2019新人教版八年级下册数学期末试卷及答案
2019【人教版】八年级下数学期末考试卷(含答案)

2019【人教版】八年级下数学期末考试卷(含答案)八年级下学期数学期末检测试题姓名:_______ 总分:_______一、选择题(每小题3分,共30分)1.要使式子有意义,则x的取值范围是()A。
x。
0 B。
x ≥ -2 C。
x ≥ 2 D。
x ≤ 22.矩形具有而菱形不具有的性质是()A。
两组对边分别平行 B。
对角线相等 C。
对角线互相平分 D。
两组对角分别相等3.下列计算正确的是()A。
4 × 2 ÷ 3 = 4 B。
15 + (-3) = -15C。
3 + 4 = 7 D。
3 - 4 = -14.根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A。
1 B。
-1 C。
3 D。
-3y 3 px -2 15.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元) 2 000 2 200 2 400 2 600人数(人) 1 3 4 2A。
2400元、2400元 B。
2400元、2300元C。
2200元、2200元 D。
2200元、2300元6.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A。
AB ∥ DC,AD ∥ BC B。
AB = DC,AD = BCC。
AO = CO,BO = DO D。
AB ∥ DC,AD = BC7.如图,菱形ABCD的两条对角线相交于O,若AC = 6,BD = 4,则菱形ABCD的周长是()A。
24 B。
16 C。
4 D。
28.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长()A。
2 B。
3 C。
4 D。
19.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A。
人教版2019学年八年级下数学期末试卷跟答案(共十套)

人教版2019学年八年级下数学期末试卷(一)亲爱的同学:1、没有比脚再长的路,没有比人更高的山。
祝贺你完成八年级的学习,欢迎参加本次数学期末考试!你可以尽情地发挥,仔细、仔细、再仔细!祝你成功!, 满分120分,考试时量120分钟。
一、选择题(本大题共10个小题, 每小题3分,满分30分. 每小题给出的四个选项中,只有一项是符合题设要求的,请把你认为符合题目要求的选项填在下表中相应的题号下)1.下列几组数中,能作为直角三角形三边长度的是A. 2,3,4B. 4,5,6C. 6,8,11D. 5,12,132.在平面直角坐标系中,点(—1,2)在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.点P(—2,3)关于y轴的对称点的坐标是A、(2,3 )B、(-2,—3)C、(—2,3)D、(—3,2)4.下列汉字或字母中既是中心对称图形又是轴对称图形的是5.下列命题中,错误的是A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等6.矩形的对角线长为20,两邻边之比为3 : 4,则矩形的面积为A.56 B. 192 C. 20 D. 以上答案都不对7.将直线y=kx-1向上平移2个单位长度,可得直线的解析式为A.y=kx+1 B.y=kx-3 C.y=kx+3 D.y=kx-18.一次函数y=(k-3)x+2,若y随x的增大而增大,则k的值可以是A.1 B.2 C.3 D.49.已知一次函数的图象经过点(0,3)和(-2,0),那么直线必经过点A.(-4,-3) B.(4,6) C.(6,9) D.(-6,6) 10.关于x的一次函数y kx k=+的图象可能是二、填空题(本大题共8个小题, 每小题3分, 满分24分)11.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为________米.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件(写出一个即可,图形中不再添加助线),则四边形ABCD是平行四边形。
2019年人教版八年级下册数学期末考试试卷及答案

第二学期期末质量监控试卷初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系中,点(2,3)M -在A .第一象限B .第二象限C .第三象限D .第四象限 2.下列图形即是轴对称图形又是中心对称图形的是A .B .C .D .3.若一个多边形的内角和为540°,则这个多边形的边数为 A .4 B. 5 C. 6 D.74.如图,边长为1的方格纸中有一四边形ABCD (A ,B ,C ,D 四点均为格点),则该四边形的面积为A .4B .6C . 12D .24 5.用配方法解方程2470x x --=时,应变形为A .()2211x -= B .()2211x += C . ()2423x -= D .()2423x +=6.某市乘出租车需付车费y (元)与行车里程x (千米)之间函数关系的图象如图所示,那么该市乘出租车超过3千米后,每千米的费用是A .1.5元B .2元C .2.12元D .2.4元 7.如图,在ABCD 中,AB=4,BC =7,∠ABC 的平分线交AD 于点E ,则DE 的长为 A .5B .4C .3D .28.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为 A .(1,3) B .(3,2) C .(0,3) D .(-3,3)9.已知:如图,折叠矩形ABCD ,使点B 落在对角线AC 上的点F 处,若BC=8,AB=6,则线段CE 的长度是A. 3B. 4C.5D.610.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使30%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调CD BA查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是①每人乘坐地铁的月均花费最集中的区域在60—80元范围内; ②每人乘坐地铁的月均花费的平均数范围是40—60元范围内; ③每人乘坐地铁的月均花费的中位数在100—120元范围内; ④乘坐地铁的月均花费达到100元以上的人可以享受折扣. A.①④ B ③④ C ①③ D ①② 二、填空题(本题共18分,每小题3分) 11.一元二次方程022=-x x 的解为____________.12.请写出一个过一三象限且与y 轴交与点(0,1)的直线表达式 ____________。
2019学年人教版八年级下册期末考试数学试卷及答案

(人教版)精品数学教学资料八年级下学期期末考试数学试卷一、选择题(每小题3分,共42分)将唯一正确答案的代号字母填在下面的方格内1.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x≥2B.x>2C.x≠2D.2.(3分)(2013•莱芜)一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10B.10,C.11,D.11,103.(3分)下列函数(1)y=3πx;(2)y=8x﹣6;(3)y=;(4)y=﹣8x;(5)y=5x2﹣4x+1中,是一次函数的有()A.4个B.3个C.2个D.1个4.(3分)下列计算中,正确的是()A.B.C.D.5.(3分)如图,在▱ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=()A.110°B.70°C.50°D.30°6.(3分)函数的自变量x的取值范围为()A.x≥2且x≠8B.x>2C.x≥2D.x≠87.(3分)下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.同一底上两个角相等的四边形是等腰梯形8.(3分)若ab>0,mn<0,则一次函数的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)如图,在梯形ABCD中,AB ∥DC,DE∥CB,若CD=4,△ADE周长为18,那么梯形ABCD的周长为()A.22B.26C.38D.3010.(3分)如图,菱形ABCD的周长为16,若∠BAD=60°,E是AB的中点,则点E的坐标为()A.(1,1)B.(,1)C.(1,)D.(,2)11.(3分)在下列各图象中,y不是x 函数的是()A.B.C.D.12.(3分)已知点(﹣6,y1),(8,y2)都在直线y=﹣x﹣6上,则y1,y2大小关系是()A.y>y2B.y1=y2C.y1<y2D.不能比较113.(3分)雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料米,B种布料米,可获利50元;做一套N型号的时装需用A种布料米,B种布料米,可获利润45元.当M型号的时装为多少套时,能使该厂所获利润最大()A.40B.44C.66D.8014.(3分)在某火车站托运物品时,不超过3kg的物品需付元,以后每增加1kg(不足1kg 按1kg计)需增加托运费元,则下列图象能表示出托运费y与物品重量x之间的函数关系式的是()A.B.C.D.二、填空题(共5小题,每小题3分,共15分)答案直接填在题中横线上15.(3分)如果,那么xy的值为_________ .16.(3分)一组数据0,﹣1,6,1,﹣1,这组数据的方差是_________ .17.(3分)(2008•广安)在平面直角坐标系中,将直线y=2x﹣1向上平移动4个单位长度后,所得直线的解析式为_________ .18.(3分)如图,在平面直角坐标系xOy中,直线与x轴交于点A,与y轴交于点B,将△AOB沿过点A的直线折叠,使点B落在x轴负半轴上,记作点C,折痕与y轴交点交于点D,则点C的坐标为_________ ,点D的坐标为_________ .19.(3分)如图,在菱形ABCD中,AB=13cm,BC边上的高AH=5cm,那么对角线AC的长为_________ cm.三、解答题(共58分)20.(8分)计算(1)﹣÷(2×);(2).21.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,点E,点F在BD上,且 BE=DF 连接AE并延长,交BC于点G,连接CF并延长,交AD于点H.(1)求证:△AOE≌△COF;(2)若AC平分∠HAG,求证:四边形AGCH是菱形.22.某学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为区级先进班集体,下表是这三个班的五项素质考评得分表:五项成绩素质考评得分(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10106107乙班108898丙班910969根据统计表中的信息解答下列问题:(1)请你补全五项成绩考评分析表中的数据:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班10乙班8丙班9 9(2)参照表中的数据,你推荐哪个班为区级先进班集体?并说明理由;_________ (3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照按3:2:1:1:3的比确定,学生处的李老师根据这个平均成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,依照这个成绩,应推荐哪个班为市级先进班集体?23.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)月份用水量(m3)收费(元)9510927(1)求a,c的值;(2)当x≤6,x≥6时,分别写出y于x的函数关系式;(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?24.小丽驾车从甲地到乙地.设她出发第xmin时的速度为ykm/h,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)小丽驾车的最高速度是_________ km/h;(2)当20≤x≤30时,求y与x之间的函数关系式,并求出小丽出发第22min时的速度;(3)如果汽车每行驶100km耗油10L,那么小丽驾车从甲地到乙地共耗油多少升?25.(10分)(2013•赤峰)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.26.(12分)如图,已知点A(2,0)、B(﹣1,1),点P是直线y=﹣x+4上任意一点.(1)当点P在什么位置时,△PAB的周长最小?求出点P的坐标及周长的最小值;(2)在(1)的条件下,求出△PAB的面积.参考答案1-10、ADBDB ACBBB 11-14、CABA15、-616、17、y=2x+318、(﹣1,0);(0,)19、20、(1)(2)2+21、证明:(1)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,在△AOE与△COF中,,∴△AOE≌△COF(SAS);(2)由(1)得△AOE≌△COF,∴∠OAE=∠OCF,∴AE∥CF,∵AH∥CG,∴四边形AGCH是平行四边形;∵AC平分∠HAG,∴∠HAC=∠GAC,∵AH∥CG,∴∠HAC=∠GCA,∴∠GAC=∠GCA,∴CG=AG;∴▱AGCH是菱形.22、解:(1)丙班的平均数为=(分);甲班成绩为6,7,10,10,10,中位数为10(分);乙班的众数为8分,填表如下:五项成绩考评比较分析表(单位:分)班级平均数众数中位数甲班1010乙班88丙班99(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;故答案为:甲班;(3)根据题意得:丙班的平均分为9×+10×+9×+6×+9×=(分),补全条形统计图,如图所示:∵<<,∴依照这个成绩,应推荐丙班为市级先进班集体.23、解:(1)由题意5a=,解得a=;6a+(9﹣6)c=27,解得c=6.(2)依照题意,当x≤6时,y=;当x≥6时,y=6×+6×(x﹣6),y=9+6(x﹣6)=6x﹣27,(x>6)(3)将x=8代入y=6x﹣27(x>6)得y=6×8﹣27=21(元).24、解:(1)由图可知,第10min到20min之间的速度最高,为60km/h;(2)设y=kx+b(k≠0),∵函数图象经过点(20,60),(30,24),∴,解得,所以,y与x的关系式为y=﹣x+132,当x=22时,y=﹣×22+132=h;(3)行驶的总路程=×(12+0)×+×(12+60)×+60×+×(60+24)×+×(24+48)×+48×+×(48+0)×,=+3+10+7+3+8+2,=,∵汽车每行驶100km耗油10L,25、(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∴AB=AC=×60=30cm.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE即60﹣4t=4t解得:t=∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°)∴小丽驾车从甲地到乙地共耗油:×=升.26、解:(1)作出点A关于直线y=﹣x+4的对称点C,连结BC交直线于点P,∴PA=PC,AD=CD,则PB+PA=PB+PC=BC,由直线y=﹣x+4得与x轴上的交点D为(4,0)、与y轴的交点为E为(0,4),∴OD=OE=4,则∠ODE=45°,则∠ADC=90°,∴AD=CD=2,∴点C的坐标是(4,2),设直线BC的解析式为y=kx+b,则有,解得:k=,b=,即直线BC的解析式为:y=x+.由方程组得:,即P的坐标是(,),由勾股定理得BC=、AB=,∴△PAB的周长是.(2)由直线BC的解析式y=x+得:点F的坐标是(﹣6,0),∴S△PAB=S△PAF﹣S△BAF=×AE×(﹣1)=.。
2019年最新人教版八年级下数学期末试题及答案

最新人教版八年级下数学期末试题及答案一、选择题1.下列式子中,属于最简二次根式的是()A. 9B. 7C. 20D.312、若为实数,且,则的值为()A.1 B. C.2 D.3、在△ABC中AB=15,AC=13,高AD=12,则△ABC的周长为()A.42 B.32 C.42或32 D.37或334、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )(A)(B)(C)(D)5. 如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则MDAM等于()A.83B.32C.53D.546、已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-3x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3 B.y1<y2<y3 C.y3>y1>y2 D.y3<y1<y27、如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,则下列式子中,一定成立的是()A. B.C. D.8. 如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5 º,EF⊥AB,垂足为F,则EF的长为()A.1 B. 2 C.4-2 2 D.32-49、某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是()A.23,25 B.23,23 C.25,23 D.25,2510.矩形具有而菱形不具有的性质是( )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等NM DB CA11.根据表中一次函数的自变量x 与函数y 的对应值,可得p的值为( )A.1B.-1C.3D.-312.如图,函数y=2x 和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( ) A.x<错误!未找到引用源。
2019人教版数学初二下册期末考试试题及答案

八年级(下)期末考试数学试卷一、选择题(共10小题,每小题3分,满分30分)1.若式子23xx--有意义,则x的取值范围为()A.x≥2 B.x≠3 C.x≥2或x≠3 D.x≥2且x≠32.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.a=2,b=3,c=5B.a=1.5,b=2,c=3C.a=6,b=8,c=10 D.a=3,b=4,c=53.下列计算错误的是()A.3+22=52B.÷2=2C.2×3=D.2=2 4.设n为正整数,且n<<n+1,则n的值为()A.5 B.6 C.7 D.85.若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为()A.22B.42C.4 D.86.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AD于点F,则∠1=()A.40°B.50°C.60°D.80°7.小刚与小华本学期都参加5次数学考试(总分都为120分),数学老师想判断这两个同学的数学成绩谁更稳定,在做统计分析时,老师需要比较这两个人5次数学成绩的()A.方差B.平均数C.众数D.中位数8.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,平行四边形ABCD是菱形B.当AC⊥BD时,平行四边形ABCD是菱形C.当AC=BD时,平行四边形ABCD是正方形D.当∠ABC=90°时,平行四边形ABCD是矩形9.关于一次函数y=﹣2x+3,下列结论正确的是()A.图象过点(1,﹣1)B.图象经过一、二、三象限C.y随x的增大而增大D.当x>时,y<010.如图,菱形ABCD中,AB=2,∠B=120°,点M是AD的中点,点P由点A 出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P 经过的路程x之间的函数关系的图象大致是()二、填空题(共6小题,每小题4分,满分24分)11.比较大小:﹣2﹣3(填“<”或“=”或“>”)12.将正比例函数y=﹣2x的图象沿y轴向上平移5个单位,则平移后所得图象的解析式是.13.在平面直角坐标系中,A(﹣4,3),点O为坐标原点,则线段OA的长为.14.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=9,则EF的长为.15.如图,在△ABC中,∠ACB=90°,AC=6,AB=10,AB的垂直平分线DE 交AB于点D,交BC于点E,则CE的长等于.16.如图,在平面直角坐标系中有一个边长为1的正方形OABC,边OA,OC 分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,…,照此规律作下去,则点B6的坐标为.三、解答题(共3小题,满分18分)17.(6分)计算:+(﹣1)﹣30﹣|﹣2|.18.(6分)先化简,再求值:(1﹣)•,其中a=﹣1.19.(6分)如图,在平行四边形ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.四、简答题20.(7分)已知:x=2+,y=2﹣.(1)求代数式:x2+3xy+y2的值;(2)若一个菱形的对角线的长分别是x和y,求这个菱形的面积?21.(7分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(1)在如图中,“7分”所在扇形的圆心角等于°.(2)请你将如图的统计图补充完整.(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.22.(7分)已知直线y=kx+5交x轴于A,交y轴于B且A坐标为(5,0),直线y=2x﹣4与x轴于D,与直线AB相交于点C.(1)求点C的坐标;(2)根据图象,写出关于x的不等式2x﹣4>kx+5的解集;(3)求△ADC的面积.五、简答题23.(9分)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费49元;2月份用水22吨,交水费56元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小英家3月份用水24吨,她家应交水费多少元?24.(9分)已知如图1,P为正方形ABCD的边BC上任意一点,BE⊥AP于点E,在AP的延长线上取点F,使EF=AE,连接BF,∠CBF的平分线交AF 于点G.(1)求证:BF=BC;(2)求证:△BEG是等腰直角三角形;(3)如图2,若正方形ABCD的边长为4,连接CG,当P点为BC的中点时,求CG的长.25.(9分)如图,矩形OABC在平面直角坐标系内(O为坐标原点),点A在x轴上,点C在y轴上,点B的坐标为(﹣4,﹣4),点E是BC的中点,现将矩形折叠,折痕为EF,点F为折痕与y轴的交点,EF交x轴于G且使∠CEF=60°.(1)求证:△EFC≌△GFO;(2)求点D 的坐标;(3)若点P (x ,y )是线段EG 上的一点,设△PAF 的面积为s ,求s 与x 的函数关系式并写出x 的取值范围.一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案DBACCBACDB二、填空题(每小题4分,共24分)11.>12 .y =-2x +5 .13.5.14. 2 .15.____________.16.(8,-8). 三、解答题(每小题6分,共18分)17.解:原式……………4分 ……………6分18.解:原式74342-31-3-334=++=21(1)(1)1=313-1=3+1-13-3=3a a a a a a a -=⨯+-=+-当a 时原式……………6分19.解:(1)如图AE 就是所要求的角平分线。
最新2019新人教版八年级下册数学期末试卷及答案

2019新人教版八年级下册数学期末试卷及答案(含答案)一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个.A 、1 个B 、2 个C 、3 个D 、4个 2.x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222 C .3,4, 5 D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAA D O二、填空题(本题共10小题,满分共30分)11.48-1-⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm.14.在直角三角形ABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5 3,则△ADC 的周长为 _.15、如图,平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,AB= 5 ,AC=6,DB=8 则四边形ABCD 是的周长为 .16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= . 17. 某一次函数的图象经过点(1-,3),且函数y 随x 的增大而减小,请你写出一个符合条件的函数解析式______________________.18.)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是_______19.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (选填“甲”或“乙)三.解答题:21.(7分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.23.(9分)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.(1)求证:四边形DEGF是平行四边形;(2)当点G是BC的中点时,求证:四边形DEGF是菱形.24. (9分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x≤80时,求y 与x 的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?.25、(10分)如图,直线6y kx =+与x 轴分别交于E 、F .点E 坐标为(-8,0),点A 的坐标为(-6,0).(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出三角形OP A 的面积s 与x 的函数关系式,并写出自变量x 的取值范围; (3)探究:当P 运动到什么位置时,三角形OPA 的面积为278,并说明理由.(第22题)26.(8分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分.然后再计算其余给分的l平均数.方案3:所有评委所给分的中位效.方案4:所有评委所给分的众数.为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.右面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适台作为这个同学演讲的最后得分,并给出该同学的最后得分.27. (10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案一、选择题1.C2.D3.B4.C5.B6.A7.D8.D9.C 10.D 二、填空题11. 33 , 12. 17, 13. 4 , 14. 3510+, 15. 20 , 16. 5, 17. 答案不唯一18. 29,19. 乙, 20. .)3(1-n三、解答题(本题共8小题,满分共60分)21.解:由题意得⎩⎨⎧>-≥-0609x x ,⎩⎨⎧>≤69x x ,∴96≤<x∵x 为偶数,∴8=x .)1)(1(11)1(11)1()1)(1()1()1(112)1(222-+=+-+=+-+=-+-+=-+-+x x x x x x x x x x x x x x x x 原式=∴当8=x 时,原式=7379=⨯ 22.BC=325+23. 证明:(1)∵AG ∥DC ,AD ∥BC,∴四边形AGCD 是平行四边形, ∴AG=DC ,∵E 、F 分别为AG 、DC 的中点, ∴GE=AG ,DF=DC , 即GE=DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)连接DG ,∵四边形AGCD 是平行四边形, ∴AD=CG ,∵G 为BC 中点, ∴BG=CG=AD ,∵AD ∥BG ,∴四边形ABGD 是平行四边形, ∴AB ∥DG , ∵∠B=90°,∴∠DGC=∠B=90°, ∵F 为CD 中点, ∴GF=DF=CF , 即GF=DF ,∵四边形DEGF 是平行四边形, ∴四边形DEGF 是菱形. 24. 解:⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(min ).小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m )25.(1)34k =;(2)9184s x =+(-??<x <);(??)P (139,28-)????26.∴EF=2016年八年级数学(下)期末调研检测试卷。
人教版2019学年八年级下册数学期末试卷及答案(共10套)

人教版2019学年八年级数学期末测试题(一)一、选择题(每题4分,12个题,共48分)1.函数12y x =+自变量x 的取值范围是( ). A .2x ≠- B . 2x =- C . 0x ≠ D . 2x ≠2.在一次期末考试中,某一小组的5名同学的数学成绩(单位:分)分别是130,100,108,110,120,则这组数据的中位数是( ).A .100B .108C .110D .120 3.下列选项中,平行四边形不一定...具有的性质是( ). @A .两组对边分别平行B .两组对边分别相等C .对角线互相平分D .对角线相等4、下列各式中①a ;②1+b ; ③2a ; ④32+a ; ⑤12-x ; ⑥122++x x 一定是二次根式的有( )个。
A . 1 个 B. 2个 C. 3个 D. 4个 5. 计算:()()222112a a -+-的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a -6.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ))A .3cm 2 B .4cm 2C .6cm 2D .12cm 27.若一个直角三角形的两边长分别是5和12,则第三边长为( ) (A)13 (B) (C) 13或 (D)无法确定*8.如图,已知四边形ABCD 为菱形,5,6AD cm BD cm ==,则此菱形的面积为( ). A .12cm 2B .24cm 2C .48cm 2D .96cm 2'9.如图,矩形ABCD 中,对角线AC 、BD 交于点O .若60AOB ∠=︒,10BD =,则AB 的长为( ).A .53B .5C .4D .3119119(第10题图)10.如图,□ABCD 的周长为40,BOC ∆的周长比AOB ∆的周长多10,则AB 为( ). A .5 B .10 C .15 D .2011.已知一次函数y=kx+b 的图象如右图所示,当x <0时,y 的取值范围是( )A.y >0B.y <0 C -2<y <0 D y <-2:12.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜后,余下的每千克降价0.4元,全部售完。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1FEDCBA(-1,1)1y (2,2)2yxyO10203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第8题)12345678八年级数学(下)期末检测试卷一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。
A 、1 个B 、2 个C 、3 个D 、4个 2.若式子2x -有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )A .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58 (D )每月阅读数量超过40的有4个月ADOACB10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-13-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
14.在直角三角形ABC 中,∠C=90°,CD 是AB 边上的中线,∠A=30°,AC=5 3,则△ADC 的周长为 _。
15、如图,平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,AB= 5 ,AC=6,DB=8 则四边形ABCD 是的周长为 。
6.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= . 17. 某一次函数的图象经过点(1-,3),且函数y 随x 的增大而减小, 请你写出一个符合条件的函数解析式____________________ __.18.)某市2007年5月份某一周的日最高气温(单位:℃)分别为:25,28,30,29,31,32,28,这周的日最高气温的平均值是_______________19.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是 (选填“甲”或“乙)三.解答题:21. (7分)在△ABC 中,∠C=30°,AC=4cm,AB=3cm ,求BC 的长.M PFE CBA30 50 19503000 80 x/miny/m O(第22题)23. (9分) 如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG .(1)求证:四边形DEGF 是平行四边形;(2)当点G 是BC 的中点时,求证:四边形DEGF 是菱形.24. (9分) 小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x≤80时,求y 与x 的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?.25、(10分)如图,直线6y kx =+与x 轴分别交于E 、F .点E 坐标为(-8,0),点A 的坐标为(-6,0).(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,当点P 运动过程中,试写出三角形OP A 的面积s 与x的函数关系式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置时,三角形OPA 的面积为278,并说明理由.yFE A O x26.(8分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数,方案2:在所有评委所给分中,去掉一个最高分和一个最低分.然后再计算其余给分的l平均数.方案3:所有评委所给分的中位效.方案4:所有评委所给分的众数。
为了探究上述方案的合理性.先对某个同学的演讲成绩进行了统计实验.右面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适台作为这个同学演讲的最后得分,并给出该同学的最后得分.27. (10分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案一、选择题1.C2.D3.B4.C5.B6.A7.D8.D9.C 10.D 二、填空题11. 33 , 12. 17, 13. 4 , 14. 3510+, 15. 20 , 16. 5, 17. 答案不唯一18. 29,19. 乙, 20. .)3(1-n三、解答题(本题共8小题,满分共60分)21.解:由题意得⎩⎨⎧>-≥-0609x x ,⎩⎨⎧>≤69x x ,∴96≤<x∵x 为偶数,∴8=x .)1)(1(11)1(11)1()1)(1()1()1(112)1(222-+=+-+=+-+=-+-+=-+-+x x x x x x x x x x x x x x x x 原式=∴当8=x 时,原式=7379=⨯22.BC=325+23. 证明:(1)∵AG ∥DC ,AD ∥BC ,∴四边形AGCD 是平行四边形, ∴AG=DC ,∵E 、F 分别为AG 、DC 的中点, ∴GE=AG ,DF=DC , 即GE=DF ,GE ∥DF ,∴四边形DEGF 是平行四边形;(2)连接DG ,∵四边形AGCD 是平行四边形, ∴AD=CG ,∵G 为BC 中点, ∴BG=CG=AD , ∵AD ∥BG ,∴四边形ABGD 是平行四边形, ∴AB ∥DG , ∵∠B=90°,∴∠DGC=∠B=90°, ∵F 为CD 中点, ∴GF=DF=CF , 即GF=DF ,∵四边形DEGF 是平行四边形, ∴四边形DEGF 是菱形. 24. 解:⑴3600,20.⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+.根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-.②缆车到山顶的路线长为3600÷2=1800(m ), 缆车到达终点所需时间为1800÷180=10(min ).小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮离缆车终点的路程是3600-2500=1100(m ) 25.(1)34k =;(2)9184s x =+(-8<x <0);(3)P (139,28-) 26.27.解答: (1)证明:∵MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,∴∠2=∠5,4=∠6,∵MN∥BC,∴∠1=∠5,3=∠6, ∴∠1=∠2,∠3=∠4, ∴EO=CO,FO=CO , ∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6, ∴∠2+∠4=∠5+∠6=90°, ∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)答:当点O 在边AC 上运动到AC 中点时,四边形AECF 是矩形. 证明:当O 为AC 的中点时,AO=CO , ∵EO=FO,∴四边形AECF 是平行四边形, ∵∠ECF=90°,∴平行四边形AECF 是矩形.。