2020_2021学年高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程学案含解析新人教A版选
2020_2021学年高中数学第二章圆锥曲线与方程2.3.1双曲线及其标准方程学案含解析新人教A版选

2.3 双曲线2.3.1 双曲线及其标准方程内容标准学科素养1.掌握双曲线的定义.2.掌握用定义法和待定系数法求双曲线的标准方程.3.理解双曲线标准方程的推导过程,并能运用标准方程解决相关问题.应用直观想象提升逻辑推理及数学运算授课提示:对应学生用书第33页[基础认识]知识点一双曲线的定义预习教材P52-53,思考并完成以下问题我们知道,与两个定点距离的和为非零常数(大于两定点间的距离)的点的轨迹是椭圆.那么,与两定点距离的差为非零常数的点的轨迹是什么?如图,取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线.这条曲线是满足下面条件的点的集合:P={M||MF1|-|MF2|=常数}.如果使点M到点F2的距离减去到点F1的距离所得的差等于同一个常数,就得到另一条曲线(图中左边的曲线).这条曲线是满足下面条件的点的集合:P={M||MF2|-|MF1|=常数}.这两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.知识梳理双曲线的定义:把平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.思考若常数=|F1F2|,则满足条件的点的轨迹是什么?若常数>|F1F2|,则满足条件的点是否存在?提示:两条射线不存在知识点二双曲线的标准方程思考并完成以下问题类比椭圆标准方程的建立过程,你能说说应怎样选择坐标系,建立双曲线的标准方程吗?提示:建立如图直角坐标系,设M(x,y)是双曲线上任一点,|F1F2|=2c,||MF1|-|MF2||=2a,则|x+c2+y2-x-c2+y2|=2a,整理得(c2-a2)x2-a2y2=a2(c2-a2),令b2=c2-a2(b>0),则b2x2-a2y2=a2b2,即x2a2-y2b2=1(a>0,b>0)——双曲线的标准方程.知识梳理双曲线的标准方程焦点在x轴上焦点在y轴上标准方程x2a2-y2b2=1(a>0,b>0)y2a2-y2b2=1(a>0,b>0)焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) 焦距|F1F2|=2c,c2=a2+b21.动点P到点M(1,0),N(-1,0)的距离之差的绝对值为2,则点P的轨迹是( ) A.双曲线B.双曲线的一支C.两条射线D.一条射线答案:C2.双曲线方程为x2-2y2=1,则它的右焦点坐标为( )A.⎝⎛⎭⎪⎪⎫22,0B.⎝⎛⎭⎪⎪⎫52,0C.⎝⎛⎭⎪⎪⎫62,0D.(3,0)答案:C授课提示:对应学生用书第34页探究一双曲线定义的应用[教材P61习题2.3A组1题]双曲线4x2-y2+64=0上一点P到它的一个焦点的距离等于1,那么点P到另一个焦点的距离等于________.解析:双曲线4x2-y2+64=0可化为y264-x216=1,∴a =8.由定义知|PF 1|-|PF 2|=16,|PF 2|=±16+|PF 1|,|PF 2|=17或|PF 2|=-15(舍去). 答案:17[例1] (1)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3(2)设F 1、F 2分别是双曲线x 2-y 224=1的左、右焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .83C .24D .48[解析](1)由题意得||PF 1|-|PF 2||=6, ∴|PF 2|=|PF 1|±6,∴|PF 2|=9或-3(舍去) 故选B.(2)⎩⎪⎨⎪⎧|PF 1|-|PF 2|=23|PF 1|=4|PF 2|,解得|PF 1|=8,|PF 2|=6.在△PF 1F 2中,|PF 1|=8,|PF 2|=6,|F 1F 2|=10 ∴△PF 1F 2为直角三角形,∴S △PF 1F 2=12|PF 1||PF 2|=24.故选C.[答案](1)B (2)C方法技巧 (1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).(2)在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的灵活运用.跟踪探究 1.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2.若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解析:由x 29-y 216=1得,a =3,b =4,c =5.由双曲线的定义和余弦定理得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.探究二 求双曲线的标准方程[阅读教材P 54例1]已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0),双曲线上一点P 到F 1、F 2距离差的绝对值等于6,求双曲线的标准方程.题型:待定系数法求双曲线的标准方程. 方法步骤:(1)根据条件设出所求方程x 2a 2-y 2b 2=1(a >0,b >0).(2)根据双曲线的定义得2a =||PF 1|-|PF 2||=6, ∴a =3.又∵c =5,从而求出b . (3)写出所求的标准方程.[例2]求适合下列条件的双曲线的标准方程. (1)焦距为26,且经过点M (0,12);(2)双曲线上两点P 1,P 2的坐标分别为(3,-42),⎝ ⎛⎭⎪⎫94,5.[解析](1)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1. (2)设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +32n =1,8116m +25n =1,解得⎩⎪⎨⎪⎧n =116,m =-19,∴双曲线的标准方程为y 216-x 29=1.方法技巧 待定系数法求方程的步骤(1)定型:确定双曲线的焦点所在的坐标轴是x 轴还是y 轴. (2)设方程:根据焦点位置设出相应的标准方程的形式,①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax 2+By 2=1(AB <0). ②与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共焦点的双曲线的标准方程可设为x 2a 2-k-y 2b 2+k=1(-b 2<k <a 2).(3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程. 跟踪探究 2.(1)求以椭圆x 216+y 29=1的短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程;(2)已知双曲线过P ⎝ ⎛⎭⎪⎫3,154,Q ⎝ ⎛⎭⎪⎫-163,5两点,求双曲线的标准方程.解析:(1)由题意, 知双曲线的两焦点为F 1(0,-3),F 2(0,3). 设双曲线方程为y 2a2-x 2b 2=1(a >0,b >0),将点A (4,-5)代入双曲线方程, 得25a 2-16b2=1.又a 2+b 2=9,解得a 2=5,b 2=4, 所以双曲线的标准方程为y 25-x 24=1.(2)若焦点在x 轴上, 设双曲线的方程为x 2a2-y 2b 2=1(a >0,b >0),所以⎩⎪⎨⎪⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上, 设双曲线的方程为y 2a2-x 2b 2=1(a >0,b >0),将P ,Q 两点坐标代入可得⎩⎪⎨⎪⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1. 综上,双曲线的标准方程为y 29-x 216=1.探究三 与双曲线有关的轨迹问题[阅读教材P 54例2]已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.题型:求动点的轨迹方程.方法步骤:(1)建立直角坐标系,使A 、B 在x 轴上,坐标原点为AB 的中点,设爆炸点P (x ,y ).(2)建立P 的几何性质,|PA |-|PB |=680. (AB =800>600)故P 的轨迹是以A 、B 为焦点的双曲线一支. 从而写出所求轨迹方程.[例3]如图,在△ABC 中,已知|AB |=42,且三个内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.[解析]以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理得sin A =|BC |2R ,sin B =|AC |2R,sin C =|AB |2R (R 为△ABC 的外接圆半径).∵2sin A +sin C =2sin B , ∴2|BC |+|AB |=2|AC |, 从而有|AC |-|BC |=12|AB |=22<|AB |.由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点). ∵a =2,c =22,∴b 2=c 2-a 2=6,即所求轨迹方程为x 22-y 26=1(x >2).方法技巧 (1)求解与双曲线有关的点的轨迹问题,常见的方法有两种:①列出等量关系,化简得到方程;②寻找几何关系,由双曲线的定义,得出对应的方程.(2)求解双曲线的轨迹问题时要特别注意:①双曲线的焦点所在的坐标轴;②检验所求的轨迹对应的是双曲线的一支还是两支.跟踪探究 3.如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解析:圆F 1:(x +5)2+y 2=1,圆心F 1(-5,0),半径r 1=1; 圆F 2:(x -5)2+y 2=42,圆心F 2(5,0),半径r 2=4. 设动圆M 的半径为R ,则有|MF 1|=R +1,|MF 2|=R +4, ∴|MF 2|-|MF 1|=3<10=|F 1F 2|.∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a =32,c =5,于是b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为x 294-y 2914=1⎝⎛⎭⎪⎫x ≤-32.授课提示:对应学生用书第35页[课后小结](1)理解双曲线定义应注意以下三点:①定义中的动点与定点在同一平面内;②距离的差要加绝对值,否则只表示双曲线的一支;③距离差的绝对值必须小于焦距,否则不是双曲线,而是两条射线或无轨迹.(2)利用待定系数法可以求双曲线的标准方程,求解步骤包括“定位”与“定量”两步.[素养培优]1.忽视双曲线上的点到焦点距离的X围致误双曲线x225-y224=1上的点P到一个焦点的距离为11,则它到另一个焦点的距离为( )A.1或21 B.14或36C.2 D.21易错分析由双曲线的定义知||PF1|-|PF2||=10,不妨设F1、F2分别为左、右焦点.若|PF2|=11,∴|PF1|=1或21,故选A,忽视了|PF1|的取值X围.考查直观想象、逻辑推理的学科素养.自我纠正由双曲线的定义知||PF1|-|PF2||=10(F1、F2为左、右焦点).又∵|PF1|=1或21,当P在左支上时,|PF1|>c-a=2,故|PF1|=1舍去;当P在右支上时,|PF1|>c+a=12,故|PF1|=21,故选D.答案:D2.混淆a,b,c的关系致误双曲线8kx2-ky2=8的一个焦点坐标为(0,3),求k的值.易错分析 由8kx 2-ky 2=8,得x 21k -y 28k=1. ∵焦点在y 轴上,∴a 2=8-k ,b 2=-1k, 又∵c 2=a 2-b 2,故3=-7k ,∴k =-73. 混淆了椭圆与双曲线中a 、b 、c 的关系导致结果错误.考查直观想象、数学运算的学科素养.自我纠正 将双曲线的方程化成kx 2-k 8y 2=1.因为双曲线的一个焦点坐标是(0,3),所以焦点在y 轴上,且c =3.所以a 2=-8k ,b 2=-1k .所以-8k -1k=9,解得k =-1. 3.忽视对双曲线焦点位置的讨论致误若双曲线x 2m -2-y 2m -7=1的焦距等于6,某某数m 的值.易错分析 解答本题时,容易将m -2看作a 2,将m -7看作b 2,而造成漏解.考查逻辑推理及数学运算.自我纠正 因为双曲线的焦距等于6,即2c =6,所以c =3,即a 2+b 2=c 2=9.(1)当双曲线焦点在x 轴上时,方程为x 2m -2-y 2m -7=1,a 2=m -2,b 2=m -7,所以m -2+m -7=9,解得m =9,即实数m 的值为9.(2)当双曲线焦点在y 轴上时,方程为y 27-m -x 22-m=1,a 2=7-m ,b 2=2-m ,所以7-m +2-m =9,解得m =0,即实数m 的值为0.综上可知,实数m 的值为0或9.。
双曲线的定义及标准方程(1)

上 页
下 页
小 结
X 16
2
−
Y 9
2
=
− 1
结 束
定义
| |MF1|-|MF2| | =2a(0 < 2a<|F1F2|) ( )
y
M
M F2
y
图象
首 页
F1
o
F2
x
F1
x
上 页
下 页
方程
小 结 结 束
x y − 2 =1 2 a b
F ( ±c, 0)
2
2
F1 (-c,0) O
F2 (c,0)
x
(x +c) + y − (x −c) + y
2 2 2
2
= 2a.
(x + c) + y − (x −c) + y = ±2a.
2 2 2 2
4、化简 、
移项得, 移项得
(x + c) + y = (x −c) + y ± 2a.
2 2 2 2
两边平方得, 两边平方得
思考:换为如右图建系呢? 思考:换为如右图建系呢? 标准方程: 标准方程:
y
• 1
F
y x − 2 = 1 (a>0,b>0) 2 a b
, 焦点: 焦点: F1(0, c), F2(0, –c)
2
2
O
•
•
x
M
F 2
思考: 有何关系? 思考:a, b, c有何关系? 有何关系 c2=a2+b2 c最大,a与b的大小无规定 最大, 与 的大小无规定 最大
高中数学选修2-1 2.3.1双曲线的标准方程(一)

3.求解方程
(1)建系 (2)设点 M(x,y) (3)限制条件 (4)代入等式 (5)化简整理
y M
O
x
MF1 MF2 2a 0 2a 2c
同学们亲手 练习!
x y 2 1(a 0, b 0) 2 a b
2
2
4.双曲线的标准方程
2 2 x y y x 2 1(a 0, b 0) 2 1(a 0, b 0) 2 2 a b a b 在双曲线方程中, 总有
2 2 2
双曲线 | MF1 | | MF2 | 2a x2 y2 2 1 2 a b 2 2 y x 2 1 2 a b ( c , 0) (0, c ) c a b
2 2 2
方程
焦点 a , b, c 的关系
四、讲练结合
例1.课本P 47, 例1 已知双曲线的两个焦点分别为F1 5, 0 , F2 5, 0 , 双曲线上一点P到F1 , F2 距离之差的绝 对值等于6.求双曲线的标准方程. 变式1.已知两点F1 5, 0 , F2 5, 0 , 求与这两点
(1)m ;
( 2)m ; (3)m 1; ( 4) 1 m 2
例3.求根据下列条件, 求双曲线的标准方程 (1)经过点P 3,10 ,Q 6, 2 的双曲线方程; ( 2)c 6 , 经过点( 5, 2), 焦点在x轴上. x y (3)已知双曲线与椭圆 1有共同的 27 36 焦点, 且过点
三、新知讲解
1.双曲线的定义 平面内与两个定点F1 , F2的距离之差的绝对值等 于常数2a (小于 | F1F2 |)的点的轨迹叫做双曲线.这两 个定点叫双曲线的焦点, 两焦点间的距离叫双曲线 的焦距.
2020高中数学 第二章 圆锥曲线与方程 2. 双曲线 2..1 双曲线及其标准方程讲义 2-1

2.3。
1 双曲线及其标准方程1.双曲线(1)定义错误!平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.(2)双曲线的集合描述设点M是双曲线上任意一点,点F1,F2是双曲线的焦点,则由错误!P={M|||MF1|-|MF2||=2a,0〈2a〈|F1F2|}.2.双曲线的标准方程1.判一判(正确的打“√",错误的打“×")(1)平面内到两定点的距离的差等于非零常数(小于两定点间距离)的点的轨迹是双曲线.( )(2)在双曲线标准方程错误!-错误!=1中,a〉0,b>0且a≠b.( ) (3)双曲线的标准方程可以统一为Ax2+By2=1(其中AB 〈0).()答案(1)×(2)×(3)√2.做一做(请把正确的答案写在横线上)(1)若双曲线错误!-错误!=1上一点M到左焦点的距离为8,则点M 到右焦点的距离为________.(2)双曲线x2-4y2=1的焦距为________.(3)(教材改编P55T1)已知双曲线a=5,c=7,则该双曲线的标准方程为________.(4)下列方程表示焦点在y轴上的双曲线的有________(把序号填在横线上).①x2-错误!=1;②错误!+错误!=1(a<0);③y2-3x2=1;④x2cosα+y2sinα=1错误!.答案(1)4或12 (2) 5 (3)错误!-错误!=1或错误!-错误!=1(4)②③④解析(3)∵a=5,c=7,∴b=错误!=错误!=2错误!。
当焦点在x轴上时,双曲线方程为错误!-错误!=1;当焦点在y轴上时,双曲线方程为错误!-错误!=1。
探究1 双曲线标准方程的认识例1 若θ是第三象限角,则方程x2+y2sinθ=cosθ表示的曲线是()A .焦点在y 轴上的双曲线B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在x 轴上的椭圆[解析] 曲线方程可化为错误!+错误!=1,θ是第三象限角,则cos θ<0,错误!〉0,所以该曲线是焦点在y 轴上的双曲线.故选A.[答案] A拓展提升双曲线方程的认识方法将双曲线的方程化为标准方程的形式,假如双曲线的方程为错误!+y 2n=1,则当mn 〈0时,方程表示双曲线.若错误!则方程表示焦点在x 轴上的双曲线;若⎩⎪⎨⎪⎧m <0,n 〉0则方程表示焦点在y 轴上的双曲线. 【跟踪训练1】 若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )A .焦点在x 轴上的椭圆B.焦点在y轴上的椭圆C.焦点在y轴上的双曲线D.焦点在x轴上的双曲线答案C解析原方程化为错误!-错误!=1,∵k>1,∴k2-1>0,k+1>0。
高中数学 第二章 圆锥曲线与方程 2.3 双曲线 2.3.1 双曲线及其标准方程 新人教A版选修2-

『规律总结』 1.用定义法求双曲线方程,应依据条件辨 清是哪一支,还是全部曲线.
2.与双曲线两焦点有关的问题常利用定义求解.
3.如果题设条件涉及动点到两定点的距离,求轨迹方程 时可考虑能否应用定义求解.
〔跟踪练习1〕
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆 M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程.
4.已知双曲线a=5,c=7,则该双曲线2x52的-2y标42 =准1 或方2y52程-为2x42 =1 __[解__析_]__∵__a_=_5_,_c_=_7_,_.∴b= c2-a2= 24=2 6
当焦点在 x 轴上时 双曲线方程为2x52 -2y42 =1 当焦点在 y 轴上时 双曲线方程为2y52 -2x42 =1
5.P是双曲线x2-y2=16的左支上一点,F1,F2分别是左、 右焦点,-则8 |PF1|-|PF2|=________.
[解析] 双曲线方程为1x62 -1y62 =1
∴a=4
∴||PF1|-|PF2||=2a=8 又∵P 在左支上,F1 为左焦点, ∴|PF1|-|PF2|=-8.
互动探究学案
B.||PF1|-|PF2||=6
C.||PF1|-|PF2||=7
D.||PF1|-|PF2||=0
[解析] A中,∵|F1F2|=6,∴||PF1|-|PF2||=5<|F1F2|,故 动点P的轨迹是双曲线;B中,∵||PF1|-|PF2||=6=|F1F2|,∴ 动点P的轨迹是以F1或F2为端点的射线(含端点);C中, ∵||PF1|-|PF2||=7>|F1F2|,∴动点P的轨迹不存在;D中, ∵||PF1|-|PF2||=0,即|PF1|=|PF2|,根据线段垂直平分线的
2021_2022学年高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程练习(含解析)新人教A

2.2.1 双曲线及其标准方程[学生用书P105(单独成册)])[A 根底达标]1.平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,那么点M 的轨迹方程是( )A.x 216-y 29=1 B .x 216-y 29=1(x ≥4)C.x 29-y 216=1 D .x 29-y 216=1(x ≥3)解析:选D.由|MA |-|MB |=6,且6<|AB |=10,得a =3,c =5,b 2=c 2-a 2=16. 故其轨迹为以A ,B 为焦点的双曲线的右支. 所以方程为x 29-y 216=1(x ≥3).2.双曲线方程为x 2-2y 2=1,那么它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B .⎝⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0 D .(3,0)解析:选C.将双曲线方程化成标准方程为x 21-y 212=1, 所以a 2=1,b 2=12,所以c =a 2+b 2=62,故右焦点坐标为⎝⎛⎭⎪⎫62,0. 3.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( )A.x 23-y 2=1 B .y 2-x 23=1C.x 23-y 24=1 D .y 23-x 24=1解析:选B.由题意知,双曲线的焦点在y 轴上,且a =1,c =2,所以b 2=3,所以双曲线的方程为y 2-x 23=1.4.(2021·绍兴高二检测)双曲线Γ:x 2λ-y 29=1上有一点M 到Γ的右焦点F 1(34,0)的距离为18,那么点M 到Γ的左焦点F 2的距离是( )A .8B .28C .12D .8或28解析:选D.因为双曲线Γ:x 2λ-y 29=1的右焦点F 1(34,0),所以λ=34-9=25,所以双曲线Γ:x 225-y 29,可知||MF 1|-|MF 2||=2a =10,又|MF 1|=18,那么|MF 2|D.5.(2021·邯郸高二检测)设F 1,F 2是双曲线x 24-y 2=1的左、右焦点,点P 在双曲线上,当△F 1PF 2的面积为1时,PF 1→·PF 2→的值为( )A .0B .1 C.12D .2解析:选A.易知F 1(-5,0),F 2(5,0). 不妨设P (x 0,y 0)(x 0,y 0>0), 由12×2c ×y 0=1,得y 0=55, 所以P ⎝ ⎛⎭⎪⎫2305,55,所以PF 1→=⎝ ⎛⎭⎪⎫-5-2305,-55,PF 2→=⎝⎛⎭⎪⎫5-2305,-55,所以PF 1→·PF 2→=0.6.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有一样的焦点,那么a 的值是________.解析:依题意得⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.答案:17.在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M 的横坐标为3,那么点M 到此双曲线的右焦点的距离为________.解析:双曲线右焦点为(4,0), 将x =3代入x 24-y 212=1,得y =±15.所以点M 的坐标为(3,15)或(3,-15),所以点M 到双曲线右焦点的距离为〔4-3〕2+〔±15〕2=4.答案:48.双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,假设PF 1⊥PF 2,那么|PF 1|+|PF 2|的值为____________.解析:不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2, 所以|F 1F 2|2=|PF 1|2+|PF 2|2=(22)2, 又|PF 1|-|PF 2|=2, 所以(|PF 1|-|PF 2|)2=4, 可得2|PF 1|·|PF 2|=4,那么(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3. 答案:2 39.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.解:因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0).因为双曲线过点P (42,-3),所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 解得c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1.10.如图,假设F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)假设双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)假设P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.解:(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,那么|16-x |=6,解得x =10或x =22. 由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, 所以|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2= |PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,所以∠F 1PF 2=90°,所以S △F 1PF 2=12×32=16.[B 能力提升]11.(2021·保定检测)双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,那么m 的值为( )A .8B .9C .16D .20解析:选B.由,|AB |+|AF 2|+|BF 2|=20.又|AB |=4,那么|AF 2|+|BF 2|,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.12.(2021·西安高二检测)如图,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为点A ,B ,线段MN 的中点Q 在双曲线的右支上,假设|AN |-|BN |=12,那么a =( )A .3B .4C .5D .6解析:选A.连接QF 1,QF 2.因为线段MN 的中点为Q ,点F 2为MB 的中点,所以|QF 2|=12|BN |,同理可得|QF 1|=12|AN |.因为点Q 在双曲线C 的右支上,所以|QF 1|-|QF 2|=2a ,所以12(|AN |-|BN |)=2a ,所以12×12=2a ,解得a A.13.求与椭圆x 2+4y 2=8有公共焦点的双曲线的方程,使得以此双曲线与椭圆的四个交点为顶点的四边形的面积最大.解:椭圆的方程可化为x 28+y 22=1,①所以c 2=8-2=6.因为椭圆与双曲线有公共焦点,所以在双曲线中,a 2+b 2=c 2=6,即b 2=6-a 2.设双曲线的方程为x 2a 2-y 26-a2=1(0<a 2<6).②由①②解得⎩⎪⎨⎪⎧x 2=4a 23,y 2=6-a 23.由椭圆与双曲线的对称性可知四个交点构成一个矩形, 其面积S =4|xy |=4·4a 23·6-a 23=83 a 2〔6-a 2〕≤83·a 2+〔6-a 2〕2=8, 当且仅当a 2=6-a 2,即a 2=3,b 2=6-3=3时,取等号. 所以双曲线的方程是x 23-y 23=1. 14.(选做题)双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有一样的焦点. (1)求双曲线的标准方程;(2)假设点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解:(1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).依题意得⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设点M 在双曲线的右支上,那么有|MF 1|-|MF 2|=23,因为|MF 1|+|MF 2|=63,所以|MF 1|=43,|MF 2|=2 3.又|F 1F 2|=25,因此在△MF 1F 2中,边MF 1最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|MF 2|·|F 1F 2|<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
2021年人教A版高中数学教材目录(全)

必修1欧阳光明(2021.03.07)第一章集合与函数概念1.1 集合1.2 函数及其表示 1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体 1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质 2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n 项和2.4等比数列2.5等比数列的前n 项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式 3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数 3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
高中数学第二章圆锥曲线与方程2.2.1双曲线及其标准方程新人教A版选修

() A.x42-1y22 =1 C.x42-1y62 =1
B.1x22 -y42=1 D.1x62 -y42=1
解析: b2=c2-a2=42-22=12, ∴双曲线方程为x42-1y22 =1. 答案: A
2.椭圆x42+ay22=1 与双曲线xa2-y22=1 有相同的焦点,则 a
的值是( )
(2)由已知得 c=6,且焦点在 y 轴上,因为点 A(-5,6)在双 曲线上,所以点 A 与两焦点的距离的差的绝对值是常数 2a,即 2a=| -5-02+6+62- -5-02+6-62|
=|13-5|=8, 则 a=4,b2=c2-a2=62-42=20. 因此,所求双曲线的标准方程为1y62 -2x02 =1.
2.2 双曲线
2.2.1 双曲线及其标准方程
自主学习 新知突破
1.了解双曲线的定义、几何图形和标准方程的推导过 程.
2.掌握双曲线的标准方程. 3.会利用双曲线的定义和标准方程解决简单的应用问 题.
我海军“马鞍山”舰和“千岛湖”舰组成第四批护航编队 远赴亚丁湾,在索马里流域执行护航任务.
某日“马鞍山”舰哨兵监听到附近海域有快艇的马达声,与 “马鞍山”舰相距1 600 m的“千岛湖”舰,3 s后也监听到了 该马达声(声速为340 m/s).
4.求适合下列条件的双曲线的标准方程: (1)a=3,c=4,焦点在x轴上; (2)焦点为(0,-6),(0,6),经过点A(-5,6).
解析: (1)由题设知,a=3,c=4, 由 c2=a2+b2 得,b2=c2-a2=42-32=7. 因为双曲线的焦点在 x 轴上, 所以所求双曲线的标准方程为x92-y72=1.
1.若一个动点P(x,y)到两个定点F1(-1,0),F2(1,0)的距 离的差的绝对值为定值a(a≥0),试讨论点P的轨迹方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 双曲线2.2.1 双曲线及其标准方程内容标准学科素养1.掌握双曲线的定义.2.掌握用定义法和待定系数法求双曲线的标准方程.3.理解双曲线标准方程的推导过程,并能运用标准方程解决相关问题.应用直观想象提升逻辑推理及数学运算授课提示:对应学生用书第31页[基础认识]知识点一双曲线的定义预习教材P45,思考并完成以下问题我们知道,与两个定点距离的和为非零常数(大于两定点间的距离)的点的轨迹是椭圆.那么,与两定点距离的差为非零常数的点的轨迹是什么?如图,取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,随着拉链逐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线.这条曲线是满足下面条件的点的集合:P={M||MF1|-|MF2|=常数}.如果使点M到点F2的距离减去到点F1的距离所得的差等于同一个常数,就得到另一条曲线(图中左边的曲线).这条曲线是满足下面条件的点的集合:P={M||MF2|-|MF1|=常数}.这两条曲线合起来叫做双曲线,每一条叫做双曲线的一支.知识梳理双曲线的定义:把平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.思考若常数=|F1F2|,则满足条件的点的轨迹是什么?若常数>|F1F2|,则满足条件的点是否存在?提示:两条射线不存在知识点二双曲线的标准方程思考并完成以下问题类比椭圆标准方程的建立过程,你能说说应怎样选择坐标系,建立双曲线的标准方程吗?提示:建立如图直角坐标系,设M(x,y)是双曲线上任一点,|F1F2|=2c,||MF1|-|MF2||=2a,则|x+c2+y2-x-c2+y2|=2a,整理得(c2-a2)x2-a2y2=a2(c2-a2),令b2=c2-a2(b>0),则b2x2-a2y2=a2b2,即x2a2-y2b2=1(a>0,b>0)——双曲线的标准方程.知识梳理 双曲线的标准方程焦点在x 轴上焦点在y 轴上标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-y 2b 2=1(a >0,b >0)焦点F 1(-c,0), F 2(c,0)F 1(0,-c ), F 2(0,c )焦距|F 1F 2|=2c ,c 2=a 2+b 2 1.动点P 到点M (1,0),N (-1,0)的距离之差的绝对值为2,则点P 的轨迹是( ) A .双曲线 B .双曲线的一支 C .两条射线 D .一条射线答案:C2.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.⎝ ⎛⎭⎪⎪⎫22,0B.⎝ ⎛⎭⎪⎪⎫52,0 C.⎝ ⎛⎭⎪⎪⎫62,0 D .(3,0)答案:C授课提示:对应学生用书第31页 探究一 双曲线定义的应用[教材P 54习题2.2A 组1题]双曲线4x 2-y 2+64=0上一点P 到它的一个焦点的距离等于1,那么点P 到另一个焦点的距离等于________.解析:双曲线4x 2-y 2+64=0可化为y 264-x 216=1, ∴a =8.由定义知|PF 1|-|PF 2|=16,|PF 2|=±16+|PF 1|,|PF 2|=17或|PF 2|=-15(舍去). 答案:17[例1] (1)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3(2)设F 1,F 2分别是双曲线x 2-y 224=1的左、右焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .42B .8 3C .24D .48[解析] (1)由题意得||PF 1|-|PF 2||=6,∴|PF 2|=|PF 1|±6,∴|PF 2|=9或-3(舍去) 故选B.(2)⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2,3|PF 1|=4|PF 2|,解得|PF 1|=8,|PF 2|=6.在△PF 1F 2中,|PF 1|=8,|PF 2|=6,|F 1F 2|=10 ∴△PF 1F 2为直角三角形,∴S △PF 1F 2=12|PF 1||PF 2|=24.故选C.[答案] (1)B (2)C方法技巧 1.求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF 1|-|PF 2||=2a 求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c -a ).2.在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件||PF 1|-|PF 2||=2a 的应用;其次是要利用余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的灵活运用.跟踪探究 1.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2.若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解析:由x 29-y 216=1得,a =3,b =4,c =5.由双曲线的定义和余弦定理得|PF 1|-|PF 2|=±6, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°, 所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3.探究二 求双曲线的标准方程[阅读教材P 47例1]已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0),双曲线上一点P 到F 1、F 2距离差的绝对值等于6,求双曲线的标准方程.题型:待定系数法求双曲线的标准方程. 方法步骤:①根据条件设出所求方程x 2a 2-y 2b 2=1(a >0,b >0).②根据双曲线的定义得2a =||PF 1|-|PF 2||=6, ∴a =3.又∵c =5,从而求出b . ③写出所求的标准方程.[例2] 求适合下列条件的双曲线的标准方程. (1)焦距为26,且经过点M (0,12);(2)双曲线上两点P 1,P 2的坐标分别为(3,-42),⎝ ⎛⎭⎪⎫94,5.[解析] (1)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1. (2)设双曲线的方程为mx 2+ny 2=1(mn <0),则⎩⎪⎨⎪⎧9m +32n =1,8116m +25n =1,解得⎩⎪⎨⎪⎧n =116,m =-19,∴双曲线的标准方程为y 216-x 29=1.方法技巧 待定系数法求方程的步骤(1)定型:确定双曲线的焦点所在的坐标轴是x 轴还是y 轴. (2)设方程:根据焦点位置设出相应的标准方程的形式.①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax 2+By 2=1(AB <0). ②与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共焦点的双曲线的标准方程可设为x 2a 2-k-y 2b 2+k=1(-b 2<k <a 2).(3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程. 跟踪探究 2.(1)求以椭圆x 216+y 29=1的短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程;(2)已知双曲线过P ⎝ ⎛⎭⎪⎫3,154,Q ⎝ ⎛⎭⎪⎫-163,5两点,求双曲线的标准方程.解析:(1)由题意, 知双曲线的两焦点为F 1(0,-3),F 2(0,3). 设双曲线方程为y 2a2-x 2b 2=1(a >0,b >0),将点A (4,-5)代入双曲线方程, 得25a 2-16b2=1.又a 2+b 2=9,解得a 2=5,b 2=4, 所以双曲线的标准方程为y 25-x 24=1.(2)若焦点在x 轴上, 设双曲线的方程为x 2a2-y 2b 2=1(a >0,b >0),所以⎩⎪⎨⎪⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上, 设双曲线的方程为y 2a2-x 2b 2=1(a >0,b >0),将P ,Q 两点坐标代入可得⎩⎪⎨⎪⎧22516a 2-9b2=1,25a2-2569b2=1,解得⎩⎪⎨⎪⎧a2=9,b2=16,所以双曲线的标准方程为y29-x216=1.综上,双曲线的标准方程为y29-x216=1.探究三与双曲线有关的轨迹问题[阅读教材P47例2]已知A,B两地相距800 m,在A地听到炮弹爆炸声比在B地晚2 s,且声速为340 m/s,求炮弹爆炸点的轨迹方程.题型:求动点的轨迹方程.方法步骤:①建立直角坐标系,使A,B在x轴上,坐标原点为AB的中点,设爆炸点P(x,y).②建立P的几何性质,|PA|-|PB|=680.(AB=800>600)故P的轨迹是以A,B为焦点的双曲线一支.从而写出所求轨迹方程.[例3] 如图,在△ABC中,已知|AB|=42,且三个内角A,B,C满足2sin A+sin C=2sin B,建立适当的坐标系,求顶点C的轨迹方程.[解析] 以AB边所在的直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系如图所示,则A(-22,0),B(22,0).由正弦定理得sin A=|BC|2R,sin B=|AC|2R,sin C =|AB |2R (R 为△ABC 的外接圆半径).∵2sin A +sin C =2sin B , ∴2|BC |+|AB |=2|AC |, 从而有|AC |-|BC |=12|AB |=22<|AB |.由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点). ∵a =2,c =22,∴b 2=c 2-a 2=6,即所求轨迹方程为x 22-y 26=1(x >2).方法技巧 1.求解与双曲线有关的点的轨迹问题,常见的方法有两种:(1)列出等量关系,化简得到方程;(2)寻找几何关系,由双曲线的定义,得出对应的方程.2.求解双曲线的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.跟踪探究 3.如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解析:圆F 1:(x +5)2+y 2=1,圆心F 1(-5,0),半径r 1=1; 圆F 2:(x -5)2+y 2=42,圆心F 2(5,0),半径r 2=4. 设动圆M 的半径为R ,则有|MF 1|=R +1,|MF 2|=R +4, ∴|MF 2|-|MF 1|=3<10=|F 1F 2|.∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a =32,c =5,于是b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为x 294-y 2914=1⎝⎛⎭⎪⎫x ≤-32.授课提示:对应学生用书第33页[课后小结](1)理解双曲线定义应注意以下三点:①定义中的动点与定点在同一平面内;②距离的差要加绝对值,否则只表示双曲线的一支;③距离差的绝对值必须小于焦距,否则不是双曲线,而是两条射线或无轨迹.(2)利用待定系数法可以求双曲线的标准方程,求解步骤包括“定位”与“定量”两步.[素养培优]1.忽视双曲线上的点到焦点距离的范围致误双曲线x225-y224=1上的点P到一个焦点的距离为11,则它到另一个焦点的距离为( )A.1或21 B.14或36C.2 D.21易错分析由双曲线的定义知||PF1|-|PF2||=10,不妨设F1、F2分别为左、右焦点.若|PF2|=11,∴|PF1|=1或21,故选A,忽视了|PF1|的取值范围.考查直观想象、逻辑推理的学科素养.自我纠正由双曲线的定义知||PF1|-|PF2||=10(F1、F2为左、右焦点).又∵|PF1|=1或21,当P在左支上时,|PF1|>c-a=2,故|PF1|=1舍去;当P在右支上时,|PF1|>c+a=12,故|PF1|=21,故选D.答案:D2.混淆a,b,c的关系致误双曲线8kx2-ky2=8的一个焦点坐标为(0,3),求k的值.易错分析 由8kx 2-ky 2=8,得x 21k -y 28k=1. ∵焦点在y 轴上,∴a 2=8-k ,b 2=-1k, 又∵c 2=a 2-b 2,故3=-7k ,∴k =-73. 混淆了椭圆与双曲线中a 、b 、c 的关系导致结果错误.考查直观想象、数学运算的学科素养.自我纠正 将双曲线的方程化成kx 2-k 8y 2=1.因为双曲线的一个焦点坐标是(0,3),所以焦点在y 轴上,且c =3.所以a 2=-8k ,b 2=-1k .所以-8k -1k=9,解得k =-1. 3.忽视对双曲线焦点位置的讨论致误若双曲线x 2m -2-y 2m -7=1的焦距等于6,求实数m 的值.易错分析 解答本题时,容易将m -2看作a 2,将m -7看作b 2,而造成漏解.考查逻辑推理及数学运算.自我纠正 因为双曲线的焦距等于6,即2c =6,所以c =3,即a 2+b 2=c 2=9.(1)当双曲线焦点在x 轴上时,方程为x 2m -2-y 2m -7=1,a 2=m -2,b 2=m -7,所以m -2+m -7=9,解得m =9,即实数m 的值为9.(2)当双曲线焦点在y 轴上时,方程为y 27-m -x 22-m=1,a 2=7-m ,b 2=2-m ,所以7-m +2-m =9,解得m =0,即实数m 的值为0.综上可知,实数m 的值为0或9.。