五年级数学分数应用题归类复习知识分享

合集下载

分数的应用题解析知识点

分数的应用题解析知识点

分数的应用题解析知识点一、引言分数是数学中的重要概念,具有广泛的应用。

在日常生活和工作中,我们经常遇到涉及分数的应用题。

本文将围绕分数的应用题,从数学的角度进行深度解析,帮助读者更好地理解和应用分数。

二、分数的基本概念分数是由分子和分母两部分组成的数,用分子除以分母表示。

其中,分子表示份数,分母表示总分。

例如,1/2表示一份中的一半。

三、分数的四则运算1. 分数的加法和减法当分数的分母相同时,只需将分子相加或相减,并保持分母不变。

例如,1/3 + 2/3 = 3/3 = 1。

当分数的分母不同时,可以通过求最小公倍数,将分数化为相同分母,然后再进行加法或减法运算。

2. 分数的乘法和除法分数的乘法运算可以直接将分子相乘,分母相乘。

例如,1/2 × 3/4= 3/8。

而分数的除法运算,可以将除法转化为乘法,即将被除数乘以倒数作为除数。

例如,1/2 ÷ 3/4 可转化为 1/2 × 4/3 = 4/6 = 2/3。

四、分数在实际问题中的应用1. 分数在长度和距离的应用在现实生活中,我们经常使用分数来表示长度和距离。

例如,一辆车以每小时3/4的速度行驶100千米,我们可以通过分数的乘法计算出车行驶的时间为 100 ÷ (3/4) = 100 × (4/3) = 400/3 = 133.33小时。

2. 分数在面积和体积的应用分数在求解面积和体积问题时也发挥着重要的作用。

例如,一个长方形的长度是3/5米,宽度是2/3米,我们可以通过分数的乘法计算出它的面积为 (3/5) × (2/3) = 6/15 = 2/5 平方米。

3. 分数在比例和百分比的应用分数在比例和百分比的计算中起到了重要的桥梁作用。

例如,一加工厂中的男女比例为3:7,我们可以通过分数的乘法计算出男性人数为3/10 ×总人数,女性人数为 7/10 ×总人数。

而百分比可以看作是分数的一种表示方式,例如,将分数转化为百分比可以通过乘以100并加上百分号表示。

人教版五年级数学下册 分数的运算规则 知识点归纳

人教版五年级数学下册 分数的运算规则 知识点归纳

人教版五年级数学下册分数的运算规则
知识点归纳
一、相同分母的分数相加减:
1. 分数的加法:相同分母的分数相加时,保持分母不变,分子
相加。

例子:1/5 + 2/5 = 3/5
2. 分数的减法:相同分母的分数相减时,保持分母不变,分子
相减。

例子:3/4 - 2/4 = 1/4
二、不同分母的分数相加减:
1. 分数的加法:不同分母的分数相加时,需要找到它们的最小
公倍数作为新的分母,分子按照最小公倍数的比例进行换算后相加。

例子:1/4 + 2/3 = 3/12 + 8/12 = 11/12
2. 分数的减法:不同分母的分数相减时,也需要找到它们的最
小公倍数作为新的分母,分子按照最小公倍数的比例进行换算后相减。

例子:5/6 - 1/8 = 20/24 - 3/24 = 17/24
三、分数的乘法:
将两个分数相乘时,直接将分子相乘得到新的分子,分母相乘
得到新的分母。

例子:2/3 * 4/5 = 8/15
四、分数的除法:
将一个分数除以另一个分数时,将除数的分子与被除数的分母
相乘得到新的分子,除数的分母与被除数的分子相乘得到新的分母。

例子:3/4 ÷ 2/5 = 15/8
五、数轴上的分数运算:
在数轴上计算分数时,可以根据刻度上的数值进行加减法运算,并将结果标记在数轴上。

例如,在数轴上计算 1/5 + 3/5 = 4/5,可以从1/5的位置起,向
右移动3个单位,得到4/5的位置。

分数应用题知识点总结(7篇)

分数应用题知识点总结(7篇)

分数应用题知识点总结第1篇分数与除法【知识点】:理解分数与除法的关系:被除数除数=(除数不为0)。

分数的分母不能是0。

因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。

运用分数与除法的关系解决实际问题。

用分数来表示两数相除的商。

根据分数与除法的关系把假分数化成带分数的方法。

用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。

把带分数化成假分数的方法。

(两种)把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。

将整数与分母相乘的积加上分子作分子,分母不变。

分数基本性质【知识点】:理解分数的基本性质。

分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

联系分数与除法的关系以及商不变的规律,来理解分数的基本性质。

分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。

因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。

运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

找最大公因数【知识点】:理解公因数和最大公因数的意义。

两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。

找两个数的公因数和最大公因数的方法。

运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。

会找分子和分母的最大公因数。

补充【知识点】:其他找最大公因数的方法。

找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。

其中最大的就是这两个数的最大公因数。

例如:找15和50的公因数和最大公因数:可以先找出15的因数:1,3,5,15。

小学五年级数学重要知识归纳分数的计算与运用

小学五年级数学重要知识归纳分数的计算与运用

小学五年级数学重要知识归纳分数的计算与运用分数是小学五年级数学中的一个重要知识点,它是由一个整数(分子)除以一个正整数(分母)得到的数。

掌握分数的计算与运用对于孩子们进一步学习数学知识和解决实际问题具有重要的意义。

本文将对小学五年级数学中分数的计算和运用进行归纳总结。

一、分数的基本概念分数是由一个整数除以一个正整数得到的数,可以表示一个整体中的一部分。

分数的基本形式为“分子/分母”的格式。

其中,分子表示被分割的整体中实际得到的部分数量,分母表示整体被分割的份数。

例如,1/2表示一个整体被分割成两份,其中的一份。

二、分数的计算1. 分数的加法和减法当分母相同时,两个分数的加法和减法可以直接进行。

只需将分子相加或相减,分母保持不变。

例如,1/3 + 2/3 = 3/3 = 1,1/3 - 1/3 = 0。

当分母不同时,需要找到相同的公倍数,将分数化为相同的分母再进行计算。

首先找到两个分母的最小公倍数,然后按照公倍数进行等比放大,最后得到相同分母的分数。

例如,1/4 + 1/3 = 3/12 + 4/12 =7/12。

2. 分数的乘法和除法分数的乘法可以直接将两个分数的分子相乘,分母相乘,得到结果的分数形式。

例如,1/2 × 2/3 = 2/6 = 1/3。

分数的除法可以将除数的分子和被除数的分母相乘,除以除数的分母和被除数的分子的乘积,得到结果的分数形式。

例如,1/2 ÷ 2/3 = 1/2 × 3/2 = 3/4。

三、分数的运用1. 分数的比较大小可以通过将两个分数的分母相同,比较分子的大小来判断分数的大小关系。

如果两个分数的分母相同,分子较大的分数较大;如果两个分数的分母不同,可以将分数化为相同的分母再进行比较。

例如,1/2与1/3比较,可以将两个分数化为相同的分母,1/2变为3/6,1/3变为2/6,因此1/2 > 1/3。

2. 分数的转化小数和分数可以相互转化。

人教版五年级数学下册 分数的应用题 知识点归纳

人教版五年级数学下册 分数的应用题 知识点归纳

人教版五年级数学下册分数的应用题知识点归纳本文档旨在总结人教版五年级数学下册中关于分数应用题的知识点。

一、分数的应用分数是整数之间的数,它由分子和分母组成。

在实际应用中,我们常常遇到以下情况:1. 分数的比较:当两个分数进行比较时,我们要找到它们的公共分母,然后比较分子的大小。

2. 分数的运算:分数的加减乘除运算与整数的运算类似,我们需要先找到它们的公共分母,然后按照相应的运算法则进行计算。

3. 分数的转换:分数可以转化为整数或小数。

将分子除以分母,得到的商就是分数对应的小数。

二、应用题解答技巧解答分数的应用题时,我们可以借助以下技巧:1. 将问题转化为算式:将应用题中的描述转化为相应的算式或表达式,明确要求解的是什么。

2. 计算时注意单位:在实际问题中,我们需要关注单位是否一致,如分数表示的是整体的一部分还是几个单位的总和。

3. 灵活运用分数的性质:分数有很多性质,如倒数两数相乘等于1,相同分子分母的分数比较大小取决于分母的大小等。

在解答中,我们可以根据分数的性质进行推导和判断。

三、例题演练以下是一些分数的应用题例题:1. 班级总共有36名学生,其中4/9是男生,女生有几名?2. 一件商品原价120元,现打8折出售,售价是多少?3. 所有人总共喝了5升果汁,小红喝了其中的3/10升,小明喝了其中的1/5升,剩下还有多少升?4. 一个玩具袋里有35个球,其中5/7是红球,白球有几个?以上例题旨在帮助同学们巩固和应用分数的知识,在解答时请注意题意和运算步骤,保持清晰的思路。

参考资料:人教版五年级数学下册。

分数应用题七种类型公式

分数应用题七种类型公式

分数应用题七种类型公式(一)求一个数是另一个数的几分之几(或百分之几)公式:比较量÷标准量 = 分率(百分率)(二)求一个数比另一个数多(或少)几分之几(或百分之几)1. 多几分之几(或百分之几)公式:(大数 - 小数)÷小数=分率(百分率)2. 少几分之几(或百分之几)公式:(大数 - 小数)÷大数 = 分率(百分率)(三)求一个数的几分之几(或百分之几)是多少。

公式:这个数×分率(百分率)= 部分量。

(四)已知一个数的几分之几(或百分之几)是多少,求这个数。

公式:部分量÷分率(百分率)= 这个数。

(五)求比一个数多(或少)几分之几(或百分之几)的数是多少。

1. 多几分之几(或百分之几)公式:这个数×(1 + 分率(百分率))= 所求数。

2. 少几分之几(或百分之几)公式:这个数×(1 - 分率(百分率))= 所求数。

(六)已知比一个数多(或少)几分之几(或百分之几)的数是多少,求这个数。

1. 多几分之几(或百分之几)公式:已知数÷(1+分率(百分率))= 这个数。

2. 少几分之几(或百分之几)公式:已知数÷(1 - 分率(百分率))= 这个数。

(七)工程问题。

公式:工作效率×工作时间 = 工作总量;工作总量÷工作时间 = 工作效率;工作总量÷工作效率 = 工作时间。

二、20题带解析。

(一)求一个数是另一个数的几分之几(或百分之几)类型。

1. 题目:五年级有学生40人,六年级有学生50人,五年级学生人数是六年级的几分之几?- 解析:根据公式比较量÷标准量 = 分率,五年级学生人数是比较量,六年级学生人数是标准量。

所以40÷50 = 4/5。

2. 题目:学校植树120棵,成活了100棵,成活的棵数是植树总数的百分之几?- 解析:成活的棵数是比较量,植树总数是标准量。

小学数学分数应用题类型题大全及例题解析

小学数学分数应用题类型题大全及例题解析

小学数学分数应用题类型题大全及例题解析研究必备:小学分数应用题大全及例题解析一、基础理论分数应用题是小学数学教学中的重点和难点。

它大体可以分成两种类型:一种是基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同;另一种是根据分数乘除法的意义而产生的具有独特解法的分数应用题。

分数应用题主要讨论的是以下三者之间的关系:分率、标准量和比较量。

二、分数应用题的分类1、求一个数的几分之几是多少。

这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。

即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量×分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。

2、求一个数是另一个数的几分之几。

这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。

基本的数量关系是:比较量÷标准量=分率。

以上是小学分数应用题的基础理论和分类,学生们可以结合例题进行练和掌握。

已知一个数的几分之几是多少,需要求这个数。

解决这类问题需要使用除法。

基本的数量关系是:分率对应的比较量除以分率等于标准量。

1)已知一个数的几分之几是多少,需要求这个数:分率对应的比较量除以几(分率)等于标准量。

2)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(几)等于多多少。

3)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(1+几)等于标准量。

4)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以几等于少多少。

5)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以(1-几)等于标准量。

在解决分数应用题时,正确审题非常重要。

需要能准确分清比较量和标准量,并判断标准量是已知还是未知。

五年级分数常用知识点归纳

五年级分数常用知识点归纳

1.分数的基本概念:-分数是表示部分的数,由分子和分母组成,分子表示部分的数量,分母表示整体被分成的份数。

-分数可以表示大于1和小于1之间的数,如1/2、3/4等。

2.分数的大小比较:-如果两个分数的分母相同,则分子大的分数更大;-如果两个分数的分母不同,则将它们转换为相同分母后比较大小;-分数与整数的大小比较,将整数转换为分数后比较大小。

3.分数的化简:-如果分子和分母有公因数,可以约分,即分子和分母同时除以最大公因数,得到最简分数;-最简分数的分子和分母没有公因数。

4.分数的四则运算:-分数的加法:分母相同,分子相加;-分数的减法:分母相同,分子相减;-分数的乘法:分子相乘,分母相乘;-分数的除法:将除法转换为乘法,乘以倒数。

5.带分数与假分数的转换:-带分数是由整数与真分数组成,如31/2;-假分数是分子大于分母的分数,如5/4;-带分数可以转换为假分数:整数部分乘以分母再加上分数部分的分子,作为新的分子,分母不变;-假分数可以转换为带分数:分子除以分母的商作为整数部分,余数作为新的分子,分母不变。

6.分数的倍数与约分:-分数的倍数:分子、分母同乘一个数,分数的值不变;-分数的约分:分子、分母同除一个数,分数的值不变。

7.分数的小数表示:-将分子除以分母的商作为整数部分,余数作为小数部分,得到一个小数;-分数的小数形式可以是有限小数,也可以是无限循环小数。

8.分数在生活中的应用:-用分数表示长度、重量、比例等;-用分数表示时间、速度等。

以上是五年级分数的常用知识点归纳,掌握了这些知识,学生可以进行分数的比较、运算、转换以及应用等基本操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组解应用题列方程解应用题的基本关系量(1)行程问题:速度×时间=路程顺水速度=静水速度—水流速度逆水速度=静水速度—水流速度(2)工程问题:工作效率×工作时间=工作量(3)浓度问题:溶液×浓度=溶质(4)银行利率问题:免税利息=本金×利率×时间二元一次方程组解决实际问题的基本步骤1、审题,搞清已知量和待求量,分析数量关系. (审题,寻找等量关系)2、考虑如何根据等量关系设元,列出方程组.(设未知数,列方程组)3、列出方程组并求解,得到答案.(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意.(检验,答)列方程组解应用题的常见题型(1)和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量(2)产品配套问题:加工总量成比例(3)速度问题:速度×时间=路程(4)航速问题:此类问题分为水中航速和风中航速两类1.顺流(风):航速=静水(无风)中的速度+水(风)速2.逆流(风):航速=静水(无风)中的速度--水(风)速(5)工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题(6)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量(7)浓度问题:溶液×浓度=溶质(8)银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率(9)利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%(10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量(11)数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示(12)几何问题:必须掌握几何图形的性质、周长、面积等计算公式(13)年龄问题:抓住人与人的岁数是同时增长的讲解:(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x-9=2、抽5人后到甲工厂的人数=可列方程为:(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票题中的两个相等关系:1、10分邮票的枚数+20分邮票的枚数=总枚数可列方程为:2、10分邮票的总价+ =全部邮票的总价可列方程为:10X+ =(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?题中的两个相等关系:1、做4个小狗的时间+ =3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二人的平均速度各是多少?解:设甲每小时走x千米,乙每小时走y千米题中的两个相等关系:1、同向而行:甲的路程=乙的路程+可列方程为:2、相向而行:甲的路程+ =可列方程为:(倍数问题)某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?解:这个市现在的城镇人口有x万人,农村人口有y万人题中的两个相等关系:1、现在城镇人口+ =现在全市总人口可列方程为:2、明年增加后的城镇人口+ =明年全市总人口可列方程为:(1+0.8%)x+ =(分配问题)某幼儿园分萍果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,萍果有y个题中的两个相等关系:1、萍果总数=每人分3个+可列方程为:2、萍果总数=可列方程为:(浓度分配问题)要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克。

题中的两个相等关系:1、含盐10%的盐水中盐的重量+含盐85%的盐水中盐的重量=可列方程为:10%x+ =2、含盐10%的盐水重量+含盐85%的盐水重量=可列方程为:x+y=(金融分配问题)需要用多少每千克售4.2元的糖果才能与每千克售3.4元的糖果混合成每千克售3.6元的杂拌糖200千克?解:设每千克售4.2元的糖果为x千克,每千克售3.4元的糖果为y千克题中的两个相等关系:1、每千克售4.2元的糖果销售总价+ =可列方程为:2、每千克售4.2元的糖果重量+ =可列方程为:(几何分配问题)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘米,宽是y厘米题中的两个相等关系:1、小长方形的长+ =大长方形的宽可列方程为:2、小长方形的长=可列方程为:(材料分配问题)一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?解:设有题中的两个相等关系:1、制作桌面的木材+ =可列方程为:2、所有桌面的总数:所有桌脚的总数=可列方程为:(和差倍问题)一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?解:设个位数字为x,十位数字为y。

题中的两个相等关系:1、个位数字= -5可列方程为:2、新两位数=可列方程为:(分配调运)一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?解:设题中的两个相等关系:1、第一次:甲货车运的货物重量+ =36可列方程为:2、第二次:甲货车运的货物重量+ =26可列方程为:再探实际问题与二元一次方程组应用题检测◆知能点分类训练知能点11、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x 人,女生人数为y 人,则可列方程组为2、甲乙两数的和为10,其差为2,若设甲数为x ,乙数为y ,则可列方程组为3、已知方程y=kx+b 的两组解是⎩⎨⎧==;2,1y x ⎩⎨⎧=-=.01,y x 则k= b= 4某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x 万元,总产值为y 万元,那么x,y 所满足的方程为5、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x 张,乙种票y 张,则列方程组 ,方程组的解是6、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x 米,另一段为y ,那么列的二元一次方程组为7、一个矩形周长为20cm ,且长比宽大2cm ,则矩形的长为 cm ,宽为 cm8、某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为 ( )9、一只轮船顺水速度为40千米/时,逆水速度为26千米/时,则船在静水的速度是_______ ,水流速度是 ____.10、一辆汽车从A 地出发,向东行驶,途中要过一座桥,使用相同的时间,如果车速是每小时60千米,就能越过桥2千米;如果车速是每小时50千米,就差3千米才能到桥,则A 地与桥相距 _____千米,用了 小时.(考虑问题时,桥视为一点)11、一块矩形草坪的长比宽的2倍多10m ,它的周长是132m ,则宽和长分别为_____.12、一批书分给一组学生,每人6本则少6本,每人5本则多5本,该组共有_____名学生,这批书共有_______本.13、某年级有学生246人,其中男生比女生人数的2倍少3人,求男、•女生各有多少人.设女生人数为x 人,男生人数为y ,则可列出方程组___ ____.14、甲、乙两条绳共长17m ,如果甲绳减去15,乙绳增加1m ,两条绳长相等,求甲、•乙两条绳各长多少米.若设甲绳长x (m ),乙绳长y (m ),则可列方程组( ).15、已知长江比黄河长836km ,黄河长度的6倍比长江长度的5倍多1 284km .设长江、黄河的长度分别为x (km ),y (km ),则可列出方程组 .16、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x 人,女生人数为y 人,则可列方程组为17、甲乙两数的和为10,其差为2,若设甲数为x ,乙数为y ,则可列方程组为18、已知方程y=kx+b 的两组解是⎩⎨⎧==;2,1y x ⎩⎨⎧=-=.01,y x 则k= b= 19、某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为x 万元,总产值为y 万元,那么x,y 所满足的方程为20、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x 张,乙种票y 张,则列方程组 ,方程组的解是21、一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x 米,另一段为y ,那么列的二元一次方程组为22、一个矩形周长为20cm ,且长比宽大2cm ,则矩形的长为 cm ,宽为 cm23、 七(2)班有任课教师6名,学生30名,其中男生占全班学生的60%,若画出该班全体师生人数的扇形统计图,男生所占的扇形的圆心角为 .24、小利持250元钱到一超市购买一物品,发现每个物品上标价为2.5元/个,而在超市的促销广告上却标明:买这种物品达到100个以上(不包括100个)售价为2.4元/个,小利用手中的钱最多可买 个这种物品.25、某同学买80分邮票与一元邮票共花16元,已知买的一元邮票比80分邮票少2枚,设买80分邮票x 枚,则依题意得到方程为()26、某种商品的进价为15元,出售时标价是22.5元。

由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价_______元出售该商品。

27、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减20%以96元出售,很快就卖掉了。

则这次生意盈亏情况是( )A 、赚6元B 、不亏不赚C 、亏4元D 、亏24元28、班级组织有奖知识竞赛,小明用100元班费购买笔记本和钢笔共30件,已知笔记本每本2元,钢笔每支5元,那么小明最多能买钢笔( )A 、20支B 、14支C 、13支D 、10支29、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。

相关文档
最新文档