式 子 2 x + 1
x - 1
有意义的 x 的取值范围是( )
1 1 1
2 2 2
2.(2013 雅安)一组数据 2,4,x ,2,4,7 的众数是 2,则这组数据的平均数、中位数分别为(

A .3.5,3
B .3,4
C .3,3.5
D .4,3
3.( 2013 新 疆 ) 下 列 各 式 计 算 正 确 的 是 (

A . (-3) -2 = -
1
9
B . 18 - 32 = - 2
C . a 0 = 1
D . (-2) 2 = -2
4.( 2013 重 庆 )某 特 警 部 队 为 了 选 拔“ 神 枪 手 ”,举 行 了 1000 米 射 击 比 赛 ,最 后 由 甲 、乙 两
名 战 士 进 入 决 赛 ,在 相 同 条 件 下 ,两 人 各 射 靶 10 次 ,经 过 统 计 计 算 ,甲 、乙 两 名 战 士 的 总 成 绩 都 是 99.68 环 , 甲 的 方 差 是 0.28 , 乙 的 方 差 是 0.21 , 则 下 列 说 法 中 , 正 确 的 是 (

A . 甲 的 成 绩 比 乙 的 成 绩 稳 定
B . 乙 的 成 绩 比 甲 的 成 绩 稳 定
C . 甲 、 乙 两 人 成 绩 的 稳 定 性 相 同
D . 无 法 确 定 谁 的 成 绩 更 稳 定
5.( 2013 襄 阳 ) 如 图 1 , 平 行 四 边 形 ABCD 的 对 角 线 交 于 点 O , 且 AB=5 , △ OCD 的 周 长 为 23 , 则 平 行 四 边 形 ABCD 的 两 条 对 角 线 的 和 是 (

A . 18
B . 28
C . 36
D . 46
6.( 2012 黔 东 南 州 ) 如 图 3 , 是 直 线 y = x - 3 的 图 象 , 点 P ( 2 , m ) 在 该 直 线 的 上 方 , 则 m 的
取值范围是(

A . m > -3
B . m > -1
C . m > 0
D . m < 3
7.( 2013 重 庆 ) 如 图 3 , 矩 形 纸 片 ABCD 中 , AB=6cm , BC=8cm , 现 将 其 沿 AE 对 折 , 使 得 点 B 落 在 边 AD 上 的 点 B 1处 , 折 痕 与 边 BC 交 于 点 E , 则 CE 的 长 为 ( )
A . 6cm
B . 4cm
C . 2cm
D . 1cm
(1) (2) ( 3)
8.( 2011 牡 丹 江 )在平 面 直 角 坐 标 系 中 ,点 0 为 原 点 ,直线 y = kx + b 交 x 轴 于 点 A ( - 2 ,0 ),
交 y 轴 于 点 B . 若 △ AOB 的 面 积 为 8 , 则 k 的 值 为 (

A . 1
B . 2
C . - 2 或 4
D . 4 或 - 4
9.( 2013 长 春 )如 图 4 ,在 平 面 直 角 坐 标 系 中 ,点 A 的 坐 标 为( 0 , 3 ),△ OAB 沿 x 轴 向 右 平
移 后 得 到 △ O ′ A ′ B ′ ,点 A 的 对 应 点 在 直 线 y = 为( )
3 4
x 上 一 点 ,则 点 B 与 其 对 应 点 B ′ 间 的 距 离
A .
9 4
B . 3
C . 4
D . 5
(4)(5)(6)
10.(2010西宁)如图5,在矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()
A.5B.52C.6D.62
11.(2013西宁)如图6,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()
A.2B.2C.3D.23
12.(2013哈尔滨)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10
千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付
款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图6所示,下列四种说法:
①一次购买种子数量不超过10千克时,
销售价格为5元/千克;
②一次购买30千克种子时,付款金额为100元;
③一次购买10千克以上种子时,超过10千克的那部分种子
的价格打五折;
④一次购买40千克种子比分两次购买且每次购买20千克种
子少花25元钱.其中正确的个数是()
A.1个B.2个C.3个D.4个
二、填空题(每题3分,共24分)
13.(2013临沂)计算48-91
3的结果是;
14.(2013重庆)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:
时间(单位:小时)人数4
2
3
4
2
2
1
1
1
则这10名学生周末利用网络进行学习的平均时间是小时
15.(2013西宁)直线y=2x-1沿y轴平移3个单位,则平移后直线与y轴的交点坐标
为;
16.(2012眉山)直线y=(3-a)x+b-2在直角坐标系中的图象如图7所示,化简:
b-a-a2-6a+9-2-b=.
17.(2013临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是;
18.(2013重庆)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点
直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且
BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标
为.
D作
(17)(17)(18)
19..函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是.
20.如图,E,F,M,N分别是边长为4的正方形ABCD四条边上的点,且
AE=BF=CM=DN.那么四边形EFMN的面积的最小值是.A E B
三、解答题:(共60分)
20.计算:(6分)
N
D
F
M C 1
(1)(-1)2015+(π-3)0+()-1-(1-2)2
2
21(6分).已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=2AO.求△ABP的面积.
22.(2011随州)(8分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长。

23.(2013呼伦贝尔)(10分)某校初三学生开展踢毽子活动,每班派5名学生参加,按团体总分排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班
和乙班5名学生的比赛成绩.
甲班乙班1号
100
99
2号
98
100
3号
102
95
4号
97
109
5号
103
97
总数
500
500
经统计发现两班5名学生踢毽子的总个数相等.此时有学生建议,可以通过考查数据中的其
它信息作为参考.
请你回答下列问题:
(1)甲乙两班的优秀率分别为、;
(2)甲乙两班比赛数据的中位数分别为、;
(3)计算两班比赛数据的方差;
(4)根据以上三条信息,你认为应该把团体第一名的奖状给哪一个班?简述理由
24.(2012抚顺(10分)如图,已知一次函数y=-1
2
x+b的图象经过点A(2,3),AB⊥x轴,
垂足为B,连接OA.
(1)求此一次函数的解析式;
1
(2)设点P为直线y=-x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若
2
S
△POQ =
5
S
4△AOB,求点P的坐标.
25.(2013荆门)(10分)为了节约资源,科学指导居民改善居住
条件,小王向房管部门提出了一个购买商品房的政策性方案.
人均住房面积(平方米)
不超过30(平方米)
超过30平方米不超过m(平方米)部分(45≤m≤60)
超过m平方米部分单价(万元/平方米)0.3
0.5
0.7
根据这个购房方案:
(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;
(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;
(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.
26.(2013烟台)(10分)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.。

相关文档
最新文档