广东省河源市2020年(春秋版)中考数学试卷A卷

合集下载

广东省河源市2020年(春秋版)中考数学试卷(I)卷

广东省河源市2020年(春秋版)中考数学试卷(I)卷

广东省河源市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·凤庆期中) 下列说法正确的是()A . 若|a|=﹣a,则a<0B . 若a<0,ab<0,则b>0C . 式子3xy2﹣4x3y+12是七次三项式D . 若a=b,m是有理数,则2. (2分)下列运算中,计算正确的是()A . 3x2+2x2=5x4B . (﹣x2)3=﹣x6C . (2x2y)2=2x4y2D . (x+y2)2=x2+y43. (2分) (2017七上·腾冲期末) 下列图形中,∠1和∠2互为余角的是()A .B .C .D .4. (2分)已知3x=4y,则的值为()A .B .C .D .5. (2分)若分式的值为0,则x的值为()A . 4B . ﹣4C . ±4D . 36. (2分)空气是由多种气体混合而成,为了简明扼要地说明空气的组成情况,使用的统计图最好是()A . 扇形统计图B . 条形统计图C . 折线统计图D . 频数分布直方图7. (2分)(2017·黔东南模拟) 若关于x的方程kx2+(k+1)x+1=0有两个相等的实数根,则次方程的解为()A . 1B . ﹣1C . 2D . ﹣28. (2分)如图,正方形ABCD的边长为2,其面积标记为S1 ,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2 ,…按照此规律继续下去,则S2015的值为()A .B .C .D .9. (2分) (2016九上·温州期末) 如图,边长为1的小正方形构成的网格中,半径为2的⊙O的圆心O在格点上,则∠BDE的正切值等于()A .B .C .D . 210. (2分) (2017九上·巫溪期末) 下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)11. (1分)计算:3﹣= ________12. (1分)已知,则=________13. (1分) (2017七下·江都月考) 一个多边形的内角和是1800°,这个多边形是________边形.14. (1分)(2019·湖南模拟) 已知一个几何体的三视图如图所示,则这个几何体的侧面积是________ .15. (1分) (2018八上·江都期中) 已知(2a+1)2+=0,则-a+b2018=________.16. (1分)(2017·黔南) 一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为________.17. (1分)已知18°的圆心角所对的弧长是 cm ,则此弧所在圆的半径是________cm .18. (1分) (2017七上·昆明期中) 某种圆形零件的尺寸要求是mm(φ表示其直径,单位是毫米),经检查,某个零件的直径是19.9mm,该零件________ (填“合格”或“不合格”)三、解答题(一) (共5题;共37分)19. (10分)(2019·重庆) 计算:(1) (a+b)2+a(a-2b)(2)20. (10分)(2011·扬州) 已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2 ,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)21. (5分)小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第几次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?22. (5分)如图,某人由西向东行走到点A,测得一个圆形花坛的圆心O在北偏东60°,他继续向东走了60米后到达点B,这时测得圆形花坛的圆心O在北偏东45°,已知圆形花坛的半径为51米,若沿AB的方向修一条笔直的小路(忽略小路的宽度),则此小路会通过圆形花坛吗?请说明理由.(参考数据≈1.73,≈1.41)23. (7分)(2017·景德镇模拟) 现有一“过关游戏”,规定:在第n关要掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关,否则不算过关.(1)过第1关是________事件(填“必然”、“不可能”或“不确定”,后同),过第4关是________事件;(2)当n=2时,计算过过第二关的概率(可借助表格或树状图).四、解答题(二) (共5题;共57分)24. (7分)(2017·江汉模拟) 八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计m1(1)计算m=________;(2)在扇形统计图中,“其他”类所占的百分比为________;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率.25. (15分)如图,一次函数y=x+m的图象与反比例函数y= 的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)连接OA,OB,求△OAB的面积;(3)结合图象直接写出不等式组0<x+m≤ 的解集.26. (10分) (2019八上·扬州月考) 如图,AB=CD,EC=BF,∠ECA=∠DBF,AC=6,BC=4.(1)求证:AE∥DF;(2)求AD的长度.27. (10分) (2018九下·江都月考) 如图,AB为⊙O的直径,点C在⊙O 上,点P是直径AB上的一点,(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q.(1)点D在线段PQ上,且DQ=DC.求证:CD是⊙O的切线;(2)若sin∠Q= ,BP=6,AP=2,求QC的长.28. (15分)如图,平面直角坐标系xOy中,直线y=kx+2028与顶点为C的抛物线y= x2+2019相交于A(x1 , y1),B(x2 , y2)两点,其中x1=﹣1.(1)求k的值;(2)求证:点(y1﹣2019,y2﹣2019)在反比例函数y=的图象上;(3)小安提出问题:若等式x1•BC+y2•AC=m•AC恒成立,则实数m的值为2019.请通过演算分析“小安问题”是否正确.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(一) (共5题;共37分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、四、解答题(二) (共5题;共57分)24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。

广东省河源市2020年(春秋版)八年级下学期数学期中考试试卷A卷(模拟)

广东省河源市2020年(春秋版)八年级下学期数学期中考试试卷A卷(模拟)

广东省河源市2020年(春秋版)八年级下学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(本题有8小题,每小题3分,共24分) (共8题;共24分)1. (3分) (2016八下·广州期中) 若,则a与3的大小关系是()A . a<3B . a≤3C . a>3D . a≥32. (3分) (2017七下·莒县期末) 如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了()米.A . 70B . 80C . 90D . 1003. (3分) (2019八下·黄冈月考) 下列各式中,计算正确的是()A .B .C .D .4. (3分)在一次投掷实心球训练中,小丽同学5次投掷成绩(单位:m)为:6、8、9、8、9。

则关于这组数据的说法不正确的是()A . 极差是3B . 平均数是8C . 众数是8和9D . 中位数是95. (3分)关于x的一元二次方程的一个根是0,则的值为()A . 1B .C . 或D .6. (3分)某果园2012年水果产量为100吨,2014年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A . 144(1﹣x)2=100B . 100(1﹣x)2=144C . 144(1+x)2=100D . 100(1+x)2=1447. (3分)(2013·内江) 如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A . 2:5B . 2:3C . 3:5D . 3:28. (3分)在等式6a2•(﹣b3)2÷()2=中的括号内应填入()A .B .C . ±D . ±3ab3二、填空题(本题共有8小题,每小题3分,共24分) (共8题;共24分)9. (3分) (2018八上·汕头期中) 计算:-12016+(2- )0+ =________。

广东省河源市2020年(春秋版)八年级下学期数学期末考试试卷A卷(模拟)

广东省河源市2020年(春秋版)八年级下学期数学期末考试试卷A卷(模拟)

广东省河源市2020年(春秋版)八年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017九上·钦州期末) 使二次根式有意义的a的取值范围是()A . a≥﹣2B . a≥2C . a≤2D . a≤﹣22. (2分) (2020八上·武汉期末) 下列计算中,正确的是()A .B . 3C . 2D . ±33. (2分) (2017八下·江东期中) 如图,在平行四边形ABCD中,点A1 , A2 , A3 , A4和C1 , C2 ,C3 , C4分别是ABCD的五等分点,点B1 , B2和D1 , D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为2,则平行四边形ABCD的面积为()A . 4B .C .D . 304. (2分)河南省统计局发布的统计公报显示,2010年到2014年,河南省GDP增长率分别为12.1%、10.5%、12%、11.7%、10.7%.经济学家评论说,这5年的年度GDP增长率比较平稳,从统计学的角度看,“增长率比较平稳”说明这组数据的()比较小.A . 中位数B . 平均数C . 众数D . 方差5. (2分)(2019·福州模拟) 已知a、b均为正整数,则数据a、b、10、11、11、12的众数和中位数可能分别是()A . 10、10B . 11、11C . 10、11.5D . 12、10.56. (2分) (2017八下·西城期中) 如图,已知函数和的图象交于点,则下列结论中错误的是().A .B .C . 当时,D .7. (2分)某校6名学生的某次竞赛成绩统计如图,则这组数据的众数、中位数、方差依次是()A . 18,17.5,5B . 18,17.5,3C . 18,18,3D . 18,18,18. (2分) (2019八下·衡水期中) 为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2),观察所得到的四边形,下判断正确的是()A . ∠BCA=45°B . AC=BDC . BD的长度变小D . AC⊥BD9. (2分)(2011·来宾) 如图,在△ABC中,已知∠A=90°,AB=AC=2,O为BC的中点,以O为圆心的圆弧分别与AB、AC相切于点D、E,则图中阴影部分的面积()A . 1﹣B .C . 1﹣D . 2﹣10. (2分)(2017·岱岳模拟) 如图,在直角坐标系中,矩形OABC的边OA在x轴上,边OC在y轴上,点B 的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为()A . (﹣,)B . (﹣,)C . (﹣,)D . (﹣,)二、填空题 (共5题;共9分)11. (1分) (2019八下·大连月考) 矩形的长和宽分别是和,则矩形的面积为________.12. (1分)(2017·张家界) 某校组织学生参加植树活动,活动结束后,统计了九年级甲班50名学生每人植树的情况,绘制了如下的统计表:植树棵数3456人数2015105那么这50名学生平均每人植树________棵.13. (1分)(2017·惠山模拟) 如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于________.14. (5分) (2018八下·灵石期中) 如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为__.15. (1分) (2019八上·驿城期中) 如图,在矩形中,,,在上任取一点,连接,将沿折叠,使点恰好落在边上的点处,则的长为________.三、解答题 (共8题;共102分)16. (10分) (2018九上·黑龙江月考) 计算:(1)(2)17. (5分) (2017八下·滨海开学考) 如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行几米?18. (15分)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.19. (14分)(2019·大渡口模拟) 某地区九年级学生参加学业水平质量监测。

广东省河源市2020年(春秋版)中考数学试卷(I)卷

广东省河源市2020年(春秋版)中考数学试卷(I)卷

广东省河源市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018七上·武汉期中) 的相反数是()A .B . -2C .D .2. (2分) (2020七上·乾县期末) 如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()。

A .B .C .D .3. (2分)(2013·南通) 下列计算,正确的是()A . x4﹣x3=xB . x6÷x3=x2C . x•x3=x4D . (xy3)2=xy64. (2分)(2020·岐山模拟) 如图,DE与的底边AB平行,OF是的角平分线,若则的度数为()A .B .C .D .5. (2分) (2020九上·饶阳期末) 下列各点中,在函数y=-图象上的是()A . (﹣2,4)B . (2,4)C . (﹣2,﹣4)D . (8,1)6. (2分) (2017九上·辽阳期中) 如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=()A . 7B . 7.5C . 8D . 8.57. (2分)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN 上一动点,则PA+PB的最小值为()A .B .C . 1D . 28. (2分) (2019九上·长白期中) 一元二次方程的解为()A . 3B . -3C . 3,0D . -3,09. (2分)(2020·沙湾模拟) 口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计口袋中红球的个数是()A . 3B . 4C . 5D . 610. (2分)(2017·鹤岗) 如图,是反比例函数y1= 和一次函数y2=mx+n的图象,若y1<y2 ,则相应的x的取值范围是()A . 1<x<6B . x<1C . x<6D . x>1二、填空题 (共8题;共8分)11. (1分)分解因式:3x2﹣12=________ .12. (1分)(2019·重庆) 今年五一节期间,重庆市旅游持续火爆,全市共接待境内外游客超过25600000人次,请把数25600000用科学记数法表示为________.13. (1分)计算:=________.14. (1分) (2020八上·昌平期末) 数字2018、 2019 、2020 、2021 、2022的方差是________;15. (1分)(2017·洛宁模拟) 如图,小华用一个半径为36cm,面积为324πcm2的扇形纸板,制作一个圆锥形的玩具帽,则帽子的底面半径r=________cm.16. (1分) (2019八下·江阴期中) 一个菱形的两条对角线长分别为3cm,4cm,这个菱形的面积S=________.17. (1分) (2019九上·新蔡期中) 已知a,b为直角三角形两边的长,满足,则第三边的长是________.18. (1分)如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为________.三、解答题 (共8题;共68分)19. (5分) (2020八上·松江月考) 已知,化简并求的值.20. (6分) (2016九下·苏州期中) 如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有1、2、3三个数字,小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(若指针指在分界线时重转).(1)请你用树状图或列表的方法表示出每次游戏可能出现的所有结果;(2)两次转盘,第一次转得的数字记为m,第二次记为n,A的坐标为(m,n),则A点在函数y= 上的概率.21. (11分)实验中学团委举办了“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上获优胜奖,达到9分以上获优秀奖.这次竞赛中初中、高中两组学生成绩分布的条形统计图如下:(1)补充完成下列的成绩统计分析表:组别平均分中位数众数方差优胜奖率优秀奖率初中 6.7________________ 3.4190%20%高中________7.5________________80%10%(2)安欣同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知:安欣是________组学生(填“初中”或“高中”);(3)初中组同学说他们组的优胜奖率、优秀奖率均高于高中组,所以他们组的成绩好于高中组.但高中组同学不同意初中组同学的说法,认为他们组的成绩要好于初中组.请你给出两条支持高中组同学观点的理由.22. (5分)(2019·平邑模拟) 2018年9月12日,临沂第六界中国百里沂河水上运动拉开帷幕,临沂电视台用直升机航拍技术全程直播.如图,在直升机的镜头下,观测处的俯角为,处的俯角为,如果此时直升机镜头处的高度为150米,点、、在同一条直线上,则、两点间的距离为多少米?(结果保留根号)23. (10分) (2018九上·绍兴期中) 已知在△ABC中,AB=AC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED.(1)求证:ED=EC(2)若CD=3,EC= ,求AB的长24. (10分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人.设新工人李明第X天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是p元,p与x之间的关系可用图中的函数图形来刻画.若李明第x天创造的利润为w元,求w关于x的函数表达式,并求出第几天的利润最大,最大利润时多少元?(利润=出厂价﹣成本)25. (11分) (2019九上·海淀期中) 请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O 上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB 的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.26. (10分) (2017九下·福田开学考) 如图,已知抛物线y=m(x+1)(x﹣2)(m为常数,且m>0)与x轴从左至右依次交于A、B两点,与y轴交于点C,且OA=OC,经过点B的直线与抛物线的另一交点D在第二象限.(1)求抛物线的函数表达式.(2)若∠DBA=30°,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共68分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、。

河源市2020年(春秋版)中考数学一模试卷A卷

河源市2020年(春秋版)中考数学一模试卷A卷

河源市2020年(春秋版)中考数学一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016八上·滨湖期末) 在-0.101001,,,-,0中,无理数的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是()A .B .C .D .3. (2分)某射击选手在一次训练中的成绩如下表所示,该选手训练成绩的中位数是()成绩(环)678910次数14263A . 2B . 3C . 8D . 94. (2分)在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,下列关系式中错误的是()A . b=c•cosBB . b=a•tanBC . a=c•sinAD . a=b•cotB5. (2分)某旅游景点2015年六月份共接待游客25万人次,八月份共接待游客64万人次,设六至八月每月游客人次的平均增长率为x,则可列方程为()A . 25(1+x)2=64B . 25(1﹣x)2=64C . 64(1+x)2=25D . 64(1﹣x)2=256. (2分)(2018·义乌) 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()A . 当时,随的增大而增大B . 当时,随的增大而减小C . 当时,随的增大而增大D . 当时,随的增大而减小7. (2分)(2017·昆都仑模拟) 如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O 的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A . ﹣B . ﹣2C . π﹣D . ﹣8. (2分) (2020九上·川汇期末) 如图,在△ABC中,∠ACB=90°,点D是AB边上的动点,设AD=x,CD =y,y关于x的函数关系图象如图所示,其中M为曲线部分的最低点,则BC的长为()A . 10B . 15C . 20D . 25二、填空题 (共8题;共8分)9. (1分)(2017·宽城模拟) 分解因式:a3﹣2a2+a=________.10. (1分) (2015九上·武昌期中) 抛物线y=﹣x2﹣x﹣1的对称轴是________.11. (1分)点P(a+1,2a﹣3)在第四象限,则a的取值范围________.12. (1分)(2018·官渡模拟) 在△ABC中,AB=8,∠ABC=30°,AC=5,则BC=________.13. (1分) (2019八上·高邮期末) 若直角三角形的两直角边a,b满足 +b2-12b+36=0,则斜边c 上中线的长为________.14. (1分)正六边形的边长为a,面积为S,那么S关于a的函数关系式是________ .15. (1分)(2018·嘉定模拟) 如图,在直角梯形中,∥ ,,,,,点、分别在边、上,联结.如果△ 沿直线翻折,点与点恰好重合,那么的值是________.16. (1分)(2017·鄞州模拟) 如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y= (x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).则点F的坐标是________三、解答题 (共10题;共113分)17. (5分)(2017·河南模拟) 先化简,再求值:(﹣a)÷(1+ ),其中a是不等式﹣<a<的整数解.18. (5分) (2016八下·枝江期中) 已知,如图,△ABC中,AB=AC,点D、E、F分别为AB、AC、BC边的中点.求证:DE与AF互相垂直平分.19. (20分)某中学现有学生740人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行了一次抽样调查,根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为(2)在图2中,将“体育”部分的图形补充完整;(3)爱好“书画”的人数占被调查人数的百分比(4)估计这个八年级现有学生中,有多少人爱好书画?20. (12分)(2019·北部湾模拟) 为了解全校学生上学的交通方式,该校九年级(8)班的4名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选,并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是多少人,并把条形统计图补充完整;(2)在扇形统计图中,乘私家车的人数所占的百分比是________ ,“其他方式”所在扇形的圆心角度数是________ 度;(3)已知这4名同学中有2名女同学,要从中选两名同学汇报调查结果,请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.21. (5分)如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)22. (15分) (2019八下·余杭期末) 为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与药物在空气中的持续时间x(min)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.根据以上信息解答下列问题:(1)分别求出药物燃烧时及燃烧后y关于x的函数表达式.(2)当每立方米空气中的含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?(3)当室内空气中的含药量每立方米不低于3.2mg的持续时间超过20分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.23. (10分)(2019·昌图模拟) 如图,AC是⊙O的直径,点B为⊙O上一点,PA切⊙O于点A,PB与AC的延长线交于点M,∠CAB=∠APB.(1)求证:PB是⊙O的切线;(2)当sinM=,OA=2时,求MB,AB的长.24. (10分) (2018七上·定安期末) 如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若AB=16cm,求DE的长;(2)若CE=4cm,求DB的长.25. (16分)(2017·邢台模拟) 根据题意解答(1)如图1,已知E是矩形ABCD的边AB上一点,EF⊥DE交BC于点F,证明:△ADE∽△BFE.(2)这个相似的基本图形像字母K,可以称为“K”型相似,但更因为图形的结构特征是一条线上有3个垂直关系,也常被称为“一线三垂直”,那普通的3个等角又会怎样呢?变式一如图2,已知等边三角形ABC,点D、E分别为BC,AC上的点,∠ADE=60°.①图中有相似三角形吗?请说明理由.②如图3,若将∠ADE在△ABC的内部(∠ADE两边不与BC重合),绕点D逆时针旋转一定的角度,还有相似三角形吗?(3)变式二如图4,隐藏变式1图形中的线段AE,在得到的新图形中.①如果∠B=∠C=∠ADE=50°,图中有相似三角形吗?请说明理由.②如图5,若∠B=∠C=∠ADE=∠a,∠a为任意角,还有相似三角形吗?(4)交式三已知,相邻两条平形直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则cosa的值是________(直接写出结果).26. (15分) (2018八上·硚口期末) 是的高.(1)如图1,若,的平分线交于点,交于点,求证:;(2)如图2,若,的平分线交于点,求的值;(3)如图3,若是以为斜边的等腰直角三角形,再以为斜边作等腰,是的中点,连接、,试判断线段与的关系,并给出证明.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共113分)17-1、18-1、19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、25-4、26-1、26-2、26-3、。

2020中考广东河源数学卷

2020中考广东河源数学卷

河源市2020年初中毕业生学业考试数学试卷说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。

2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

题序一二三四五六七八总分得分一、选择题:每小题3分,共15分.每小题给出四个答案,其中只有一个是正确的. 1.12-的倒数是 A .—2 B .2 C .12- D .122.下列各式运算正确的是 A .235aa a += B .235a a a •= C .3332()a a b b = D .1025a a a ÷=3.下面是空心圆柱在指定方向上的视图,正确的是图1CABDEA .B .C .D . 4.下列图形中,既是轴对称图形又是中心对称图形的是A.等边三角形B.平行四边形C.等腰梯形D.菱形5.我市五月份连续五天的最高气温分别为23、20、20、21、26(单位: ),这组数据的中位数 和众数分别是 A .22,26 B .22,20 C .21,26 D .21,20 二、填空题:每小题4分,共20分. 6.4的算术平方根是___________. 7.函数 11y x =-的自变量的取值范围是_____________. 8.我市山清水秀,被誉为绿色明珠,是中国优秀旅游城市,年接待中外游客约5000000人,这个数字用科学记数法表示为_____________人.9.如图1,在 Rt △ABC 中,∠B=90°.ED 是AC 的垂直平分线,交AC 于点D,交BC 于点E,已知∠BAE=30°,则∠C 的度数为_____________° 10.凸n 边形的对角线的条数记作(4)nn a ≥,例如:42a=,那么:①___________5a=;②____________65a a -=;③____________1n n aa +-=.(4n ≥,用n 含的代数式表示)三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(本题满分6分) 计算:0113(()332011)o π--+--. 12.(本题满分6分)化简:()2214()()a b a b a b -+-+-.13.(本题满分6分)某校九年级数学兴趣小组的同学开展了测量东江宽度的活动。

2020年广东省河源市中考数学试卷-含详细解析

2020年广东省河源市中考数学试卷-含详细解析

2020年广东省河源市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. 9的相反数是( )A. −9B. 9C. 19D. −192. 一组数据2,4,3,5,2的中位数是( )A. 5B. 3.5C. 3D. 2.5 3. 在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (−3,2)B. (−2,3)C. (2,−3)D. (3,−2) 4. 一个多边形的内角和是540°,那么这个多边形的边数为( )A. 4B. 5C. 6D. 7 5. 若式子√2x −4在实数范围内有意义,则x 的取值范围是( )A. x ≠2B. x ≥2C. x ≤2D. x ≠−26. 已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为( ) A. 8 B. 2√2 C. 16 D. 47. 把函数y =(x −1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )A. y =x 2+2B. y =(x −1)2+1C. y =(x −2)2+2D. y =(x −1)2−38. 不等式组{2−3x ≥−1,x −1≥−2(x +2)的解集为( )A. 无解B. x ≤1C. x ≥−1D. −1≤x ≤19. 如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 1 B. √2 C. √3 D. 2 10. 如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:①abc >0;②b 2−4ac >0;③8a +c <0;④5a +b +2c >0, 正确的有( ) A. 4个 B. 3个 C. 2个 D. 1个 二、填空题(本大题共7小题,共28.0分) 11. 分解因式:xy −x =______.12. 如果单项式3x m y 与−5x 3y n 是同类项,那么m +n =______. 13. 若√a −2+|b +1|=0,则(a +b)2020=______.14. 已知x =5−y ,xy =2,计算3x +3y −4xy 的值为______. 15. 如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE ,BD.则∠EBD 的度数为______.16.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______m.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+y)2+(x+y)(x−y)−2x2,其中x=√2,y=√3.四、解答题(本大题共7小题,共56.0分)19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x(1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.21. 已知关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.(1)求a ,b 的值;(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x 的方程x 2+ax +b =0的解.试判断该三角形的形状,并说明理由.22. 如图1,在四边形ABCD 中,AD//BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE⏜上一点,AD =1,BC =2.求tan∠APE 的值.23. 某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.(x>0)图象上一点,过点B分别向坐标轴作垂线,24.如图,点B是反比例函数y=8x(x>0)的图象经过OB的中点M,与AB,BC分别垂足为A,C.反比例函数y=kx相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=______;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.如图,抛物线y=3+√3x2+bx+c与x轴交于A,B6两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.答案和解析1.【答案】A【解析】解:9的相反数是−9,故选:A.根据相反数的定义即可求解.此题主要考查相反数的定义,比较简单.2.【答案】C【解析】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.本题考查了统计数据中的中位数,明确中位数的计算方法是解题的关键.本题属于基础知识的考查,比较简单.3.【答案】D【解析】解:点(3,2)关于x轴对称的点的坐标为(3,−2).故选:D.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.【答案】B【解析】解:设多边形的边数是n,则(n−2)⋅180°=540°,解得n=5.故选:B.根据多边形的内角和公式(n−2)⋅180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】B【解析】解:∵√2x−4在实数范围内有意义,∴2x−4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.此题主要考查了二次根式有意义的条件,即二次根式中的被开方数是非负数.正确把握二次根式的定义是解题关键.6.【答案】A【解析】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=12AC,DE=12BC,EF=12AC,故△DEF的周长=DE+DF+EF=12(BC+AB+AC)=12×16=8.故选:A.根据中位线定理可得DF=12AC,DE=12BC,EF=12AC,继而结合△ABC的周长为16,可得出△DEF的周长.此题考查了三角形的中位线定理,解答本题的关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半,难度一般.7.【答案】C【解析】解:二次函数y=(x−1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x−2)2+2.故选:C.先求出y=(x−1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”求出平移后的函数图象的顶点坐标直接代入函数解析式求得平移后的函数解析式.8.【答案】D【解析】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x+2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【答案】D【解析】解:∵四边形ABCD是正方形,∴AB//CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB′=60°,BE=B′E,∴∠AEB′=180°−∠BEF−∠FEB′=60°,∴B′E=2AE,设BE=x,则B′E=x,AE=3−x,∴2(3−x)=x,解得x=2.故选:D.由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB′=60°,BE=B′E,设BE=x,则B′E=x,AE=3−x,由直角三角形的性质可得:2(3−x)=x,解方程求出x即可得出答案.本题考查了正方形的性质,折叠的性质,含30°角的直角三角形的性质等知识点,能综合性运用性质进行推理是解此题的关键.10.【答案】B【解析】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2−4ac>0,故②正确;=1,可得b=−2a,∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a由图象可知,当x=−2时,y<0,即4a−2b+c<0,∴4a−2×(−2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=−1时,y=a−b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线上的点的坐标满足抛物线的解析式.11.【答案】x(y−1)【解析】解:xy−x=x(y−1).故答案为:x(y−1).直接提取公因式x,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【答案】4【解析】解:∵单项式3x m y与−5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.本题考查同类项的定义,正确根据同类项的定义得到关于m,n的方程组是解题的关键.13.【答案】1【解析】解:∵√a−2+|b+1|=0,∴a−2=0且b+1=0,解得,a=2,b=−1,∴(a+b)2020=(2−1)2020=1,故答案为:1.根据非负数的意义,求出a、b的值,代入计算即可.本题考查非负数的意义和有理数的乘方,掌握非负数的意义求出a、b的值是解决问题的关键.14.【答案】7【解析】解:∵x=5−y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)−4xy=3×5−4×2=15−8=7,故答案为:7.由x=5−y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)−4xy计算可得.本题主要考查代数式求值,解题的关键是能观察到待求代数式的特点,得到其中包含这式子x+y、xy及整体代入思想的运用.15.【答案】45°【解析】解:∵四边形ABCD是菱形,∴AD=AB,(180°−∠A)=75°,∴∠ABD=∠ADB=12由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD−∠ABE=75°−30°=45°,故答案为45°.根据∠EBD=∠ABD−∠ABE,求出∠ABD,∠ABE即可解决问题.本题考查作图−基本作图,菱形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】13【解析】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:120π×1,180而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=120π×1,180解得,r=1,3故答案为:1.3求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.本题考查圆锥的有关计算,明确扇形的弧长相当于围成圆锥的底面周长是解决问题的关键.17.【答案】2√5−2【解析】解:如图,连接BE,BD.由题意BD=√22+42=2√5,∵∠MBN=90°,MN=4,EM=NE,∴BE=12MN=2,∴点E的运动轨迹是以B为圆心,2为半径的圆,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2√5−2.故答案为2√5−2.如图,连接BE,BD.求出BE,BD,根据DE≥BD−BE求解即可.本题考查点与圆的位置关系,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.【答案】解:(x+y)2+(x+y)(x−y)−2x2,=x2+2xy+y2+x2−y2−2x2=2xy,当x=√2,y=√3时,原式=2×√2×√3=2√6.【解析】根据整式的混合运算过程,先化简,再代入值求解即可.本题考查了整式的混合运算−化简求值,解决本题的关键是先化简,再代入值求解.19.【答案】解:(1)x=120−(24+72+18)=6;(2)1800×24+72120=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.【解析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.本题主要考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.20.【答案】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,{∠DBF=∠ECF ∠BFD=∠CFE BD=CE,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE 和△ACD 中,{∠ABE =∠ACD∠A =∠A BE =CD,∴△ABE≌△ACD(AAS),∴AB =AC ,∴△ABC 是等腰三角形.【解析】先证△BDF≌△CEF(AAS),得出BF =CF ,DF =EF ,则BE =CD ,再证△ABE≌△ACD(AAS),得出AB =AC 即可.本题考查了全等三角形的判定与性质、等腰三角形的判定;证明三角形全等是解题的关键.21.【答案】解:(1)由题意得,关于x ,y 的方程组的相同解,就是程组{x +y =4x −y =2的解,解得,{x =3y =1,代入原方程组得,a =−4√3,b =12; (2)当a =−4√3,b =12时,关于x 的方程x 2+ax +b =0就变为x 2−4√3x +12=0, 解得,x 1=x 2=2√3,又∵(2√3)2+(2√3)2=(2√6)2,∴以2√3、2√3、2√6为边的三角形是等腰直角三角形.【解析】(1)关于x ,y 的方程组{ax +2√3y =−10√3,x +y =4与{x −y =2,x +by =15的解相同.实际就是方程组{x +y =4x −y =2的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与2√6为边长,判断三角形的形状.本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.【答案】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD//BC ,∠DAB =90°,∴∠OBC =180°−∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠OEC =∠OBC∠OCE =∠OCB OC =OC,∴△OCE≌△OCB(AAS),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC −BF =2−1=1,∵AD//BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF=√CD2−CF2=√32−12=2√2,∴AB=DF=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=OBBC =√22.【解析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2√2,则OB=√2,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.本题考查了切线的判定与性质、全等三角形的判定与性质、直角梯形的性质、勾股定理、圆周角定理等知识;熟练掌握切线的判定与性质和圆周角定理是解题的关键.23.【答案】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:60x+2=60x⋅35,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90−a)个,由题意得:90−a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90−22)×3=10520,答:建造这90个摊位的最大费用是10520元.【解析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的35这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90−a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.24.【答案】2【解析】解:(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2,故答案为2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD =12×8−12×2=3;(3)设点D(m,2m ),则点B(4m,2m ),∵点G 与点O 关于点C 对称,故点G(8m,0),则点E(4m,12m ),设直线DE 的表达式为:y =sx +n ,将点D 、E 的坐标代入上式得{2m =ms +n 12m=4ms +n ,解得{k =−12m 2b =52m , 故直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0), 故FG =8m −5m =3m ,而BD =4m −m =3m =FG ,则FG//BD ,故四边形BDFG 为平行四边形.(1)设点B(s,t),st =8,则点M(12s,12t),则k =12s ⋅12t =14st =2;(2)△BDF 的面积=△OBD 的面积=S △BOA −S △OAD ,即可求解;(3)确定直线DE 的表达式为:y =−12m 2x +52m ,令y =0,则x =5m ,故点F(5m,0),即可求解.本题考查的是反比例函数综合运用,涉及到一次函数的性质、平行四边形的性质、面积的计算等,综合性强,难度适中.25.【答案】解:(1)∵BO =3AO =3,∴点B(3,0),点A(−1,0),∴抛物线解析式为:y =3+√36(x +1)(x −3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32;(2)如图1,过点D 作DE ⊥AB 于E ,∴CO//DE , ∴BC CD =BO OE , ∵BC =√3CD ,BO =3, ∴√3=3OE ,∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标(−√3,√3+1),设直线BD 的函数解析式为:y =kx +b ,由题意可得:{√3+1=−√3k +b 0=3k +b, 解得:{k =−√33b =√3,∴直线BD 的函数解析式为y =−√33x +√3; (3)∵点B(3,0),点A(−1,0),点D(−√3,√3+1),∴AB =4,AD =2√2,BD =2√3+2,对称轴为直线x =1,∵直线BD :y =−√33x +√3与y 轴交于点C , ∴点C(0,√3),∴OC =√3,∵tan∠COB =COBO =√33, ∴∠COB =30°,如图2,过点A 作AK ⊥BD 于K ,∴AK =12AB =2,∴DK =√AD 2−AK 2=√8−4=2,∴DK =AK ,∴∠ADB =45°,如图,设对称轴与x 轴的交点为N ,即点N(1,0),若∠CBO =∠PBO =30°,∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD∽△BPQ ,∴BP BA =BQBD ,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q(1−2√33,0);当△BAD∽△BQP ,∴BP BD =BQAB ,∴BQ =4√33×42√3+2=4−4√33, ∴点Q(−1+4√33,0); 若∠PBO =∠ADB =45°,∴BN =PN =2,BP =√2BN =2√2,当△BAD∽△BPQ ,∴BP AD =BQ BD ,∴√22√2=2√3+2,∴BQ =2√3+2∴点Q(1−2√3,0);当△BAD∽△PQB ,∴BP BD =BQ AD ,∴BQ =√2×2√22√3+2=2√3−2,∴点Q(5−2√3,0);综上所述:满足条件的点Q的坐标为(1−2√33,0)或(−1+4√33,0)或(1−2√3,0)或(5−2√3,0).【解析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=√3,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,相似三角形的性质,直角三角形的性质,勾股定理等知识,利用分类讨论思想解决问题是本题的关键.。

广东省河源市2020年(春秋版)八年级下学期数学期中考试试卷A卷

广东省河源市2020年(春秋版)八年级下学期数学期中考试试卷A卷

广东省河源市2020年(春秋版)八年级下学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七下·海口月考) 方程5+3x=0的解是()A .B .C .D .2. (2分) (2017八下·广东期中) 下列二次根式是最简二次根式的是()A .B .C .D .3. (2分)下列运算正确的是()A . +=B . (a+b)2=a2+b2C . (﹣a)3=﹣6a3D . ﹣(x﹣2)=2﹣x4. (2分)把m根号外的因式适当变形后移到根号内,得()A .B . -C . -D .5. (2分)(2017·武汉模拟) 如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A . 12B . 16C . 18D . 246. (2分)如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中,不能说明四边形ABCD是平行四边形的是()A . AD=BCB . AC=BDC . AB∥CDD . ∠BAC=∠DCA7. (2分)下列性质中正方形具有而矩形没有的是()A . 对角线互相平分B . 对角线相等C . 对角线互相垂直D . 四个角都是直角8. (2分)(2014·衢州) 如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()A .B .C . 4D . 39. (2分)在下列命题中,正确的是()A . 一组对边平行的四边形是平行四边形B . 有一个角是直角的四边形是矩形C . 有一组邻边相等的平行四边形是菱形D . 对角线互相垂直平分的四边形是正方形10. (2分)如图,AD,AE分别是△ABC的角平分线和中线,CG⊥AD于F,交AB于G,若AB=8,AC=6,则EF 的长为()A . 2B .C . 1D .11. (2分) (2017八上·弥勒期末) 下列各式中,计算正确的是()A .B .C .D .12. (2分)(2017·南山模拟) 如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD 交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2= GF×AF;④当AG=6,EG=2 时,BE的长为,其中正确的结论个数是()A . 1B . 2C . 3D . 4二、填空题 (共6题;共10分)13. (2分)化简 ab=________.14. (1分)最简二次根式与是同类二次根式,则a的取值为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省河源市2020年(春秋版)中考数学试卷A卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分) (2017七上·襄城期中) ﹣2的相反数是()
A . 2
B . ﹣2
C .
D . ﹣
2. (2分) (2015七下·绍兴期中) 下列计算中,正确的是()
A . a•a2=a2
B . 2a+3a=5a
C . (2x3)2=6x3
D . (x2)3=x5
3. (2分)(2014·崇左) 震惊世界的MH370失联事件发生后第30天,中国“海巡01”轮在南印度洋海域搜索过程中,首次侦听到疑是飞机黑匣子的脉冲信号,探测到的信号所在海域水深4500米左右,其中4500用科学记数法表示为()
A . 4.5×102
B . 4.5×103
C . 45.0×102
D . 0.45×104
4. (2分)(2019·瑞安模拟) 某市4月份第一周每天最高气温(℃)分别为:19,19,22,24,19,20,24,则该市这一周每天最高气温的众数和中位数分别是()
A . 19,22
B . 24,20
C . 19,24
D . 19,20
5. (2分) (2017九上·重庆期中) 在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两
人“心领神会”的概率是()
A .
B .
C .
D .
6. (2分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是
A .
B .
C .
D .
7. (2分) (2016九上·滨海期中) 二次函数y= (x﹣2)2﹣1图象的顶点坐标是()
A . (﹣2,﹣1)
B . (2,﹣1)
C . (﹣2,1)
D . (2,1)
8. (2分)(2018·哈尔滨) 如图,在菱形ABCD中,对角线AC、BD相交于点0,BD=8,tan∠ABD= ,则线段AB 的长为().
A .
B . 2
C . 5
D . 10
二、填空题 (共8题;共8分)
9. (1分)(2018·濠江模拟) 函数中自变量x的取值范围为________.
10. (1分)(2016·张家界) 因式分解:x2﹣4=________.
11. (1分) (2018八上·孟州期末) 如图,线段BD、CE相交于点A,DE BC.如果AB=4,AD=2,DE=1.5,那么BC的长为________.
12. (1分)若点(2,1)在双曲线上,则k的值为________ .
13. (1分)如果圆的半径为6,那么60°的圆心角所对的弧长为1 .
14. (1分)(2019·下城模拟) 如图,过圆外一点P作⊙O的切线PC,切点为B,连结OP交圆于点A.若AP =0A=1,则该切线长为________.
15. (1分)(2018·连云港) 如图,一次函数y=kx+b的图像与x轴、y轴分别相交于A、B两点,⊙O经过
A、B两点,已知AB=2,则的值为________.
16. (1分) (2018九上·仁寿期中) 如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF= EH,那么EH的长为__________。

三、解答题 (共11题;共110分)
17. (5分)(2016·湖州) 计算:tan45°﹣sin30°+(2﹣)0 .
18. (10分) (2016八上·鄂托克旗期末) 解分式方程
(1)
(2)
19. (5分) (2017七下·抚宁期末) 解不等式组解不等式组,并把它的解集表示在数轴上.
20. (8分) (2018七下·韶关期末) 某校为了了解七年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5﹣46.5;B:46.5﹣53.5;C:53.5﹣60.5;D:60.5﹣67.5;E:67.5﹣74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.
请解答下列问题:
(1)这次随机抽取了________名学生调查,并补全频数分布直方图;
(2)在抽取调查的若干名学生中体重在________组的人数最多,在扇形统计图中D组的圆心角是________度;
(3)请你估计该校七年级体重超过60kg的学生大约有多少名?
21. (10分)(2017·徐州模拟) 一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.
(1)从箱子中随机摸出一个球是白球的概率是多少?
(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.
22. (10分) (2017八上·温州月考) 如图,AB∥CD,CE平分∠ACD交AB于点E.
(1)求证:△ACE是等腰三角形.
(2)若AC=13,CE=10,求△ACE的面积.
23. (10分) (2017八上·南海期末) △ABC在直角坐标系内的位置如图所示.
(1)在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称;
(2)求△ABC的面积.
24. (10分) (2017八下·杭州开学考) 解下列不等式(组)
(1) 5x>3(x﹣2)+2
(2).
25. (10分)为了方便行人,市政府打算修建如图所示的过街天桥,桥面AD平行于地面BC,立柱AE⊥BC于点E,立柱DF⊥BC于点F,若AB=10 米,tanB= ,∠C=30°.
(1)因受地形限制,决定对天桥进行改建,使CD斜面的坡度变陡,将30°坡角改为40°,改建后斜面为DG,试计算此次改建节省路面宽度CG大约是多少?(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.732)
(2)在该天桥修建工程中,某工程队每天修建若干米,为了尽量减少施工对周边环境的影响,该队提高施工效率,实际工作效率比原计划每天提高了20%,结果提前两天完成,求原计划几天完成该工程?
26. (20分)(2017·农安模拟) 如图,在平面直角坐标系中,抛物线y=ax2+bx+5与x轴交于A(1,0)、B (5,0)两点,点D是抛物线上横坐标为6的点.点P在这条抛物线上,且不与A、D两点重合,过点P作y轴的平行线与射线AD交于点Q,过点Q作QF垂直于y轴,点F在点Q的右侧,且QF=2,以QF、QP为邻边作矩形QPEF.设矩形QPEF的周长为d,点P的横坐标为m.
(1)
求这条抛物线所对应的函数表达式.
(2)
求这条抛物线的对称轴将矩形QPEF的面积分为1:2两部分时m的值.
(3)
求d与m之间的函数关系式及d随m的增大而减小时d的取值范围.
(4)
当矩形QPEF的对角线互相垂直时,直接写出其对称中心的横坐标.
27. (12分) (2016九上·盐城期末) 如图,二次函数y= +bx﹣的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1) b=________;点D的坐标:________;
(2)线段AO上是否存在点P(点P不与A、O重合),使得OE的长为1;
(3)在x轴负半轴上是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED 与正方形ABCD重叠部分的面积;若不存在,请说明理由.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共11题;共110分)
17-1、
18-1、18-2、
19-1、20-1、20-2、20-3、21-1、
21-2、22-1、
22-2、
23-1、23-2、
24-1、
24-2、25-1、25-2、26-1、
26-2、26-3、
26-4、27-1、
27-2、
27-3、。

相关文档
最新文档