光磁共振1
光磁共振

实验9.3 光磁共振实验引言为了研究物质内部不同层次的结构和性质,利用电磁波与物质的相互作用作为研究手段,最早使用的是光谱学方法,取得有关原子、分子结构的大量数据,促进了原子、分子物理学的发展,但由于仪器分辨率和谱线线宽的限制,对原子、分子等微观粒子内部更加细致的结构和性质得不到满意的结果,后来发展了波谱学的方法,直接观测在外磁场中原子精细结构能级、超精细结构能级和塞曼子能级间的微波或射频共振(通常称为磁共振)。
分辨率提高了,但是跟微波或射频共振相联系的能级间的能量差很小,由玻尔兹曼分布所造成的粒子在能级上的布居数之差也很小,而且磁偶极跃迁几率比电偶极跃迁几率小几个数量级,磁共振信号很弱,难于探测,迫切需要提高共振信号的强度。
凝聚态物质的波谱学如核磁共振、电子顺磁共振,实验样品浓度较大,加上高灵敏度的电子技术探测方法,可以获得很好的共振信号,在很多领域得到应用。
然而对于研究自由原子的气态波谱学来说,由于样品浓度低几个数量级,共振信号极弱,必须设法提高共振信号强度,才能进行实验观测。
实验目的1.掌握“光抽运—磁共振—光探测”的思想方法和实验技巧,研究原子超精细结构塞曼子能级间的射频磁共振。
2.测定铷原子Rb 87和Rb 85的参数:基态朗德因子g F 和原子核的自选量子数I 。
3.测定地磁场B 地和垂直分量B 地垂直、水平分量B 地水平及其倾角θ。
实验原理光磁共振是根据角动量守恒原理,用光学抽运来研究原子超精细结构塞曼子能级间微波或射频磁共振现象的双共振技术。
特点是兼有波谱学方法的高分辨率和光谱学方法的高探测灵敏度。
这里就光磁共振技术对气态铷原子样品探测的实验原理逐一进行介绍。
1.铷原子的超精细结构及其塞曼分裂铷是一价碱金属原子,有一个价电子,处于第5壳层,主量子数n =5,电子轨道量子数L =0,1,···,n −1=4,电子自旋S =12。
铷原子中价电子的轨道角动量P L 和自旋角动量P S 发生轨道—自旋耦合(LS 耦合),得到电子总角动量P J ,其数值P J = J J +1 ħ,J =L +S ,L +S −1,···,|L −S|。
光磁共振实验(revise)

h 3 g F B ( BDC BS B e⁄⁄)
(6)
4/7
光磁共振实验
图 6 测量地磁场水平分量时光磁共振信号图像
由(2)式加(6)式得:
Be⁄⁄= 三、实验仪器
h( 1 3 ) 2g F B
(7)
本实验系统由主体单元、主电源、辅助源、射频信号发生器及示波器五部分组成。见图 2:
光磁共振实验
一、实验目的 1.了解光泵磁共振的原理,观察光磁共振现象; 2. 测量铷(Rb)原子的 g F 因子(和地磁场). 二、实验原理 1. 光磁共振的概念 光磁共振,是把光频跃迁和射频磁共振跃迁结合起来的一种物理过程, 是利用光抽运效应来研究原子 超精细结构塞曼子能级间的磁共振。 2. 光抽运效应 处于磁场环境中的铷原子对 D1σ+光的吸收遵守如下的选择定则: L 1, F 1,0 , M F 1 根据这一选择定则可以画出吸收跃迁图,如图 1 所 示 5S 能级中的 8 条子能级除了 MF=+2 的子能级 外, 都可以吸收 D1σ+光而跃迁到 5P 的有关子能级, MF=+2 的子能级上的原子既不能往高能级跃迁也没 有条件往低能级跃迁,所以这些原子数是不变的; 另一方面,跃迁到高能级的原子通过自发辐射等途 径很快又跃迁回 5S 低能级,发出自然光,跃迁选 择定则是: , 相应的跃迁见图 1 的右半部分。 , 退激跃迁中有一部分的状态变成了 5S 能级中的 MF=+2 的状态(而这一部分原子是不会吸收光再跃 迁到 5P 去的,那些回到其它 7 个子能级的原子都 图 1 87Rb 原子对 D1σ+光的吸收和自发辐射跃迁 可以再吸收光重新跃迁到 5P 能级) 。这样经过若干 循环之后, 5S 态中 M F 2 子能级上的粒子数就会越积越多(而其余7个子能级上的原子数越来越少) , 即大量粒子被“抽运”到基态的 MF=+2 的子能级上,这就是光抽运效应。 各子能级上粒子数的这种不均匀分布叫做“偏极化” ,光抽运的目的就是要造成偏极化,有了偏极化就 可以在子能级之间得到较强的磁共振信号。 3. 光磁共振跃迁 持续的光抽运,样品对 D1σ+光的吸收越来越弱,透过样品的光强度逐渐增加,当 M F 2 子能级上的 粒子数达到饱和,透过样品的光强达到最大值。 在“粒子数反转”后,如果在垂直于静磁场 B 和垂直于光传播方向上加一射频振荡的磁场,并且调整 射频频率 ,使之满足 h g F B B (1) 这时将出现“射频受激辐射” ,在射频场的扰动下,处于 MF=+2 子能级上的原子会放出一个频率为 ν、 方向和偏振态与入射量子完全一样的量子而跃迁到 MF=+1 的子能级,MF=+2 上的原子数就会减少;同样, MF=+1 子能级上的原子也会通过“射频受激辐射”跃迁到 MF=0 的子能级上„如此下去,5S 态的上面 5 个子 能级很快就都有了原子,于是光吸收过程重又开始,光强测量值又降低;跃迁到 5P 态的原子在退激过程中 可以跃迁到 5S 态的最下面的 3 个子能级上,所以,用不了多久,5S 态的 8 个子能级上全有了原子。由于此 时 MF=+2 子能级上的原子不再能久留,所以,光跃迁不会造成新的“粒子数反转” 。 通过以上的分析得到了如下的结论: 处于静磁场中的铷原子对偏振光 D1σ+的吸收过程能够受到一个射频信号的控制,当没有射频信号时, 铷原子对 D1σ+光的吸收很快趋于零,而当加上一个能量等于相邻子能级的能量差的射频信号(即公式( 1)
光磁共振_精品文档

光磁共振1. 实验目的1.1. 掌握光抽运、磁共振、光检测的思想方法和实验技巧,研究原子超精细结构塞曼子能 级间的磁共振。
1.2. 测定铷同位素Rb 87和Rb 85的gF 因子,测定地磁场。
2. 实验仪器实验仪器包括:光(泵)磁共振实验仪、射频信号发生器、数字频率计、二通道型数字存储示波器、直流数字电压表等。
其中,光(泵)磁共振实验仪由主体单元和辅助源两部分组成。
主体单元是实验的核心部分,基本结构如图6-1所示。
图6-1 光(泵)磁共振实验仪主题单元示意图3. 实验原理3.1. 铷原子的超精细结构及其塞曼分裂铷是一价碱金属原子、天然铷中含有两种同位素: Rb 87和Rb 85。
根据LS 耦合产生精细结构,它们的基态是52S 1/2,最低激发态是52P 1/2和52P 3/2的双重态。
对Rb 87,52P 1/2--52S 1/2跃迁为D 1线(7948Åλ=),52P 3/2-52S 1/2为D 2线(7200Åλ=)。
铷原子具有核自旋I ,相应的核自旋角动量为PI ,核磁矩为μI 。
在弱磁场中要考虑核自旋角动量的耦合,即PI 和PJ 耦合成总角动量PF ,F 为总量子数:F=I +J .…,|I-J|。
对Rb87,I=3/2,因此Rb87的基态有两个值:F=2和F=1。
对Rb85,I=5/2,因此85Rb 的基态有F =3和F =2。
由量子数F 标定的能级称为超精细结构能级。
原子总角动量F P 与总磁矩F μ之间的关系2F FF eg P mcμ=- (6-1) 其中()()()()F F 1J J 1I I 1g =g 2F F 1F J+++-++ (6-2)当非磁性物质铷原子处于弱的外磁场B 中时,铷原子获得附加的能量F m F F F B E m g B μ=-⋅=μB (6-3)其中B μ为玻尔磁子,F m 为磁量子数,共有21F +个数值,1,...,F m F F F =--因此,对应于总量子数F 的超精细结构能级分裂成21F +个塞曼子能级。
光磁共振

1
Fig.7
g 因子测量原理
——3. 观察光磁共振信号续
测量地磁场
测量方法同上,这次需要先让三者的方向相同, 而后同时改变扫场和水平场的方向,最后地磁场分量
对应的共振频率为 |
1
2 | / 2
。
根据地磁场垂直磁场的大小和水平分量的大小即 可得到地磁场的大小及方向。
数据表格
在扫场零点处测量
精密测量的有力工具,因此在激光物理、量子频标、弱磁 场探测等方面都有重要应用价值。
二、实验目的
1. 通过研究铷原子基态的光磁共振,加深
对原子超精细结构的认识;
2. 掌握光磁共振的实验技术;
3. 测定铷原子的 g 因子和测定地磁场。
三、实验原理——概念介绍
1. 光抽运(光泵):利用光照射打破原子在所研究能级
uF
和
B
相互作用能表示如下:
E u F B gFM
F
BB
能级间距为:
E g F B B
其中 B 为玻尔磁子。
—圆偏振光对铷原子的激发与光抽运效应
将角动量为 的左 旋圆偏振光照射到气态 原子 R b 8 7 后,根据光跃迁 选择定则,基态中 M 2 能级上的粒子数会越来越 多,形成粒子数偏极化。
1
2) / 2
便是水平磁场
对应的共振频率,由此可以得出 g 因子。需要注意的 是因铷原子有两种同位素,所以会出现两次共振信号,
频率高的为
87 共振信号;频率低的为 Rb
85 共振信号。 Rb
光磁共振信号如图7所示。
——3. 光磁共振信号图示
B
B1
B2
扫场
B
O
光磁共振 实验报告

一、实验目的1.掌握光抽运-磁共振-光检测的实验原理及实验方法; 2.研究原子,分子能级的超精细结构;3.测定铷原子同位素87Rb 和85Rb 的郎德因子g ,测定电磁场的水平分量。
二、实验原理:1.铷原子基态和最低激发态的能级铷(Z =37)是一价金属元素,天然铷中含量大的同位素有两种:87Rb ,占27.85 %和85Rb ,占72.15%。
它们的基态都是52S 1/2。
在L —S 耦合下,形成双重态:52P 1/2和52P 3/2,这两个状态的能量不相等,产生精细分裂。
因此,从5P 到5S 的跃迁产生双线,分别称为D 1和D 2线,如图B4-1所示,它们的波长分别是794.76nm 和780.0nm 。
通过L —S 耦合形成了电子的总角动量P J ,与此相联系的核外电子的总磁矩Jμ为2J JJ eeg P m μ=- (B4-1) 式中)1(2)1()1()1(1++++-++=J J S S L L J J g J(B4-2)是著名的朗德因子,m e 是电子质量,e 是电子电量。
原子核也有自旋和磁矩,核自旋量子数用I 表示。
核角动量I P 和核外电子的角动量J P 耦合成一个更大的角动量,用符号 F P 表示,其量子数用F 表示,则图B4-1 Rb 原子精细结构的形成I J F P P P+= (B4-3) 与此角动量相关的原子总磁矩为2F FF eeg P m μ=- (B4-4) 式中 )1(2)1()1()1(++-+++=F F I I J J F F g g JF (B4-5)F g 是对应于F μ与F P 关系的朗德因子。
在有外静磁场B 的情况下,总磁矩将与外场相互作用,使原子产生附加的能量 22F FF F F F F B e ee e E B g P B g M B g M B m m μμ=-⋅=⋅== (B4-6) 其中2B eem μ=124102741.9--⨯=JT 称为玻尔磁子,F M 是F P 在外场方向上分量的量子数,共有2F +1个值。
光磁共振

一、实验目的1、熟悉光磁共振原理及仪器使用;2、观察光抽运现象,测量朗德因子值;3、培养实验报告规范与处理能力,作图作表与数据处理能力;4、基本实验的测试能力。
二、实验原理1、铷原子基态和最低激发态能级.本实验的研究对象为铷原子,天然铷有两种同位素; 85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图9.4.1所示.铷原子核自旋不为零,两个同位素的核自旋量子数I也不相同.87Rb的I=3 ⁄ 2,85Rb的I=5 ⁄ 2.核自旋角动量与电子总角动量耦合,得到原子的总角动量.由于I J耦合,原子总角动量的量子数F=I+J,I+J-1,……,|I-J|.故87Rb基态的F=1和2;85Rb基态的F=2和3。
.这些由F量子数标定的能级称为超精细结构.设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为E=-μF·B0=gF mF μF B0 (9.4.1)这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T -1 ,朗德因子gF= gF [F(F+1)+J(J+1)-I(I+1)] ⁄ 2F(F+1)(9.4.2)其中gJ= 1+[J(J+1)-L(L+1)+S(S+1)] ⁄ 2J(J+1)(9.4.3)上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(9.4.1)可知,相邻塞曼子能级之间的能量差ΔE=gF μB B0 ,(9.4.4)式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.2.光抽运效应.在热平衡状态下,各能级的粒子数遵从玻耳兹曼分布,其分布规律由式(9.0.12)表示.由于超精细塞曼子能级间的能量差ΔE很小,可近似地认为这些子能级上的粒子数是相等的.这就很不利于观测这些子能级之间的磁共振现象.为此,卡斯特勒提出光抽运方法,即用圆偏振光激发原子.使原子能级的粒子数分布产生重大改变.现在以铷灯作光源.由图9.4.1可见,铷原子由5 2P1⁄2→5 2S1⁄2的跃迁产生D1线,波长为0.7948μm;由5 2P3⁄2→5 2S1⁄2的跃迁产生D2线,波长为o.7800μm.这两条谱线在铷灯光谱中特别强,铷原子将会吸收它们的能量而引起相反方向的跃迁过程.由理论推导可得跃迁的选择定则为ΔL=±1 ΔF=0,±1 ΔmF=±1 (9.4.5)所以,当入射光为D1σ﹢光,作用87Rb时,由于87Rb的5 2S1⁄2态和5 2P1⁄2态的磁量子数mF的最大值均为±2,而σ﹢光角动量为ħ只能引起ΔmF =+1的跃迁,故D1σ﹢光只能把基态中除mF=+2以外各子能级上的原子激发到5 2P1⁄2的相应子能级上,如图9.4.2(a)所示.图9.4.2(b)表示跃迁到5 2P1⁄2上的原子经过大约10-8s后,通过自发辐射以及无辐射跃迁两种过程,以相等概率回到基态5 2S1⁄2各个子能级上.这样,经过多次循环之后,基态mF=+2子能级上的粒子数就会大大增加,即基态其他能级上大量的粒子被“抽运”到基态mF=+2子能级上.这就是光抽运效应.同理,如果用D1σ-光照射,则大量粒子将被“抽运”到mF=-2子能级上.但是,π光照射是不可能发生光抽运效应的.对于铷85Rb,若用D1σ+光照射,粒子将会“抽运”到mF=+3子能级上.3.弛豫过程.光抽运使得原子系统能级分布偏极化而处于非平衡状态时,将全通过弛缘过程回复到热平衡分布状态.弛豫过程的机制比较复杂,但在光抽运的情况下,铷原子与容器壁碰撞是失去偏极化的主要原因.通常在铷样品泡内充入氮、氖等作为缓冲气体,其密度比样品泡中铷蒸气的原子密度约大6个数量级,可大大减少铷原子与容器壁碰撞的机会.缓冲气体的分子磁矩非常小,可认为它们与铷原子碰撞时不影响这些原子在磁能级上的分布,从而能保持铷原子系统有较高的偏极化程度.但缓冲气体不可能使铷原子能级之间的跃迁完全被抑制,故光抽运也就不可能把基态上的原子全部“抽运”到特定的子能级上.由实验得知.样品泡中充入缓冲气体后,弛豫时间为10-2s数量级.在一般情况下,光抽运造成塞曼子能级之间的粒子差数,比玻耳兹曼分布造成的差数大几个数量级.不过得注意的是,温度高低对铷原子系统的弛豫过程有很大的影响.温度升高则铷蒸气的原子密度增加,铷原子与容器壁之间以及铷原子相互之间的碰撞都增加,将导致铷原子能级分布的偏极化减少;而温度过低时铷蒸气的原子数目太少,则抽运信号的幅度必然很小.因此,实验时把样品泡的温度要控制在40~50℃之间.1.磁共振与光检测.式(9.4.4)给出了铷原子在弱磁场B0作用下相邻塞曼子能级的能量差.要实现这些子能级的共振跃迁,还必须在垂直于恒定磁场B0的方向上施加一射频场B1作用于样品.当射频场的频率ν满足共振条件 h ν=ΔE = gF μB B0 . (9.4.6)时,便发生基态超精细塞曼子能级之间的共振跃迁现象.若作用在样品上的是D1σ+光,对于87Rb来说.是由mF=+2跃迁到mF=+1子能级.接着也相继有mF=+1的原子跃迁到mF=0,…….与此同时,光抽运又把基态中非mF=+2的原子抽运引mF=+2子能级上.因此,兴振跃迁与光抽运将会达到一个新的动态平衡.发生磁共振时,处于基态mF=+2子能级上的原子数小于未发生磁共振时的原子数.也就是说,发生磁共振时.能级分布布的偏极化程度降低了,从而必然会增大对D1σ+光的吸收,如图9.4.3所示.三、实验仪器以及实验内容实验装置的方框图如图9.4.4所示,由光泵磁振实验装置的主体单元及其辅助设备(包括辅助源,射频信号发生器,频率计和示波器等)组成.1、观察光抽运信号。
光磁共振实验报告

光磁共振实验报告光磁共振实验报告引言:光磁共振是一种先进的科学技术,它利用光和磁场之间的相互作用,实现了对物质微观结构的研究。
本实验旨在探索光磁共振的原理和应用,通过实验数据的收集和分析,进一步了解光磁共振在材料科学和生物医学领域的潜在应用。
实验方法:本实验使用了一台先进的光磁共振仪器,结合光学和磁学的原理,对样品进行了测试。
首先,我们选择了一种具有特定光学性质的材料作为样品,然后将样品放置在仪器中心,通过调节仪器的磁场强度和频率,观察样品的光学响应。
在实验过程中,我们记录下了不同磁场强度和频率下的光学响应数据,并进行了分析。
实验结果:通过对实验数据的分析,我们发现样品在特定磁场强度和频率下,会出现明显的光学响应。
在这些条件下,样品的透射光谱会发生明显的变化,出现新的吸收峰或波谷。
这种现象表明样品的光学性质受到了磁场的调控。
进一步的实验结果显示,当磁场强度和频率达到一定值时,样品的光学响应会发生剧烈变化,出现明显的共振现象。
这种光磁共振现象是由于磁场和光场之间的相互作用导致的。
实验讨论:光磁共振的发现和研究对材料科学和生物医学领域具有重要意义。
首先,在材料科学领域,光磁共振可以用来研究材料的微观结构和性质。
通过调节磁场的强度和频率,可以实现对材料的精确控制和调控。
这对于开发新型材料和改良材料性能具有重要意义。
其次,在生物医学领域,光磁共振可以用来研究生物分子的结构和功能。
通过将生物分子与磁性纳米粒子结合,可以实现对生物分子的高灵敏度检测和精确控制,为生物医学研究和临床诊断提供了新的手段。
实验结论:本实验通过光磁共振仪器的使用,成功地观察到了样品的光学响应和光磁共振现象。
实验结果表明,光磁共振是一种重要的科学技术,具有广泛的应用前景。
光磁共振可以用来研究材料的微观结构和性质,为材料科学的发展提供新的思路和方法。
同时,光磁共振还可以用来研究生物分子的结构和功能,为生物医学研究和临床诊断提供新的手段和工具。
光磁共振实验讲义

3.观察光磁共振信号
(1)测量朗德 因子
扫场采用三角波,方向置于与地磁场水平分量相同德方位上,并使水平磁场调到某一个确定值。由磁共振条件得到:
调节射频频率 产生磁共振, 由示波器确定或由频率计给出。从上式中可以看出,如知H便可求出 ,H是使原子塞曼分裂的总磁场(包括水平场,地磁水平分量,扫场直流分量)。实验中,可以这样考虑,先确定 ( 与 对应),再拨动水平开关,使其水平磁场反向与地磁场水平分量和扫场方向相反,改变频率( ),读出频率 ( 与 对应),取共振频率 ,这样可以排除地磁场水平分量及扫场直流分量的影响。水平磁场的H数值由水平亥姆霍兹线圈参数及加其上的电压或电流来确定。测量 因子原理图如图6所示,由于Rb85和Rb87的 值不同(Rb85的 ,Rb87的 ),因此每次固定水平场调节射频频率时,会出现两次(7.35.6)所示共振波形,要加以区分,当水平场恒定时,频率高的为Rb87共振信号,频率低的为Rb85共振信号。
光磁共振讲义
一、讲课形式(时间安排)
40分钟理论及相关知识的讲述,15分钟仪器介绍及操作演示。
二、教学要求
1通过研究铷原子基态的光磁共振,加深对原子超精细结构的的 因子和测定地磁场。
三、实验原理
1.概念介绍
1)光抽运(光泵):利用光照射打破原子在所研究能级间的热平衡态,造成期望集居数差,它基于光和原子间的相互作用。
2)如何提高探测灵敏度:采用光探测,探测原子对光量子的吸收而不是采用一般的磁共振的探测方法(直接探测原子对射频量子的吸收),因光量子能量比射频量子能量高几个数量级,因而大大提高探测灵敏度。
3)光磁共振:是将光抽运、磁共振、光探测技术结合起来研究气态原子精细和超精细结构的一种实验技术,加深了人们对原子磁矩、因子、能级寿命、能级精细结构、超精细结构及原子间相互作用的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳大学实验报告课程名称:近代物理实验实验名称:光磁共振学院:物理科学与技术- 指导教师:陈静秋报告人:吴勇学号:2010180014班级:01实验时间:2012-10-31实验报告提交时间:一、实验目的1、熟悉光磁共振原理及仪器使用;2、观察光抽运现象;3、测量朗德因子值;4、培养实验报告规范与处理能力;5、作图作表与数据处理能力;6、基本实验的测试能力。
二、实验原理1、铷原子基态和最低激发态能级.本实验的研究对象为铷原子,天然铷有两种同位素;85Rb (占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图9.4.1所示.在磁场中,铷原子的超精细结构能级产生塞曼分裂.标定这些分裂能级的磁量子数mF=F,F-1,…,-F,因而一个超精细能级分裂为2F+1个塞曼子能级.设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为E=-μF·B0=gF mF μF B0(9.4.1)这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T-1 ,朗德因子gF= gF [F(F+1)+J(J+1)-I(I+1)] ⁄ 2F(F+1)(9.4.2)其中gJ= 1+[J(J+1)-L(L+1)+S(S+1)] ⁄ 2J(J+1)(9.4.3)上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(9.4.1)可知,相邻塞曼子能级之间的能量差ΔE=gF μB B0 ,(9.4.4)式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.2.光抽运效应.在热平衡状态下,各能级的粒子数遵从玻耳兹曼分布,其分布规律由式(9.0.12)表示.由于超精细塞曼子能级间的能量差ΔE很小,可近似地认为这些子能级上的粒子数是相等的.这就很不利于观测这些子能级之间的磁共振现象.为此,卡斯特勒提出光抽运方法,即用圆偏振光激发原子.使原子能级的粒子数分布产生重大改变.由于光波中磁场对电子的作用远小于电场对电子的作用,故光对原子的激发,可看作是光波的电场分布起作用.设偏振光的传播方向跟产生塞曼分裂的磁场B0的方向相同,则左旋圆偏振的σ﹢光的电场E绕光传播方向作右手螺旋转动,其角动量为ħ;右旋圆偏振的σ-光的电场E绕光传播方向作左手螺旋转动,其角动量为-ħ;线偏振的π光可看作两个旋转方向相反的圆偏振光的叠加,其角动量为零.现在以铷灯作光源.由图9.4.1可见,铷原子由5 2P1⁄2→5 2S1⁄2的跃迁产生D1线,波长为0.7948μm;由5 2P3⁄2→5 2S1⁄2的跃迁产生D2线,波长为o.7800μm.这两条谱线在铷灯光谱中特别强,用它们去激发铷原子时,铷原子将会吸收它们的能量而引起相反方向的跃迁过程.然而,频率一定而角动量不同的光所引起的塞曼子能级的跃迁是不同的,由理论推导可得跃迁的选择定则为ΔL=±1 ,Δ F=0,±1,ΔmF=±1 。
(9.4.5)所以,当入射光为D1σ﹢光,作用87Rb时,由于87Rb的5 2S1⁄2态和5 2P1⁄2态的磁量子数mF 的最大值均为±2,而σ﹢光角动量为ħ只能引起ΔmF=+1的跃迁,故D1σ﹢光只能把基态中除mF=+2以外各子能级上的原子激发到5 2P1⁄2的相应子能级上,如图9.4.2(a)所示.图9.4.2(b)表示跃迁到5 2P1⁄2上的原子经过大约10-8s后,通过自发辐射以及无辐射跃迁两种过程,以相等概率回到基态5 2S1⁄2各个子能级上.这样,经过多次循环之后,基态mF=+2子能级上的粒子数就会大大增加,即基态其他能级上大量的粒子被“抽运”到基态mF=+2子能级上.这就是光抽运效应.同理,如果用D1σ-光照射,则大量粒子将被“抽运”到mF=-2子能级上.但是,π光照射是不可能发生光抽运效应的.对于铷85Rb,若用D1σ+光照射,粒子将会“抽运”到mF=+3子能级上.3.弛豫过程.光抽运使得原子系统能级分布偏极化而处于非平衡状态时,将全通过弛缘过程回复到热平衡分布状态.弛豫过程的机制比较复杂,但在光抽运的情况下,铷原子与容器壁碰撞是失去偏极化的主要原因.通常在铷样品泡内充入氮、氖等作为缓冲气体,其密度比样品泡中铷蒸气的原子密度约大6个数量级,可大大减少铷原子与容器壁碰撞的机会.缓冲气体的分子磁矩非常小,可认为它们与铷原子碰撞时不影响这些原子在磁能级上的分布,从而能保持铷原子系统有较高的偏极化程度.但缓冲气体不可能使铷原子能级之间的跃迁完全被抑制,故光抽运也就不可能把基态上的原子全部“抽运”到特定的子能级上.由实验得知.样品泡中充入缓冲气体后,弛豫时间为10-2s数量级.在一般情况下,光抽运造成塞曼子能级之间的粒子差数,比玻耳兹曼分布造成的差数大几个数量级.1.磁共振与光检测.式(9.4.4)给出了铷原子在弱磁场B0作用下相邻塞曼子能级的能量差.要实现这些子能级的共振跃迁,还必须在垂直于恒定磁场B0的方向上施加一射频场B1作用于样品.当射频场的频率ν满足共振条件h ν =ΔE =gF μB B0. (9.4.6)时,便发生基态超精细塞曼子能级之间的共振跃迁现象.若作用在样品上的是D1σ+光,对于87Rb 来说.是由mF=+2跃迁到mF=+1子能级.接着也相继有mF=+1的原子跃迁到mF=0,…….与此同时,光抽运又把基态中非mF=+2的原子抽运引mF=+2子能级上.因此,兴振跃迁与光抽运将会达到一个新的动态平衡.发生磁共振时,处于基态mF=+2子能级上的原子数小于未发生磁共振时的原子数.也就是说,发生磁共振时.能级分布布的偏极化程度降低了,从而必然会增大对D1σ+光的吸收。
作用在样品上的D1σ+光,一方面起抽运作用.另一方面可用透过样品的光作为检测光,即一束光起了抽运和检测两重作用.对磁共振信号进行光检测可大大提高检测的灵敏度.本来塞曼子能级的磁共振信号非常微弱,特别是密度很低的气体样品的信号就更加微弱,直接观察射频共振信号是很困难的.光检测充分利用磁共振时伴随着D1σ+光强的变化,可巧妙地将一个频率较低的射频量子(1~10MHz)转换成一个频率很高的光频量子(约108MHz)的变化,使观察信号的功率提高了7~8个数量级.这样,气体样品的微弱磁共振信号的观测,便可用很简便的光检测方法来实现三、实验仪器实验装置的方框图如图9.4.4所示,由光泵磁振实验装置的主体单元及其辅助设备(包括辅助源,射频信号发生器,频率计和示波器等)组成.1.主体单元. 光路系统中的光源为高频无极放电铷灯,具有噪音小、光强大和稳定性好等特点.滤波片采用干涉滤光片,透过率大于50﹪,带宽小于0.015μm .能很好地虑去D2光(D2 光不利于D1σ+的光抽运).透镜L1将光源发射的光变为平行光束,其焦距约为5~8cm .偏扳振片使平行光束转为平面偏振光.再经1 ⁄4波片得到圆偏振光,从而可获得D1σ+作用于样品.接着,透镜L2把透过样品泡的光束会聚到光电器件上,变为电信号放大后再送到示波器显示.主体单元设置了几组线圈,为实验提供所需要的各种磁场作用于样品.产生水平恒定磁场和扫场的两组亥姆霍兹线圈,绕在同一组线圈架上,其轴线应与地磁场水平分量的方向一致(即三角导轨应取南北向).恒定磁场B0值由0~2×10-4T 连续可调.扫场BS 值约为0.01~1×10-4T ,也可连续调节.产生垂直恒定磁场的一组亥姆霍兹线圈,用以抵销地磁场垂直分量.还有一组安放在恒温室内样品泡两侧的射频线圈,它们的轴向与B0垂直.关于各组亥姆霍兹线圈在样品泡位置所产生的磁场,可分别由表头指示(或另接数字电压表显示)的电压值及亥姆霍兹线圈参数求得 B =(4.496NV )×10- 7 ⁄ rR (T ) (9.4.7)式中N 为线圈每边匝数,R 为线圈每边绕线的电阻(Ω),r 为线圈的有效半径(m ),V 为加到线圈上的直流电压(V).各组线圈的这些数值可在议器说明书上查得.2.辅助设备. 辅助源为主体单元提供产生水平磁场和垂直磁场的直流稳压电源,产生扫场的方波和三角波信号源,以及提供控制和监测系统.另外,还设有“外接扫描”插座,可用示波器的锯齿波扫描输出.经电阻分压及电流放大后作为扫场信号源,以代替辅助源中方波和三角波信号源. 示波器作为显示和测量实验中各种信号之用.可由双线示波器的其中一个通道(例如Y1)观测方波和三角波等扫场信号,另一个通道(例如Y2)观测光抽运和磁共振信号.实验中两个通道的信号对照观测,可能更好地理解原理,更好地进行调节和检测工作.四、实验内容及具体步骤:1、 观察光抽运信号。
2、 分析87Rb 和85Rb 的共振信号3、由于本实验是在弱磁场作用下的磁共振实验,地磁场水平分量和扫场直流分量的影响不可忽略,由施加到水平轴向的亥姆霍兹线圈上的电压V 来求得的磁场值并不完全等于共振磁场B0,这样求得的gF 值必然存在着系统误差,需要采取有效的方法来消除.通常选用下述方法:使施加的水平恒定磁场换向,分别测出这两个方向的共振频率ν'和ν",再取平均值ν=(ν'+ν")/2作为该恒定磁场相应的共振顿率,以抵销地磁水平分量扣扫场直流分量的影响五、数据处理水平电场为215毫安 r=0.2627m N=250频率KHz 幅度波峰 波谷 正向(按下)495.6(1.8) 697(0.6) 353(2.2) 546(1.0) 反向(弹起) 307.4(2)465.2(0.8) 445.8(2.8) 658(1.2)铷原子的F g 为F B h g B νμ=共振 其中h 为普朗克常数,B μ为玻尔磁子,ν为射频频率。
S J 106.626h 34⋅⨯=— 124B T J 109.2741——⋅⨯=μ V 取四个平均值 33216105N B I rπ-=⨯⨯⨯T 92.01015.20627.20250516B 323=⨯⨯⨯=—π将错误!未找到引用源。
的实验数据带入v=400.45KHz ,可以得到 =1.302.90107.29105.4400106.62624334=⨯⨯⨯⨯⨯——— 与理论值31求误差为6% 同理得到错误!未找到引用源。
的错误!未找到引用源。
=0.46 与理论值21误差为8%六、实验结论1. 实验得到的的为0.31 误差6%;2. 实验得到的为0.46 误差为8%。
七、实验总结.通过实验我们看到了光抽运信号,更加深刻的理解了基态各塞曼子能级。