谐波对电网的危害及治理对策论文
谐波对电网的影响及其解决措施

谐波对电网的影响及其解决措施摘要:谐波对于电网的影响来说是深远的,充分分析谐波对电网的影响有重要意义,本文主要对电力谐波对电网的影响及其解决措施进行了探讨。
关键词:谐波电网治理Abstract: the influence of the power network harmonic it is profound, the full analysis of the influence of the harmonic power grid has an important meaning, this paper mainly to the power grid and the influence of the harmonic wave to solving measures are discussed.Keywords: harmonic power grid management0 前言随着电力电子装置应用的迅速普及,其非线性的负荷特性给电网带来丰富的谐波电流,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波亦增加了公用电网的附加损耗、降低了发电、输电及用电设备的效率。
谐波不仅影响了输配电和用户电力设备的正常使用,致使用户的无功功率电费支出增加,而且对其它设备组件也产生了危害。
下面将对电力系统谐波的产生原因与危害影响做出分析,提出了治理电力系统谐波的主要措施。
1 谐波对电网的主要影响及谐波治理的意义1.1谐波对电网设备的影响(1)电网谐波污染,导致输电线路、变压器和电机损耗增加,浪费日趋宝贵的能源;(2)变压器、旋转电机等铁芯磁感应环流增加,大大加大电气设备发热损耗,增加功耗;加速绝缘老化,影响设备寿命;甚至发生机械谐振,旋转电机转速不稳,烧毁旋转电机;(3)电线电缆等集肤效应增大,发热损耗增加;加速绝缘老化,影响寿命;(4)电力系统继电保护误启动,误动作跳闸,拒动和损坏,常引起事故或扩大停电事故;(5)电能表等计量装置误差增大,不能正确计量电能。
电力系统中谐波的危害与产生(二篇)

电力系统中谐波的危害与产生电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。
本文全面论述了电力系统中谐波的危害及产生情况,希望能引起我们的高度重视。
谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面:1.对供配电线路的危害(1)影响线路的稳定运行供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。
但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。
晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。
这样,谐波将严重威胁供配电系统的稳定与安全运行。
(2)影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。
如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。
另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
2.对电力设备的危害对电力电容器的危害当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。
对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。
尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。
另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。
浅谈谐波对电力设备的危害及其治理

浅谈谐波对电力设备的危害及其治理【摘要】谐波对电能的质量具有重要的影响,严重的会引发重大事故的发生。
本文结合用户谐波的产生及治理,分析了谐波的产生和对配电网络电气设备的危害,最后提出了谐波治理的措施。
【关键词】谐波危害治理措施在配电网络中,大容量整流或换流设备以及其它非线性负荷的大量增加,它们所产生的大量谐波被注入到电网中,导致电力系统的电压和电流波形发生严重畸变,对电力系统的一、二次设备会造成不良影响。
1 谐波产生的原因谐波的产生主要是来自具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯设备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉、中频炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、变频调速和调压装置、大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道、冶金、矿山等工矿企业以及各式各样的家用电器中。
以上这些非线性电气设备的显著特点是它们从电网取用非正弦电流,也就是说,即使电源电压是正弦波形,但由于负荷具有其电流不随着电压同步变化的非线性的电压—电流特性,使得流过负荷的电流是非正弦波形的,它由基波及其整数倍的谐波组成。
产生的谐波使电网电压严重失真,并且电网还必须向它提供额外的电能。
2 谐波的危害谐波的危害,主要是增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益,以及对保护装置及计量准确性的影响。
(1)电力谐波对输电线路的影响。
谐波电流使输电线路的电能损耗增加。
当注入电网的谐波频率位于网络谐振点附近区内时,对输电线路和电力电缆线路会造成绝缘击穿。
(2)谐波对变压器的影响。
谐波电压的存在增加了变压器的磁滞损耗、涡流损耗及绝缘的电场强度,谐波电流的存在增加了铜损。
对带有非对称负荷的变压器而言,会大大增加励磁电流的谐波分量。
例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。
论谐波对电网的危害分析及治理

【 摘
要】 目前 电网中的高压 配电的许 多用户, 对谐 波的危 害也
没有 引起足 够的重视 , 往往认 为谐 波治理是 电力部 门的事情 , 是一种 单边行 为, 就此 而言, 作为 电力归 口管理部 门有必要加 强谐波 治理 方 面 的 宣传 强 调 谐 波 治理 的 重要 性 和投 资 回报 。文 章 重 点 论 述 了谐 波
治 理 的一 些具 体 措 施 。
【 关键词 】 电网谐 波 ;治理措施
谐波治理是 综合治理过 程, 是 改善供 电品质的重要手 段。G B / T 1 4 5 4 9 - 1 9 9 3《 电能 质 量 一 公 用 电 网谐 波 》对 电 网 各 级 电 压 谐 波 水 平
3 . 1滤波 所谓 的滤波就 是,一个 电信 号中有若干种成分,把其中一部分 进 行 了量化 限制, 对 用户注入公 用电网 的谐波 电流也进 行了相应 的 交流信号过滤掉就 叫滤波 。一般将 电力 电网或 电力设备 中某些不需 规定, 在主网、 城网中, 谐 波 治 理 有 明确 的规 定 和 要 求 , 而 日益 发 展 的 要的交流信 号去掉 ,通常采用滤波的手段 。可 以很好 的消除谐波 , 农 村 电网 对 有 关 谐 波 的 治 理 并 未 引起 足 够 的重 视 , 认识还有待 提高。 尤其 是 高 次 谐 波 。 滤 波 又 可 以分 为 有 源 滤 波 和 无 源 滤 波 。就 目前来 目前 农 网 中 的 高 压 配 电 的 许 多 用 户 , 对 谐波 的 危 害 也 没 有 引起 足 够 说 , 无源 滤波 应 用 较 多 , 效 果 较 好 , 价 格较 低 。 包括 三 种 形 式 : 的重视 , 往 往 认 为 谐 波 治 理 是 电力 部 门 的 事 情 , 是一种单边行 为, 就 ( 1 )串 联 滤 波 。 对 3次 谐 波 的 抑 制 效 果 明 显 。 此而言, 作 为 电 力 归 口管 理 部 门有 必 要 加 强谐 波 治 理 方 面 的 宣 传 , 强 ( 2 )并 联 滤 波 。可 以滤 出多 次 谐 波 ,并 给 系 统 提 供 无 功 补 偿 , 调 谐 波 治 理 的重 要 性和 投 资 回 报 。 在对 谐 波 准 确 测 量 的 基 础 上 , 提 出 是 应 用 最 广 泛 的 消 除 谐 波 ,净 化 电源 的 装 置 。 适 合用户的治理方案 。这样做, 不仅 能够 改善整个网络的 电力 品质, ( 3 )低通滤波 ( 串并混合 ) 。对高次谐波治理效果更佳 。 同时也能延长用户设备使用寿命, 提高产品质量, 降低 电磁污染环境, 而 我 们 最 常用 的就 是 并 联 电容 器 补 偿 , 减少能耗, 提高电能利用率 。 主要有 以下三种补偿方 式: 1 谐 波 的来 源 ( 1 )集中补偿方式 。将高压电容 器集中安装在总 降压变 电所或 电网 中谐 波 主 要 来 自于 两 方 面 : 用 户 的 非线 性 负荷 和 电源 系 统 。 功率 因数 较 低 、 负荷 较 大 的 配 电所 高压 母 线 上 。 1 . 1 来 自 非线 性 负 荷 ( 2 ) 分散补偿 。 对 用 电 负 荷 分 散 和 功 率 因 数 较 低 的 车 间变 电 所 , 随 着 电力 电 子 技 术 发 展 ,供 电系 统 中增 加 了大 量 非 线 性 负 载 , 采 用低 压 并 联 电 容 器 安 装 在 低 压 配 电 室 。 从低压小容量家 用电器到高压大容量 的工业交 、直流变换 装置 都有 ( 3 )就地补偿 。对距供 电点较远的大、中容量连续工作制的电 着广泛应用。非 线性用 电设备 已是产 生谐波 的主要 原因。 动机 ( 如风机 、水泵、压缩机、球 磨机等 ) ,应采用 电动机无功功率 1 . 2 来 自系 统 的 影 响 就地补偿装置 。如 下图所示 。它不仅 可 以 提 高功率因数,而且可 以 ( 1 )系统 中交流发 电机 内部 定子和转子 间的气 隙,由于受到铁 减少线路损失,减小总 电流,对提高变压器负载率有 明显效果。 心齿、槽 和工艺的影响 ,分布不均匀, 虽然各相 电势的波形对称 ,但 电动机无功功率就地补偿装置 三 相 电 势 中 含 有 一 定 数 量 的奇 次谐 波 ; ( 2 ) 电 网 中 大 量 变 压 器 的励 为 了减 少 和 避 免 高 次 谐 波 对 并 联 补 偿 装 置 的危 害 ,采 用 对 高 次 磁 电流 含 有 奇 次 谐 波 成 分 , 当变 压 器 空 载 或 过 励 磁 时 则 更 为 严 重 , 并 谐 波 的抑 制 措 施 为 减 少 谐 波 电 流 流 入 电容 器 和 合 闸涌 流 ,可 串联 适 由此 构 成 了主 要 的稳 定 性 谐 波 源 ; ( 3 ) 电网 中 投 切 空 载 变 压 器 或 电 当 的 电抗 器 。其 感 抗 值 应 在 可 能 产 生 的 任 何 谐 波 下 ,均 使 电容 器 回 容 器 时 , 其 合 闸 涌 流 注 入 电 网也 会 形 成 突 发 性 的谐 波 源 。 路 的总电抗 为感 抗,从而消除谐振的可能 。为 了防止可能 出现铁磁 2谐波 对电网的危害 谐振 ,一般应采 用无铁 芯电抗 器。 电网中产 生的谐波达到一定的程度时 ,会对 电网运 行、电网中 随着 电力 电子技术 的发展 ,有源滤波补偿 技术 日益成熟,并得 电气 设 备 以及 连 接 的 负 载 都 会 产 生 严 重 危 害 ,主 要 表 现 在 以 下 几个 到 了广 泛 应 用 。 较 传 统 的 无 源 滤 波 补 偿 系统 , 它 具有 功 能 多 , 适 应 方面 : 性好及 响应速度 快等优 点,随着价格 的不 断下降,应用将 日益普遍。 2 . 1谐 波对 电 网运 行 的危 害 有源滤波器是一套使用模拟 和数 字逻辑电路进 行电流检测和电 谐波 对 电 网 运 行 的 危 害 主 要 有 :( 1 ) 谐波 可 使 电 力 系 统 发 生 电 流注入, 以消除谐波和提供无 功电源 的电力电子系统。通过适当的 压 谐振 , 从 而 在 线 路 上 产 生 谐 振 过 电压 ,这 就 有 可 能使 线 路 和 设 备 设计选型,有源滤波器能 大量减少 谐波 ,并将功率因数提高到接近 的 绝缘 被 击 穿 , 造 成 短 路 事 故 ;( 2 )谐 波 还 可 造 成系 统 的 继 电 保 护 1 的水平 。有源滤波器直接并 联至线 路中产 生谐波的负荷 。对于 3 和 自动 装 置 误 动 作 ,影 响 系 统 的正 常运 行 ; ( 3 ) 谐波 量 大 时 能 使 系 相 3线 电力系统 ,电流传感器安装于其中 的两相上 ,为逻辑控制 电 统 中 反 应 工 频 正 弦 量 的多 数 监 视 、 测量 仪 表 出 现 误 差 : ( 4)谐 波 的 路提供负荷 的电流波形 。有源 滤波器逻辑电路会去除波形 中的基频 存在不仅影响通讯系统通话 的清 晰度,严重时会产生谐振干扰整个 ( 5 0和 6 0赫兹 )成分。逻辑 电路将剩余 的波形反 向并调整 I G B T的 通讯系统 ;( 5 )谐波还会 影响功率因数补偿效果 ;( 6 )谐波严重时 触发来复制这一反 向波 形。这样的处理得到的结果用于去 除上游 电 可使计算机系统失控 。 力系统谐波 电流 。 由于谐波 电压是谐波 电流流过 电源 阻抗而产生的 , 2 . 2 谐波对电网电气设 备的危 害 因此 它 们 也 显著 地 减 少 。 有源 滤 波 补 偿 系 统 在 很 多 重 要 场 所 应 用 效 谐波 对 电 网 电气 设 备 的 危 害 主 要 有 : ( 1 )对 发 电机 、 电 动机 的 果 非 常 好 ,可 广 泛 应 用 于 工业 、 商业 和 机 关 团体 的配 电 网 中 。 影 响 : 感应 电 动 势 中 的 高 次 谐 波 在 同步 电机 气 隙 中磁 性 磁 场 沿 电枢 3 . 2 接 地 表而 的 分布 一 般 呈 平 顶 波 形 。利 用 傅 里 叶级 数 可 将 其 分 解 为 基 波和 正确 的接地既可 以使系统有效地抑制外来干扰 ,又 能降低设备 系列小波形 。谐波 次数 V = 1 、3 、5 、7 ,高次谐波 电动 势的存在 , 本 身对 外 界 的干 扰 。 在 实 际 应 用 系 统 中 ,由于 系 统 电源 零 线 ( 中线) 、 使发电机的 电动势波形变坏 ,而且发 电机本 身的杂散损耗增 大,温 地 线 ( 保护 接地 、系统接地 )不分 、控制系 统屏 蔽地 ( 控 制信 号屏 升增同,串入电网的谐波电流还会干扰通信 ;( 2 )对 变压器的影响: 蔽地 和 主 电 路 导 线 屏 蔽 地 )的 混 乱 连 接 ,大 大 降低 了 系 统 的 稳 定 性 由于变压器 中磁路常 出现饱和状态 ,这 时,励磁 电流 中会出现三次 和可靠性 。变频 器的接 地与其 它动力 设备接 地点分开,不能共地。 谐波磁通 ,它通过油�
谐波对电网危害

谐波对电网危害谐波污染对电网有哪些具体影响?谐波污染对电网的影响主要表现在:(1)造成电网的功率损耗增加、设备寿命缩短、接地保护功能失常、遥控功能失常、线路和设备过热灯,特别是三次谐波会产生非常打的中性线电流,使得配电变压器的零线电流甚至超过相线电流值,造成设备的不安全运行。
谐波对电网的安全性、稳定性、可靠性的影响还表现在可能引起电网发生谐振、使正常的供电中断、事故扩大、电网解裂灯。
(2)引起变电站局部的并联或串联谐振,造成电压互感器灯设备损坏;造成变电站系统中的设备和元件产生附加的谐波损耗,引起电力变压器、电力电缆、电动机等设备发热,电容器损坏,并加速绝缘材料的老化;造成断路器电弧熄灭时间的延长,影响断路器的开断容器;造成电子元器件的继电保护或自动装置误动作;影响电子仪表和通信系统的正常工作,降低通信质量;增大附加磁场的干扰等。
谐波对电力电容器有哪些影响?当配电系统非线性用电负荷比重较大,并联电容器组投入时,一方面由于电容器组的谐波阻抗小,注入电容器组的谐波电流打,使电容器过负荷而严重影响其使用寿命,另一方面当电容器组的谐波容抗与系统等效谐波感相等而发生谐振时,引起电容器谐波电流严重放大使电容器过热而导致损坏。
因此,电压谐波和电流谐波超标,都会使电容器的工作电流增大和出现异常,例如,对于常用自愈式并联电容器,其允许过电流倍数是1.3倍额定电流,当电容器的电流超过这一限制时,将会造成电容器的损坏增加、发热异常、绝缘加速老化而导致使用寿命降低,甚至造成损坏事故。
同时,谐波使工频正弦波形发生畸变,产生锯齿状尖顶波,易在绝缘介质中引发局部放电,长时间的局部放电也会加速绝缘介质的老化、自愈性能下降,而容易导致电容器损坏。
按照电力系统谐波管理规定,电网中任何一点电压正弦波的畸变率(歌词谐波电压有效值的均方根与基波电压有效值的百分比),均不得超过表2-5规定。
(1)谐波电流使变压器的铜耗增加,引起局部过热,振动,噪声增大,绕组附加发热等。
电网谐波的危害及治理方法

电网谐波的危害及治理方法摘要:近年来,随着电子技术的发展,电子器件的大量运用,电网谐波污染也开始对电子系统和生物造成危害。
本文先介绍了电网谐波产生的原因,然后点明了电网谐波存在造成的危害,最后提出了几种可以用来遏制电网谐波的方法。
关键词:电网谐波谐波危害抑制方法1 绪论电力电子技术的发展,使得各种电子装置在工业、交通和家庭中广泛应用,由此产生的大量谐波的危害也日益严重。
因此,抑制电网谐波是一个非常必要和重要的工作。
在理想的情况下,电网电压是正弦的电压。
但是在实际情况下,电网电压的实际波形由于一些非线性负荷而偏离正弦波形,也就是说会产生谐波。
非线性负荷工作的时候会持续向电源反馈谐波,从而导致电网的电压和电流波形发生改变,功率降低,电网电能的产生、电缆传输和电器利用的效率降低,最后使得电能质量降低,引起电气设备产生附加损耗,发热,产生噪声和振动,使绝缘器件老化,使用寿命缩短。
大量的谐波通过中性线路的时候会使线路发热,温度升高甚至有可能发生火灾。
所以,作为衡量电能质量指标的谐波,为了保证电网系统的电子设备正常的工作,就必须采取必要的措施,抑制谐波,防止电网谐波产生破坏。
2 电网谐波产生的原因那么到底什么是谐波呢,用一句话来讲,谐波是指对非正弦交流量傅里叶级数分解后得到的频率高出基波频率N次倍的各种电量,也称为高次谐波。
即(谐波频率=基波频率*N,N>1)谐波是一种干扰的波,影响电网的正常工作。
通常,理想的电网系统,电压与电流都是正弦波。
在由线性元件(电容、电感和电阻)组成的简单电路里,电流和电压的关系成正比,电流是正弦波。
然而,实际的供电系统,由于存在非线性负荷,流过负荷的电流与所加的电压不成正比的时候,就会形成非正弦的电流。
对于任意周期的波形都可以分解成为一个基频的正弦波加上许多的谐波正弦波。
这里讲的谐波频率指的是基频的整数倍,假如基频是50Hz,那么二次谐波为100Hz,四次谐波就是200Hz。
电力系统谐波的危害性及抑制策略

电力系统谐波的危害性及抑制策略电力系统谐波是指在交流电力系统中产生的一种非正弦波形,是交流电网中所存在的一个普遍的问题。
当电力系统中出现谐波时,将会对各个方面造成影响。
因此,对电力系统谐波的危害性及抑制策略的研究变得尤为重要。
一、电力系统谐波的危害性1、对电力系统设备的影响:谐波会对电力系统中的电力设备产生不良影响,会加快电气设备的老化,损害电力设备的正常运行,甚至可能导致设备的损坏。
2、对电力质量的影响:电力系统谐波会导致电压的失真、电流的失真、功率因数的变化等,降低电力质量。
3、对用户的影响:由于电力设备运行产生谐波会向供电系统散发,因此会由电力系统供应给所有使用电力的用户,对用户的设备产生不良的影响,例如音频设备、计算机设备等。
4、对环境的影响:电力系统谐波也会对环境造成影响,例如对动物的人工造成干扰,造成空气污染等。
二、抑制电力系统谐波的策略1、电力系统谐波分析:在电力系统中,通过对电网谐波分析,可以获取谐波特征信息,以确定引入谐波的源头,并针对性地采取谐波滤波器等抑制措施。
2、谐波滤波器的安装:谐波滤波器能够有效防止谐波向电网散播,从而保护电力设备,提高电力质量。
谐波滤波器还可以通过对电力系统谐波的调制来保护电气设备,降低谐波对设备的影响。
3、调整电力系统参数:在电力系统中通过调整电网的参数可以改善电力系统谐波问题。
例如,在电力系统中调整电抗器可以控制电路中的谐波,从而防止谐波向电网散播。
4、电力设备设计:在电力设备的设计过程中可以通过提高电力设备的质量,使电力设备适应谐波的存在。
例如,增加电容、电感、阻抗等元件能够有效地消除引起电气设备故障的谐波。
综上所述,电力系统谐波是一个非常严重的问题,需要采取一系列措施予以解决。
在电力系统中安装谐波滤波器、并对电力系统参数进行调整、以及通过提高电力设备的质量,都是解决电力系统谐波的有效方法。
为了保证电力设施的正常运转,电力系统的谐波抑制工作必须不断加强。
电网谐波治理电网环境中谐波的危害及其治理

电网谐波治理电网环境中谐波的危害及其治理随着现代工业的快速发展,电子设备的使用广泛而普遍。
然而,这些设备和工具也会产生谐波,这些谐波正日益成为电网环境中更加普遍和危险的问题。
谐波是指正弦波之外的电场、磁场和电流,它会扰乱电网中的动态平衡和正常运行,产生一系列不良影响和效应。
因此,电网谐波治理已成为电能质量管理的一个重要领域。
一、谐波的危害1、对电器设备的危害首先,谐波对电器设备的损害是最为常见和普遍的问题。
这是因为,谐波会造成电器设备产生热量过多、电压过高或过低、线路过载、电机失速、传感器失效、继电器运动不正常等。
如果这些不良效应长期存在,会导致电器设备寿命缩短、性能下降、整体效率降低。
2、对能源的浪费和损失其次,谐波会增加电网的无功功率、导致电能浪费,同时会导致电能的变压器损失加剧、高压电线、配电设备、变电站等设施受损加助。
过多的谐波存在会导致电能的浪费和损失。
3、对周围环境的影响最后,谐波会扰乱正常电网运行的稳定性,同时会影响周围的环境。
过多的谐波和波动会导致室内照明的眩光、电器设备发出明显的噪声,同时会产生可见的震荡和振动。
二、为什么需要谐波治理1、优化电能质量首先,通过谐波治理可以明显优化电能质量,减少损耗和浪费。
2、保护电器设备其次,谐波治理可以有效保护电器设备,保证其正常、稳定、长期的工作。
3、保障电网运行终究,谐波治理也能够保障电网的正常、稳定、安全运行,保证周围环境的良好。
三、如何进行谐波治理1、滤波滤波是目前最有效的谐波治理技术之一。
它基于滤波器、电容器、电感器的技术原理,可以有效地过滤掉谐波。
滤波可以按照频率进行分类,多级滤波和谐波治理器是常用的滤波技术。
2、变压器的应用变压器是电网谐波治理技术中常用的治理器。
可以通过变压器,有效控制过高的电压、使电能流水动,减少谐波产生的电压。
通过选用铁心材料及设计变压器结构,也可减少变压器对谐波电压响应,被谐波所干扰的程度能够效果明显的降低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谐波对电网的危害及治理对策论文摘要:谐波治理是一项系统工程,国内谐波治理的难点不在技术层面,因此,通过严密的管理和过细的工作取得用户支持,切实有效地开展谐波治理显得尤其重要。
目前,电力部门普遍对主电网谐波污染高度重视,但忽略对日益发展壮大的电网的谐波治理。
1、引言随着我国国民经济的快速发展,大功率整流设备、变频调速设备、换流逆变器设备等在配电网中得到广泛应用,给配电网注入了大量的非线性阻抗特性,导致电网波形出现严重畸变现象,电网中的谐波问题严重,在很大程度上对电力系统及电气设备造成危害。
2、谐波的基本特性和测量(1)谐波的概念谐波是一个周期电气量的正弦波分量,其频率是基波频率的整数倍数。
理论上看,非线性负荷是配电网谐波的主要产生因素。
非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。
周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。
非线性负荷除了产生基频整次谐波外,还可能产生低于基频的次谐波,或高于基波的非整数倍谐波。
电力系统中出现系统短路、开路等事故,而导致系统进入暂态过程引起的谐波,将不归属谐波治理的范畴。
(2)谐波的类型谐波按其性质和波动的快慢可分成四类:准稳态谐波、波动谐波、快速变化的谐波和间谐波四类。
因其多样性和随机性,在实际工作中,要精确评估谐波量值非常困难,所以在IEC 6100-4-7标准中对前三类谐波进行了规定,推荐采用数理统计的方法对谐波进行测量。
国标GB/T 14549-1993采用观察期3s有效测量的各次谐波均方根值的95%概率作为评价谐波的标准。
为简便实用,将实测值按由大到小的方式排序,在舍去前5%个大值后剩余的最大值,近似作为95%的概率值。
(3)谐波的测量通常采用谐波测试仪来监测和分析谐波。
一般来说,将用户接入公用电网的公共连接点作为谐波监测点,测量该点的电压和注入公共电网的电流后,通过对电压和电流的分析,取得谐波测量资料。
电网中谐波源定位,一般采用功率方向法和瞬时负荷参数分割法。
而谐波模型分析的方法一般有三种:非线性时域仿真、非线性和线性频率分析。
三种方法的相同点是对电网作适当的线性化处理,只是在处理非线性设备时采取了不同的模拟方式。
3、谐波对电网的危害电网中产生的谐波达到一定的程度时,会对电网运行、电网中电气设备以及连接的负载都会产生严重危害,主要表现在以下几个方面:3.1谐波对电网运行的危害谐波对电网运行的危害主要有:(1)谐波可使电力系统发生电压谐振,从而在线路上产生谐振过电压,这就有可能使线路和设备的绝缘被击穿,造成短路事故;(2)谐波还可造成系统的继电保护和自动装置误动作,影响系统的正常运行;(3)谐波量大时能使系统中反应工频正弦量的多数监视、测量仪表出现误差;(4)谐波的存在不仅影响通讯系统通话的清晰度,严重时会产生谐振干扰整个通讯系统;(5)谐波还会影响功率因数补偿效果;(6)谐波严重时可使计算机系统失控。
3.2谐波对电网电气设备的危害谐波对电网电气设备的危害主要有:(1)对发电机、电动机的影响:感应电动势中的高次谐波在同步电机气隙中磁性磁场沿电枢表而的分布一般呈平顶波形。
利用傅里叶级数可将其分解为基波和一系列小波形。
谐波次数V=1、3、5、7,高次谐波电动势的存在,使发电机的电动势波形变坏,而且发电机本身的杂散损耗增大,温升增同,串入电网的谐波电流还会干扰通信;(2)对变压器的影响:由于变压器中磁路常出现饱和状态,这时,励磁电流中会出现三次谐波磁通,它通过油箱壁或其它构件时,将在这些构件中产生涡流损耗,从而使变压器效率变低,缩短变压器的使用寿命;(3)对电力电容器的影响:谐波电压加在电容器两端时,电容器对谐波电流呈现较小的阻抗,且谐波次数越高,阻抗越小,因此电容器很容易发生过载甚至烧毁。
4 谐波治理的最初方法:LC无源滤波器单调谐滤波器高通滤波器(效果并不理想)双调谐滤波器(用的很少)单调谐滤波器对某一频率的谐波呈现低阻抗,与电网阻抗形成分流的关系,使大部分该频率的谐波流入滤波器。
造成电容器过电流当谐波频率增大时,XTR 增大而XC 减小。
这使得谐波电流大部分都流往电容器造成电容器过电流和过负荷。
此时电容器运行电流(Irated):电容器额定电流(I1)及电流入电容器的谐波电流(IH),若运行电流大于1.3倍额定电流时电容器将迅速故障。
5 抑制高次谐波的措施当电容器组容量较大,距谐波源较近时,必须采取加装滤波装置或串联电抗器的办法,对谐波加以抑制。
安装串联电抗器的作用主要有两方面:一是限制电容器的充电涌流与短路电流,二是抑制高次谐波对电容器的影响,另外当断路器在开断过程中发生重燃时,串联电抗器有抑制的作用。
因此在下列情况下,应装设串联电抗器。
(1)变(配)电站的电容器组发现有谐振现象或因谐波引起电容器过负荷时,必须装设串联电抗器。
(2)采用三角形接线的一次变(配)电站的电容器组,除限制合闸涌流及消除谐波需要以外,如果没有适当的限制短路故障的措施,也应装设串联电抗器。
(3)变(配)电站装有2组或2组以上的电容器并列运行,为调整电网运行电压,有分别投切电容器组的操作时,应该装设串联电抗器。
串联电抗器容量的选择对于并联电容器回路而言,一般不存在偶次谐波。
并且,在中性点不接地星形连接电容器组的相电流中以及三角形接线的相电压中,都不包括3次谐波,因此限制高次谐波,主要是限制5、7、1l … 次谐波。
为了抑制谐波一般均采用电抗值为电容器组容抗值的6%的电抗器,不仅可以抑制谐波电流,而且又可以限制合闸涌流,对5次及以上的高次谐波都可起到抑制的作用,基本上消除了谐波谐振的可能。
串联电抗器后.合闸涌流倍数K为:假如变电所母线直接接有发生谐波的整流装置(如图1(a)所示的系统图),谐波电流由整流装置发生,分别流人电容器组和电力系统。
由图1(b)中的等效回路可以得出下列关系式:式中:n一凯波次数;lcn电容器流的N次凯波电流;lbn一变压器的n次凯波电流;la一总n次凯波电流;xBN一变压器侧等值感抗;从上式可见:当(nXL-Xc/n)>0,即电容器组回路呈电感性时,可使谐波电流减小。
当nXL=Xc/n 时,即构成谐振条件,电容器组变成了滤波器,谐波电流将全部通过电容器组使其过负荷。
当当(nXL-Xc/n)<0时,即电容器组回路呈电容时,可使谐波扩大,使母线电压波形严重畸变。
因此应满足(nXL-Xc/n)>0的条件,即XL Xc/n2,在五次凯波时,即Xl>Xc/52=0.04Xc,考虑到电抗值应有一定的裕度,所以一般取可靠系数为1.2一1.5。
串联电抗值应按下式选择:XL=1.5XC/n2=1.5XC/52=0.06X因此电抗器的电抗值应为电容器组容抗值的6%。
6 电网谐波治理的对策6.1针对谐波的产生和传播的特点采取相应的隔离、补偿和减小措施。
在配电网中,主要存在的是三次谐波污染,可以在谐波检测的基础上,通过适当加装滤波设备来减小谐波注入电网。
对于各种电气设备的设计者,在设计初始,就要考虑其设备的谐波污染度,将谐波限制在标准允许的范围内。
6.2加装有源谐波调节器由于边频带上的频率是随传动装置的速度而变化的,并且时常很接近于基波频率,因此由变流器或逆变器产生的边频带和谐波用普通的滤波器来处理,难度较大。
而有源谐波调节器通过实时检测负载的谐波和无功分量,采用PWM变换技术,将与谐波和无功分量大小相等、方向相反的电流注入供配电系统中,来精确地补偿由负荷产生的谐波电流,实现滤除谐波、动态补偿无功的功能。
6.3加强管理,多方出资,共同治理谐波的治理,需要大量的投资,不能仅仅靠供电部门,要调动电力供需环节中的各个方面,在分清谐波来源基础上,走共同治理之路。
6.4加装隔离变压器均衡的3次谐波电流传回到电源,可通过一台Dyn接法的隔离变压器来降低谐波。
使用该变压器时,通常装设一个旁路的电路以避免在进行变压器的维护工作时长时期地对负荷停止供电。
在这种情况下,应采用中性线有足够大的通用四芯馈线。
在重要的配电系统中,有时把隔离变压器就地装在每一配电盘上,以隔离3N次谐波电流与配电系统。
隔离变压器要适当提高额定值,否则也会产生电压畸变和过热。
6.5加强标准和相应规范的宣传贯彻IEC 6100以及国标GB/T 14549-1993,对于谐波定义、测量等进行了宣传,明确谐波治理是一项互惠互利、节能增效,是保证电网和设备安全稳定运行的举措。
6.6加装无源电力滤波器由于由电力电子器件构成的非线性节能设备在低压配电网中被广泛应用,因此导致谐波污染相当严重,而并联电容器组的投入则会引起某次谐波的放大。
过大的谐波含量可能导致电容器损坏,甚至使得系统电压严重畸变。
为防止谐波放大,在该装置中每组电容器均与电抗器相串联构成无源滤波器,选择L、C参数时主要兼顾3、5次谐波的抑制问题。
统一将电抗率设定为6%,使其在基波频率下呈现容性,既作为基波无功补偿装置,又兼作谐波滤波器,避免电容器组产生谐波过电流,降低系统谐波含有率。
实验结果证明该方法可以有效地抑制3、5次谐波。
6.7主管部门对所辖配电网进行系统分析通过正确测量,以确定谐波源位置和产生的原因,为谐波治理准备充分的原始材料;在谐波产生起伏较大的地方,可设置长期观察点,收集可靠的数据。
对电力用户而言,可以监督供电部门提供的电力是否满足要求;对于供电部门而言,可以评估电力用户的用电设备是否产生了超标的谐波污染。
5、结束语谐波治理是一项系统工程,国内谐波治理的难点不在技术层面,因此,通过严密的管理和过细的工作取得用户支持,切实有效地开展谐波治理显得尤其重要。
目前,电力部门普遍对主电网谐波污染高度重视,但忽略对日益发展壮大的电网的谐波治理。