北师大版八年级下册数学期中试卷和答案[1]
北师大版数学八年级下册《期中考试卷》附答案

(3)求△PEC 面积.
答案与解析
一、选择题
1.西柏坡是我国著名的红色旅游胜地,如果用统计图表示2018年“十一”黄金周期间西柏坡地区的气温变化情况,应利用()
A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图
[答案]C
[解析]
[分析]
条形统计图很容易看出数据的多少;折线统计图不仅容易看出数据的多少还能反映数据的增减变化情况;扇形统计图能反映部分与整体的关系;据此进一步判断得出答案即可.
C. 为了解你所在学校的学生每天的上网时间,对八年级的同学进行调查
D. 对某市的出租车司机进行体检,以此反映该市市民的健康状况
[答案]B
[解析]
试题解析:A.只在青少年中调查不具有代表性,故本选项不符合题意;
B.了解班上学生的睡眠时间.调查班上学号为双号的学生的睡眠时间,具有广泛性与代表性,故本选项符合题意;
D.企业在给职工做工作服前进行的尺寸大小的调查.
[答案]D
[解析]
[分析]
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
[详解]A、环保部门对长江某段水域的水污染情况的调查不可能把全部的水收集起来,适合抽样调查.
B、电视台对正在播出的某电视节目收视率的调查,因为普查工作量大,适合抽样调查.
7.下列各曲线表示的y与x的关系中,y不是x的函数的是()
A. B. C. D.
8.在平面直角坐标系xoy中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO的面积为()
A. 15B. 7.5C. 6D. 3
9.嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率()
北师大版八年级下册数学期中考试试题及答案

北师大版八年级下册数学期中考试试卷一、单选题1.下列不等式,不成立的是()A .﹣2>﹣12B .5>3C .0>﹣2D .5>﹣12.下列图形是中心对称图形的是()A .B .C .D .3.下列从左边到右边的变形,是因式分解的是()A .2(3)(3)9x x x -+=-B .am +bm +cm =m (a +b +c )C .(1)(3)(3)(1)y y y y +-=--+D .2422(2)yz y z z y z yz z -+=-+4.如图所示,该图案是经过()A .平移得到的B .旋转或轴对称得到的C .轴对称得到的D .旋转得到的5.已知函数y =8x -11,要使y >0,那么x 应取()A .x >118B .x <118C .x >0D .x <06.多项式3222315520m n m n m n +-的公因式是()A .5mnB .225m nC .25m nD .25mn 7.下列命题不正确的是A .等腰三角形的底角不能是钝角B .等腰三角形不能是直角三角形C .若一个三角形有三条对称轴,那么它一定是等边三角形D .两个全等的且有一个锐角为30°的直角三角形可以拼成一个等边三角形8.下列多项式中能用平方差公式分解因式的是()A .2 a +()2b -B .2 5m 20mn -C .22 x y --D .2 x 9-+9.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在().A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边垂直平分线的交点处C .在AC 、BC 两边中线的交点处D .在∠A 、∠B 两内角平分线的交点处10.如图,已知在△ABC 中,AB =AC ,BE 和CD 分别是∠ABC 和∠ACB 的平分线,则下列结论中,①∠ABE =∠ACD ;②BE =CD ;③OC =OB ;④CD ⊥AB ,BE ⊥AC ,正确的是()A .①B .①②C .①②③D .②③④二、填空题11.分解因式:x 2﹣4=__.12.已知:y 1=3x +2,y 2=-x +8,当x _________时,y 1>y 213.如图,∠C =90°,D 是CA 的延长线上一点,∠D =15°,且AD =AB ,则BC =_____AD .14.不等式组32x x >-⎧⎨<⎩的解集是_________.15.若22916x mxy y ++是一个完全平方式,那么m 的值是__________.16.若将点P (-3,4)向下平移2个单位,所得点的坐标是__________.17.如图,在己知的ABC ∆中,按以一下步骤作图:①分别以,B C 为圆心,大于12BC 的长为半径作弧,相交于两点,M N ;②作直线MN 交AB 于点D ,连接CD .若CD AC =,50A ∠=︒,则ACB∠的度数为___________.三、解答题18.分解因式(1)a2-b2(2)x2+2xy+y219.解不等式组:1526xx+<⎧⎨≥⎩,并在数轴上表示出不等式组的解集.20.如图,画出ABC向右平移6格后的图形21.利用因式分解进行计算:229124x xy y++,其中43x=,12y=-.22.把一批书分给小朋友,每人4本,则余9本;每人6本,则最后一个小朋友得到的书且不足3本,则共有小朋友多少人?多少本书?23.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且BD=AE,AD与CE交于点F(1)求证:AD=CE;(2)求∠DFC的度数.24.如图,点P是正方形ABCD内一点,连接PA,PB,PC,将△ABP绕点B顺时针旋转到△CBP′的位置.(1)旋转中心是点__________,旋转角度是__________.(2)连接PP′,△BPP′的形状是__________三角形.(3)若PA=2,PB=4,∠APB=135°,求PC的长.25.观察下列各式:21(1)(1)-=-+x x x32-=-++x x x x1(1)(1)432-=-+++1(1)(1)x x x x x(1)x5-1=.(2)根据前面的规律可得x n-1=(x-1).x-.(3)请按以上规律分解因式:20081参考答案1.A【分析】此题主要依据有理数的大小比较:正数大于所有负数,零大于所有负数,两个负数大小比较时,绝对值大的反而小.【详解】解:A、因为两个负数,绝对值大的反而小,所以﹣2<﹣12;B、5>3成立;C、0大于一切负数,则0>﹣2;D、正数大于一切负数,则5>﹣1.故选A.【点睛】掌握有理数的大小比较方法,特别注意:两个负数,绝对值大的反而小.2.B【分析】根据中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.【点睛】本题考查了中心对称图形的识别,解题的关键是掌握中心对称图形的概念.3.B【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A错误;B 、把一个多项式转化成几个整式积,故B 正确;C 、是乘法交换律,故C 错误;D 、没把一个多项式转化成几个整式积,故D 错误;故选B .【点睛】本题考查了因式分解的意义,利用把一个多项式转化成几个整式积是解题关键.4.B【详解】根据图案的形状可知:通过旋转和轴对称折叠旋转即可得到,因此可知B 答案正确.故选B.5.A【详解】试题解析:函数y=8x-11,要使y >0,则8x-11>0,解得x >118,故选A.6.C【分析】找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.【详解】解:多项式3222315520m n m n m n +-中,各项系数的最大公约数是5,各项都含有的相同字母是m 、n ,字母m 的指数最低是2,字母n 的指数最低是1,所以它的公因式是25m n .故选C .【点睛】本题考查了公因式的确定,熟练掌握找公因式有三大要点是求解的关键.7.B【详解】试题分析:根据等腰三角形的性质及等边三角形的判定方法依次分析各项即可判断.A、C、D、均正确,不符合题意;B、等腰直角三角形就是直角三角形,故错误,本选项符合题意.考点:等腰三角形的性质,等边三角形的判定点评:等腰三角形的性质的应用贯穿于整个初中学习,是平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.D【分析】利用能用平方差公式因式分解的的式子特点求解即可:两项是平方项,符号相反【详解】A:两项符号相同,故不能;B:两项不是平方项,故不能;C:两项符号相同,故不能;D:两项是平方项,符号相反,故可以所以答案为D选项【点睛】本题主要考查了能用平方差公式因式分解的特点,熟练掌握该特点是解题关键9.B【分析】根据线段垂直平分线的性质即可得出答案.【详解】解:根据线段垂直平分线上的点到线段两个端点的距离相等,可知超市应建在AC、BC两边垂直平分线的交点处,故选:B.【点睛】本题考查线段垂直平分线性质:线段垂直平分线上的点到线段两个端点的距离相等,熟练掌握其性质是解题的关键.10.C【分析】由AB=AC得∠ABC=∠ACB,由两个平分条件,则可得∠ABE=∠ACD,即①成立;且∠OBC=∠OCB ,从而可得OC=OB ,即③正确;易证△ABE ≌△ACD ,BE=CD ,故可得②正确;由AB=AC 得∠ABC=∠ACB ,由两个平分条件,则可得∠OBC=∠OCB ,从而可得OC=OB ,即③正确;若④成立,则可得△ABC 是等边三角形,显然与已知矛盾.【详解】∵AB=AC∴∠ABC=∠ACBBE 和CD 分别是∠ABC 和∠ACB 的平分线∴∠ABE=∠OBC=12ABC ∠,∠ACD=∠OCB=12ACB∴∠ABE=∠ACD=∠OBC=∠OCB即①成立∵∠OBC=∠OCB∴OC=OB即③正确在△ABE 和△ACD 中A AAB AC ABE ACD∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△ACD(ASA)∴BE=CD即②正确若④成立,则∠ABC+∠OCB=90゜∵∠ABE =∠OBC=∠OCB∴∠ABE=∠OBC=∠OCB=30゜∴∠ABC=2∠ABE=60゜∵AB=AC∴△ABC 是等边三角形显然与已知△ABC 是等腰三角形矛盾故④错误所以正确的结论为①②③故选:C .【点睛】本题考查了等腰三角形的性质,三角形全等的判定与性质,等边三角形的判定等知识,熟练运用三角形全等的判定与性质是本题的关键.11.(x+2)(x ﹣2)【详解】该题考查因式分解的定义由平方差公式ɑ2-b 2=(ɑ+b)(ɑ-b)可得x 2﹣4=(x+2)(x ﹣2)12.32x >【分析】根据题意列出不等式,故可求解.【详解】∵y 1=3x +2,y 2=-x +8,∴当y 1>y 2时,即3x +2>-x +8解得32x >故答案为:32x >.【点睛】此题主要考查一次函数与不等式,解题的关键是根据题意列出不等式进行求解.13.12【分析】根据等腰对等角以及三角形的外角性质可求得30BAC ∠=︒,根据含30度角的直角三角形的性质即可求得12BC AD =.【详解】AD AB =,ABD ∴ 是等腰三角形,D ABD ∴∠=∠,15D ∠=︒ ,15ABD ∴∠=︒,BAC ABD D ∠=∠+∠ ,151530BAC ∴∠=︒+︒=︒,90C ∠=︒ ,ABC ∴ 是直角三角形,1122BC AB AD ∴==.故答案为:12.【点睛】本题考查了等腰对等角,三角形的外角性质,含30度角的直角三角形的性质,掌握以上性质是解题的关键.14.-3<x <2【分析】直接根据一元一次不等式组的求解即可.【详解】解:∵32x x >-⎧⎨<⎩,解得:32x -<<;故答案为:32x -<<.【点睛】本题主要考查一元一次不等式组的解集,熟练掌握求解一元一次不等式组是解题的关键.15.±24【分析】根据完全平方公式进行计算即可.【详解】解:∵22916x mxy y ++是一个完全平方式,∴22916x mxy y ++=(3x±4y )2,∴m =±24,故答案为:±24.【点睛】本题考查了完全平方公式.解题的关键是掌握完全平方公式的结构特征:两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号.16.(-3,2)【分析】根据向下平移纵坐标减,进行计算即可.【详解】解:将点P (−3,4)向下平移2个单位,所得点的坐标是(−3,2).故答案为:(−3,2).【点睛】本题考查了点的坐标的平移,熟记左减右加,下减上加是解题的关键,是基础题,难度不大.17.105°【分析】根据垂直平分线的性质,可知,BD=CD ,进而,求得∠BCD 的度数,由CD AC =,50A ∠=︒,可知,∠ACD=80°,即可得到结果.【详解】根据尺规作图,可知,MN 是线段BC 的中垂线,∴BD=CD ,∴∠B=∠BCD ,又∵CD AC =,∴∠A=∠ADC=50°,∵∠B+∠BCD=∠ADC=50°,∴∠BCD=°1502⨯=25°,∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,∴ACB ∠=∠BCD+∠ACD=25°+80°=105°.【点睛】本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.18.(1)(a+b)(a-b);(2)(x+y)2【分析】(1)根据平方差公式即可因式分解;(2)根据完全平方公式即可因式分解.【详解】解:(1)a2-b2=(a+b)(a-b)(2)x2+2xy+y2=(x+y)2.【点睛】此题主要考查因式分解,解题的关键是熟知乘法公式的特点.19.3≤x<4,见解析【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】解:15 26xx+<⎧⎨≥⎩①②由①解得4x<,由②解得3x≥,所以不等式组的解集为34x≤<解集在数轴上表示如下图:【点睛】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,能求出不等式组的解集是解此题的关键.20.图形见解析.【分析】分别画出ABC 中A ,B ,C 向右平移6格后的对应点'A ,'B ,'C ,然后连接各点即可.【详解】解:如图所示:'''A B C 为所求.【点睛】本题主要考查了平移作图,正确得出对应点的位置是解题关键.21.()232x y +,9.【分析】先根据完全平方公式分解因式,再代入求出即可.【详解】解:229124x xy y ++()()2232322x x y y =++ ()232x y =+,当43x =,12y =-时,原式2413232⎡⎤⎛⎫=⨯+⨯- ⎪⎢⎥⎝⎭⎣⎦()241=-=(4-1)29=【点睛】本题考查了分解因式和代数式的化简求值,能根据公式正确分解因式是解此题的关键.22.共有7个小朋友人,37本书.【分析】设共有小朋友x人,则这批书共有(4x+9)本,根据“每人6本,则最后一个小朋友得到的书且不足3本,”可列出关于x的不等式组,即可求解.【详解】解:设共有小朋友x人,则这批书共有(4x+9)本,依题意,得:496(1) 496(1)3 x xx x+>-⎧⎨+<-+⎩,解得:6<x<15 2,又∵x为正整数,∴x=7,∴4x+9=4×7+9=37(本),答:共有7个小朋友人,37本书.【点睛】本题主要考查了一元一次不等式组的实际应用,明确题意,准确找到数量关系是解题的关键.23.(1)见解析;(2)60°【分析】(1)根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,(2)根据全等三角形的性质得到∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【详解】(1)证明:∵△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.又∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE.(2)解:由(1)得△ABD≌△CAE∴∠ACE=∠BAD.∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60°.【点睛】本题利用了等边三角形的性质和三角形外角定理,解题的关键是熟知全等三角形的判定定理及三角形的外角等于与它不相邻的两个内角的和.24.(1)B,90°;(2)等腰直角;(3)6【分析】(1)根据旋转的定义解答;(2)根据旋转的性质可得BP=BP′,又旋转角为90°,然后根据等腰直角三角形的定义判定;(3)①根据勾股定理列式求出PP′,先根据旋转的性质求出∠BP′C=135°,再求出∠PP′C=90°,然后根据勾股定理列式进行计算即可得解.【详解】解:(1)∵P是正方形ABCD内一点,△ABP绕点B顺时针旋转到△CBP′的位置,∴旋转中心是点B,点P旋转的度数是90度,故答案为:B,90°;(2)根据旋转的性质BP=BP′,旋转角为90°,∴△BPP′是等腰直角三角形;故答案为:等腰直角;(3)在等腰Rt△BPP'中,∵PB=BP'=4,∴PP′=∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,∵P'C=PA=2在Rt△PP′C中,PC6=【点睛】本题考查旋转的性质,勾股定理,正方形的性质,等腰直角三角形的判定和性质,解题的关键是熟练掌握旋转的性质和正方形的性质.25.(1)(x -1)(x 4+x 3+x 2+x +1);(2)(x n -1+x n -2+……+x 2+x +1);(3)(x -1)(x 2007+x 2006+……+x 2+x +1)【分析】(1)根据已知的等式即可因式分解x 5-1;(2)根据已知的等式即可因式分解x n -1;(3)把n=2008代入(2)即可求解.【详解】(1)∵21(1)(1)x x x -=-+321(1)(1)x x x x -=-++4321(1)(1)x x x x x -=-+++∴x 5-1=(x -1)(x 4+x 3+x 2+x +1);故答案为:(x -1)(x 4+x 3+x 2+x +1);(2)∵21(1)(1)x x x -=-+321(1)(1)x x x x -=-++4321(1)(1)x x x x x -=-+++x 5-1=(x -1)(x 4+x 3+x 2+x +1);∴x n -1=(x-1)(x n -1+x n -2+……+x 2+x +1)故答案为:(x n -1+x n -2+……+x 2+x +1);(3)x n -1=(x-1)(x n -1+x n -2+……+x 2+x +1)∴20081x -=(x -1)(x 2007+x 2006+……+x 2+x +1).【点睛】此题主要考查因式分解,解题的关键是根据已知的等式发现规律进行求解.。
北师大版数学八年级下册《期中测试卷》及答案

(2)求线段OA在平移过程中扫过的面积.
23.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(2)在(1)中,过点D作 ,交AB于点E,若CD=4,则BC的长为.
四、解答题(二)(本大题 3 小题,每小题 8 分,共 24 分)
21.若关于 的方程组 的解满足 ,求 的取值范围.
22.如图,在平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(3,0).三角形AOB中任意一点 经平移后的对应点为 ,并且点A,O,B的对应点分别为点D,E,F.
综合上述可得
故选A.
[点睛]本题主要考查不等式的非整数解,关键在于非整数解的确定.
9.如图,函数y=kx+b(k+b<2x的解集为()
A. B. C. D.
[答案]A
[解析]
[分析]
先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当x>1时,直线y=2x都在直线y=kx+b的上方,当x<2时,直线y=kx+b在x轴上方,于是可得到不等式0<kx+b<2x的解集.
A.2.5B.3C.3.5D.4
二、填空题(每题4分,满分28分,将答案填在答题纸上)
11.等腰三角形的一个外角是60°,则它的顶角的度数是__.
12.若 ,则 _______ .
13.不等式组 ,的解集是_______.
14.如图,将 沿 方向平移 得到 ,如果 周长为 ,那么四边形 的周长为______ .
北师大八年级数学下册期中测试试卷(附含答案)

北师大八年级数学下册期中测试试卷(附含答案)(本试卷满分120分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共10小题,每小题3分,共30分) 1.下列运动形式属于旋转的是( )A .飞驰的动车B .匀速转动的摩天轮C .运动员投掷标枪D .乘坐升降电梯2.下列绿色能源图标中既是轴对称图形又是中心对称图形的是( )A B C D3.用反证法证明命题“若|a|<3,则a 2<9”时,应先假设( )A .a >3B .a≥3C .a 2≥9D .a 2>94.如图1,在等边三角形ABC 中,AB=4,D 是边BC 上一点,且∠BAD=30°,则CD 的长为( )A .1B .23C .2D .3① ②图1 图25.已知△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB ,F 为线段AC 上一点,且∠DFA =80°,则( )A.DE <DFB.DE >DFC.DE =DFD.不能确定DE ,DF 大小关系6.不等式组⎩⎨⎧+≤+-4332,1<2x x x 的解集在数轴上表示正确的是()A BC D7. 已知图2-②是由图2-①经过平移得到的,图2-②还可以看作是由图2-①经过怎样的变换得到的?现给出两种变换方式:①2次旋转;②2次轴对称.下面说法正确的是( )A .①②都不可行B .①②都可行C .只有①可行D .只有②可行8.某种商品的进价为1000元,商场将商品进价涨价35%后标价出售,后来由于该商品积压较多,商场准备进行打折销售,但要保证所获利润不低于8%,则至多可打( )A .9折B .8折C .7折D .6折 9.一次函数y =kx 和y =-x +3的图象如图3所示,则关于x 的不等式组kx <-x +3<3的解集是( ) A .1<x <3 B .0<x <2C .0<x <3D .0<x <1图3 图4 10.如图4,在△ABC 中,AB =AC ,∠A =72°,CD 是∠ACB 的平分线,点E 在AC 上,且DE ∥BC ,连接BE ,则∠DEB 的度数为( )A .20°B .25°C .27°D .30°二、填空题(本大题共6小题,每小题4分,共24分)11.若等腰三角形的一个内角为40°,则该等腰三角形的顶角是 .12.如图5,点A (2,1),将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A 的对应点A′的坐标是 .图5 图6 13.如图6,在△ABC 中,∠ACB =90°,AC =5 cm ,DE 垂直平分AB ,交BC 于点E .若BE =13 cm ,则EC 的长是 cm .14.若关于x 的不等式组⎩⎨⎧---3<,1<25a x x x 的无解,则a 的取值范围是 . 15.如图7,已知∠MAN =60°,点B ,E 在边AM 上,点C 在边AN 上,AB =4,AC =8,连接EC ,以点E 为圆心,CE 的长为半径画弧,交AC 于点D .若BE =6,则AD 的长为 .图7 图816.如图8,将△ABC 绕点A 逆时针旋转得到△ADE ,其中点B ,C 分别与点D ,E 对应,如果B ,D ,C 三点恰好在同一直线上,下列结论:①△ACE 是等腰三角形;②∠DAC =∠DEC ;③AD =CE ;④∠ABC =∠ACE ;⑤∠EDC =∠BAD .其中正确的是 .(填序号)三、解答题(本大题共8小题,共66分) 17.(每小题4分,共8分)解下列不等式:(1)2x+1>3(2-x ); (2)21143x x +--≤. 18.(6分)解不等式组⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 并把解集在数轴上表示出来.19.(7分)如图9,在△ABC 中,AB=AC ,∠BAC=120°,点D ,E 在BC 上,AD ⊥AC ,AE ⊥AB . 求证:△AED 为等边三角形.图920.(7分)如图10,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A (5,2),B (5,5),C (1,1)均在格点上.(1)请画出与△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 1的坐标;(2)将△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2,请画出△A 2B 2C 2,并写出点A 2的坐标. E BD C NMA图1021.(8分)小明和同学想利用暑假去植物园参加青少年社会实践项目,到植物园了解那里的土壤、水系、植被,以及与之依存的昆虫世界.小明在网上了解到该植物园的票价是每人10元,20人及以上按团体票,可8折优惠.(1)如果有18人去植物园,请通过计算说明,小明怎样购票更省钱?(2)小明现有500元的活动经费,且每人往返车费共3元,则至多可以去多少人?22.(8分)如图11,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长.图1123.(10分)如图12,在△ABC中,∠ACB=90°,D是AB上一点,且BD=AD=CD,过点B作BE⊥CD,分别交AC,CD于点E,F.(1)求证:∠A=∠EBC;(2)如果AC=2BC,请猜想BE和BD的数量关系,并证明你的猜想.图1224.(12分)【问题原型】如图13-①,在等腰直角三角形ABC 中,∠ACB =90°,BC =8.将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,过点D 作△BCD 的BC 边上的高DE ,易证△ABC ≌△BDE ,从而得到△BCD 的面积为 ;【初步探究】如图13-②,在Rt △ABC 中,∠ACB =90°,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD .用含a 的代数式表示△BCD 的面积,并说明理由;【简单应用】如图13-③,在等腰三角形ABC 中,AB =AC ,BC =a ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,求△BCD 的面积(用含a 的代数式表示).① ② ③图13参考答案三、17.(1)x >1.(2)x ≥-2. 18.解:⎪⎩⎪⎨⎧-+≥--,1>321,1)1(3x x x x 解不等式①,得x ≤1.解不等式②,得x <4.所以不等式组的解集为 x ≤1.解集在数轴上表示略.① ② 答案速览 一、1.B 2.B 3.C 4.C 5.A 6.B 7.B 8.B 9.D 10.C 二、11.40°或100° 12.(-1,3) 13.12 14.a ≤-1 15.2 16.①②④⑤19.证明:因为AB=AC ,∠BAC=120°,所以∠B=∠C=21(180°-∠BAC )=30°. 因为AD ⊥AC ,AE ⊥AB ,所以∠EAB=∠DAC=90°.所以∠AEB=90°-∠B=60°,∠ADC=90°-∠C=60°.所以∠DAE=180°-∠AEB-∠ADC=60°.所以∠ADE=∠AED=∠DAE=60°.所以△AED 为等边三角形. 20.解:(1)如图1,△A 1B 1C 1为所求作,点B 1的坐标为(5,-5).(2)如图1,△A 2B 2C 2为所求作,点A 2的坐标为(-2,5).图121.解:(1)因为10×18=180(元),10×0.8×20=160(元),所以小明购团体票更省钱;(2)设可以去m 人,依题意,得(10×0.8+3)m ≤500,解得m ≤45. 因为m 为正整数,所以m 的最大值为45.答:至多可以去45人.22.解:(1)因为AD ⊥BC ,BD =DE ,所以AD 是BE 的垂直平分线,所以AB =AE . 因为∠BAE =40°,所以∠B =∠AEB =(180°-∠BAE )=70°.所以∠C +∠EAC =∠AEB =70°.因为EF 垂直平分AC ,所以EA =EC .所以∠C =∠EAC =35°.所以∠C 的度数为35°.(2)因为△ABC 的周长为14 cm ,AC =6 cm所以AB +BC =14-6=8(cm ).所以AB +BD +DC =8.所以AE +DE +DC =8.所以EC +DE +DC =8.所以2DC =8.所以DC =4.所以DC 的长为4.23.(1)证明:因为BE ⊥CD ,所以∠BFC =90°.所以∠EBC +∠BCF =90°.因为∠ACB =∠BCF +∠ACD =90°,所以∠EBC =∠ACD .因为AD =CD ,所以∠A =∠ACD .所以∠A =∠EBC .(2)解:BE =BD .证明:如图2,过点D 作DG ⊥AC 于点G .因为DA =DC ,DG ⊥AC ,所以AC =2CG .因为AC =2BC ,所以CG =BC .因为∠DGC =90°,∠ECB =90°,所以∠DGC =∠ECB .在△DGC 和△ECB 中,∠DGC =∠ECB ,CG =BC ,∠DCG =∠EBC ,所以△DCG ≌△EBC . 所以CD =BE .因为BD =CD ,所以BE =BD .24.解:【问题原型】由作图可知所以∠BED =∠ACB =90°.因为AB 绕点B 顺时针旋转90°得到BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =8.所以S △BCD =21BC •DE =32. 【初步探究】△BCD 的面积为21a 2.理由: 如图3,过点D 作BC 的垂线,与CB 的延长线交于点E .所以∠BED =∠ACB =90°.因为线段AB 绕点B 顺时针旋转90°得到线段BD ,所以AB =BD ,∠ABD =90°.所以∠ABC +∠DBE =90°.因为∠A +∠ABC =90°,所以∠A =∠DBE .在△ABC 和△BDE 中,∠ACB =∠BED ,∠A =∠DBE ,AB=BD ,所以△ABC ≌△BDE . 所以BC =DE =a .所以S △BCD =21BC •DE =21a 2.图3 图4【简单应用】如图4,过点A 作AF ⊥BC 于点F ,过点D 作DE ⊥BC ,交CB 的延长线于点E . 所以∠AFB =∠E =90°,BF =21BC =21a . 所以∠F AB +∠ABF =90°.因为∠ABD =90°,所以∠ABF +∠DBE =90°.所以∠F AB =∠EBD .图2因为线段BD 是由线段AB 旋转得到的,所以AB =BD .在△AFB 和△BED 中,∠AFB =∠E ,∠F AB =∠EBD ,AB=BD ,所以△AFB ≌△BED . 所以BF =DE =21a . 所以S △BCD =21BC •DE =21•a •21a =41a 2.。
【北师大版】八年级数学下期中模拟试卷带答案(1)

(1) ;
(2)(x﹣2y+3)(x+2y+3).
24.计算: .
25.如图, 中, 是 边上的高,将 沿 所在的直线翻折,使点 落在 边上的点 处.
若 ,求 的面积;
求证: .
26.定义:如果经过三角形一个顶点的线段把这个三角形分成两个小三角形,其中一个三角形是等腰三角形,另外一个三角形和三角形的三个内角分别相等,那么这条线段称为原三角形的“和谐分割线”,例如:如图1,等腰直角三角形斜边上的中线就是一条“和谐分割线”
12.C
解析:C
【分析】
根据勾股定理的逆定理对四个选项进行逐一分析即可.
【详解】
A. B. C. D.
二、填空题
13.三角形的三边长分别为 , , ,则该三角形最长边上的中线长为____.
14.已知梯形的上底长是 ,中位线长是 ,那么下底长是_____ .
15.如图,在钝角 中,已知 为钝角,边 , 的垂直平分线分别交 于点 , ,若 ,则 的度数为________.
16. ______.
由等腰三角形的性质和外角关系得出∠AGB=∠FCG,证出平行线,得出③正确;
根据三角形的特点及面积公式求出△FGC的面积,即可求证④.
【详解】
∵四边形ABCD是正方形,
∴AB=AD=DC=6,∠B=D=90°,
∵CD=3DE,
∴DE=2,
∵△ADE沿AE折叠得到△AFE,
∴DE=EF=2,AD=AF,∠D=∠AFE=∠AFG=90°,
∴∠FAC=∠FCA= ∠CFE=15°,
∴∠ACE=∠ACF+∠ECF=15°+60°=75°,
∴∠ACB=105°,
北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。
北师大版数学八年级下册《期中测试题》及答案

故正确的有3个,
故选B.
二、填空题(本大题7小题,每小题4分,共28分)
11.若二次根式 有意义,则 的取值范围是_____.
[答案]a≥2
[解析]
[分析]
根据二次根式有意义的条件列出不等式并求解即可.
根据两组对角分别相等的四边形是平行四边形进行判断即可.
[详解]由两组对角分别相等的四边形是平行四边形易知,
要使四边形ABCD是平行四边形需满足∠A=∠C,∠B=∠D,
因此∠A与∠C,∠B与∠D所占的份数分别相等
故选C.
4.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()
A. B. C. D.
A.5cmB.4.8cmC.4.6cmD.4cm
[答案]A
[解析]
[分析]
作AR⊥BC于R,AS⊥CD于S边形ABCD是菱形,再根据根据勾股定理求出AB即可.
[详解]解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
5.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
[答案]A
[解析]
[分析]
先根据直线y=﹣x+b判断出函数图象,y随x的增加而减少,再根据各点横坐标的大小进行判断即可.
A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y2>y1>y3
6.如图,函数 和 图象相交于A(m,3),则不等式 的解集为()
北师大版八年级下册数学期中考试试题含答案

北师大版八年级下册数学期中考试试卷一、选择题(共12小题,每小题3分,满分36分)1.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2 B.﹣3a>﹣3b C.﹣a<﹣b D.2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1) C.(﹣2,0)D.(﹣2,﹣1)3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是()A.B.C.D.4.下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)25.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C.D.6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6 B.8 C. D.57.把多项式(m+1)(m﹣1)+(m+1)提取公因式m+1后,余下的部分是()A.m+1 B.m﹣1 C.m D.2 m+18.如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB于点D,交AC于点E,△BEC的周长为13,则BC=()A.5 B.6 C.7 D.89.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.410.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<411.如图,正方形OABC的两边OA.OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)12.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3二、填空题(本题共8道小题,每题2分,共16分)13.多项式x2﹣1与多项式x2﹣2x+1的公因式是________14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为______15.如图,点P为等边△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′=____________.16.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则AD的长为_________.17.已知关于x的不等式x﹣a<0的只有三个正整数解,那么a的取值范围是______18.如图,在△ABC中,点D.E分别在AB.AC 边上,AB=AC,BE=BC,AE =DE=DB,那么∠A=_______度.19.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为________.20.已知△ABC中,BC=6,AB.AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是_______三.解答题(本题共7道小题,第21题5分,第22题10分,第23题6分,第24题6分,第25题6分,第26题6分,第27题9分,共48分)21.解不等式,并将解集在数轴上表示出来.22.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x23.在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.24.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.25.阅读理解题:(1)原理:对于任意两个实数A.b,若ab>0,则a和b同号,即:若ab<0,则a和b异号,即:(2)分析:对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)或(Ⅱ)所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>026.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)60 45租金(元/辆)550 450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?27.几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为_________;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为______-.(2)应用:点A为线段BC外一动点,如图3,分别以AB.AC为边,作等边△ABD和等边△ACE,连接CD.BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为________.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2 B.﹣3a>﹣3b C.﹣a<﹣b D.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A.a>b两边都﹣2可得a﹣2<b﹣2,错误;B.a>b两边都乘以﹣3可得﹣3a<﹣3b,错误;C.a>b两边都乘以﹣1可得﹣a<﹣b,正确;D.a>b两边都除以2可得>,错误;故选:C.【点评】此题主要考查了不等式的基本性质.注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1) C.(﹣2,0)D.(﹣2,﹣1)【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点B 的坐标为(1﹣2,3﹣4),进而可得答案.【解答】解:将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(1﹣2,3﹣4),即(﹣1,﹣1),故选:B.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是()A.B.C.D.【分析】先求出不等式的解集,在数轴上表示出来即可.【解答】解:移项得,x≥﹣1,故此不等式的解集为:x≥﹣1,在数轴上表示为:.故选:B.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4.下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)2【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A和B都不是积的形式,应排除;C中,结果中的因式都应是整式,应排除.D.x2+4x+4=(x+2)2,正确.故选:D.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.5.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A.是中心对称图形,故本选项正确;B.不是中心对称图形,故本选项错误;C.不是中心对称图形,故本选项错误;D.不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6 B.8 C. D.5【分析】利用三角形的内角和和角的比求出三边的比,再由最小边BC=4cm,即可求出最长边AB的长.【解答】解:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°解得x=30°即∠A=30°,∠C=3×30°=90°此三角形为直角三角形故AB=2BC=2×4=8cm故选:B.【点评】本题很简单,考查的是直角三角形的性质,即在直角三角形中30°的角所对的边等于斜边的一半.7.把多项式(m+1)(m﹣1)+(m+1)提取公因式m+1后,余下的部分是()A.m+1 B.m﹣1 C.m D.2 m+1【分析】直接提取公因式(m+1)进而合并同类项得出即可.【解答】解:(m+1)(m﹣1)+(m+1)=(m+1)(m﹣1+1)=m(m+1).故选:C.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.8.如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB于点D,交AC于点E,△BEC的周长为13,则BC=()A.5 B.6 C.7 D.8【分析】根据等腰三角形的性质求出AC,根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵∠ABC=∠C,AB=8,∴AC=AB=8,∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+BE+CE=13,∴BC+EA+EC=13,即BC+AC=13,∴BC=5,故选:A.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.4【分析】先求出△ABD的面积,再得出△ADC的面积,最后根据角平分线上的点到角的两边的距离相等可得AC边上的高,从而得解.【解答】解:∵DE=3,AB=6,∴△ABD的面积为,∵S△ABC=15,∴△ADC的面积=15﹣9=6,∵AD平分∠BAC,DE⊥AB于E,∴AC边上的高=DE=3,∴AC=6×2÷3=4,故选:D.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.10.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<4【分析】将方程组中两方程相加,表示出x+y,代入x+y<2中,即可求出a的范围.【解答】解:,①+②得:4x+4y=a+4,即x+y=,∵x+y=<2,∴a<4.故选:D.【点评】此题考查了解二元一次方程组,以及解一元一次不等式,表示出x+y是解本题的关键.11.如图,正方形OABC的两边OA.OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.12.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3【分析】函数y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),求不等式﹣x+2≥ax+b的解集,就是看函数在什么范围内y=﹣x+2的图象对应的点在函数y=ax+b的图象上面.【解答】解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y =ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选:D.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.二、填空题(本题共8道小题,每题2分,共16分)13.多项式x2﹣1与多项式x2﹣2x+1的公因式是x﹣1 .【分析】分别利用公式法分解因式,进而得出公因式.【解答】解:∵x2﹣1=(x+1)(x﹣1)、x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是x﹣1,故答案为:x﹣1.【点评】此题主要考查了公因式,正确分解因式是解题关键.14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为 2 .【分析】过P作PE垂直与OB,由∠AOP=∠BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PC与OA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=∠CPO,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.【解答】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC∥OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO=30°,在直角三角形CEP中,∠ECP=30°,PC=4,∴PE=PC=2,则PD=PE=2.故答案为:2.【点评】此题考查了含30°角直角三角形的性质,角平分线定理,平行线的性质,以及三角形的外角性质,熟练掌握性质及定理是解本题的关键.同时注意辅助线的作法.15.如图,点P为等边△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′= 2 .【分析】根据等边三角形的性质得出∠BAC=60°,根据旋转的性质得出AP =AP′,∠BAC=∠PAP′=60°,根据等边三角形的判定得出△APP′是等边三角形,根据等边三角形的性质得出即可.【解答】解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∴旋转角的度数为60°,即∠PAP′=∠BAC=60°,根据旋转得出AP=AP′,∴△APP′是等边三角形,∴PP′=AP,∵AP=2,∴PP′=2,故答案为:2.【点评】本题考查了等边三角形的性质和判定,旋转的性质等知识点,能求出△APP′是等边三角形是解此题的关键.16.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则AD的长为12 .【分析】根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得DE的长,再利用勾股定理得出答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴∠ADC=90°,∵点E为AC的中点,∴DE=CE=AC=.∵△CDE的周长为24,∴CD=9,∴AD===12.故答案为:12.【点评】此题主要考查了等腰三角形的性质以及直角三角形的性质、勾股定理,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.17.已知关于x的不等式x﹣a<0的只有三个正整数解,那么a的取值范围是3<a≤4 .【分析】先求出不等式的解集,根据已知得出关于a的不等式组,即可得出答案.【解答】解:由x﹣a<0得x<a,∵不等式只有三个正整数解,∴3<a≤4,故答案为:3<a≤4.【点评】本题考查了一元一次不等式组的整数解的应用,能得出关于a的不等式组是解此题的关键.18.如图,在△ABC中,点D.E分别在AB.AC 边上,AB=AC,BE=BC,AE =DE=DB,那么∠A=45 度.【分析】设∠A=x,则∠DBE=∠DEB=x,根据题意推出∠ABC=∠C=∠BEC=x,列出方程即可解决问题.【解答】解:∵AE=ED=BD,∴∠A=∠ADE,∠DBE=∠DEB,设∠A=x,则∠DBE=∠DEB=x,∵∠BEC=∠A+∠ABE,BE=BC,∴∠C=∠BEC=x,∵AB=AC,∴∠ABC=∠C=x,∵∠A+∠ABC+∠C=180°,∴x+x+x=180°,∴x=45°故答案为45.【点评】本题考查等腰三角形的性质,解题的关键是灵活应用等腰三角形的性质,重合利用参数解决问题,属于中考常考题型.19.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为﹣1 .【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD ⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD.C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB=2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为﹣1.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.20.已知△ABC中,BC=6,AB.AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是6或10 .【分析】由直线PM为线段AB的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,同理可得AN =NC,然后表示出三角形AMN的三边之和,等量代换可得其周长等于BC的长,由BC的长即可得到三角形AMN的周长.【解答】解:图1,∵直线MP为线段AB的垂直平分线,∴MA=MB,又直线NQ为线段AC的垂直平分线,∴NA=NC,∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC,又BC=6,则△AMN的周长为6,如图2,△AMN的周长l=AM+MN+AN=BM+MN+NC=BC+2MN,又BC=6,则△AMN的周长为10,故答案为:6或10【点评】此题考查了线段垂直平分线定理的运用,利用了转化的思想,熟练掌握线段垂直平分线定理是解本题的关键.三.解答题(本题共7道小题,第21题5分,第22题10分,第23题6分,第24题6分,第25题6分,第26题6分,第27题9分,共48分)21.解不等式,并将解集在数轴上表示出来.【分析】根据一元一次不等式的解法即可求出答案.【解答】解:去分母,得2(2x﹣1)+(5x﹣1)≤6,去括号,得4x﹣2+5x﹣1≤6,移项、合并同类项,得9x≤9,x系数化成1,得x≤1.在数轴上表示不等式的解集如图所示.【点评】本题考查一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.22.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x【分析】(1)先提公因式a,再利用平方差公式分解可得;(2)先提取公因式x,再利用完全平方公式分解可得.【解答】解:(1)ax2﹣4ay2=a(x2﹣4y2)=a(x+2y)(x﹣2y);(2)x3﹣8x2+16x=x(x2﹣8x+16)=x(x﹣4)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.【分析】(1)利用点平移的坐标变换规律写出A1.B1.C1的坐标,然后描点即可得到△A1B1C1;(2)利用关于原点对称的点的坐标特征写出A2.B2.C2的坐标,然后描点即可得到△A2B2C2.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移.24.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.【分析】根据角平分线的性质得出BD=DF,利用HL证明Rt△BED与Rt△DFC全等,利用全等三角形的性质证明即可.【解答】证明:∵∠B=90°,AD平分∠BAC,DF⊥AC于F,∴BD=DF,在Rt△BED与Rt△DFC中,∴Rt△BED≌Rt△DFC(HL),∴BE=CF.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质并构造出全等三角形是解题的关键.25.阅读理解题:(1)原理:对于任意两个实数A.b,若ab>0,则a和b同号,即:若ab<0,则a和b异号,即:(2)分析:对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)或(Ⅱ)所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>0【分析】由x2﹣x﹣12>0知(x+3)(x﹣4)>0,根据题意得出①或②,再分别求解可得.【解答】解:∵x2﹣x﹣12>0,∴(x+3)(x﹣4)>0,则①或②,解不等式组①,得:x>4,解不等式组②,得:x<﹣3,所以原不等式得解集为x<﹣3或x>4.【点评】本题主要考查解一元一次不等式组,解题的关键是根据有理数乘法的符号法则列出关于x的一元一次不等式组.26.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)60 45租金(元/辆)550 450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?【分析】(1)根据表格可以求出y(元)与x(辆)之间的函数表达式;(2)由表格中的数据可以得到甲乙两辆车的载客量应至少为380人,从而可以列出相应的不等式得到x的值,因为x为整数,从而可以解答本题.【解答】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为a ﹣b ;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为a+b .(2)应用:点A为线段BC外一动点,如图3,分别以AB.AC为边,作等边△ABD和等边△ACE,连接CD.BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为 4 .(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.【分析】(1)根据点A位于线段BC上时,线段AB的长取得最小值,根据点A位于BC的延长线上时,线段AB的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段CD长的最大值=线段BE的最大值,根据(1)中的结论即可得到结果;(3)将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵当点A在线段BC上时,线段AB的长取得最小值,最小值为BC﹣AC,∵BC=a,AC=b,∴BC﹣AC=a﹣b,当点A在线段BC延长线上时,线段AB的长取得最大值,最大值为BC+AC,∵BC=a,AC=b,∴BC+AC=a+b,故答案为:a﹣b,a+b;(2)①∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE;②∵线段CD的最大值=线段BE长的最大值,由(1)知,当线段BE的长取得最大值时,点E在BC的延长线上,∴最大值为BC+CE=BC+AC=4;故答案为:4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,连接BE,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知,当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键北师大版八年级下册数学期中考试试卷一、选择题(共12小题,每小题3分,满分36分)1.若a>b,则下列不等式成立的是()A.a﹣2<b﹣2 B.﹣3a>﹣3b C.﹣a<﹣b D.2.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为()A.(﹣1,0)B.(﹣1,﹣1) C.(﹣2,0)D.(﹣2,﹣1)3.把不等式x+1≥0的解集在数轴上表示出来,则正确的是()A.B.C.D.4.下列从左边到右边的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+1=x(x+)D.x2+4x+4=(x+2)25.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A. B. C.D.6.△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6 B.8 C. D.57.把多项式(m+1)(m﹣1)+(m+1)提取公因式m+1后,余下的部分是()A.m+1 B.m﹣1 C.m D.2 m+18.如图,在△ABC中,∠ABC=∠C,AB=8,AB的垂直平分线DE交AB于点D,交AC于点E,△BEC的周长为13,则BC=()A.5 B.6 C.7 D.89.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7 B.6 C.5 D.410.若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围是()A.a>2 B.a<2 C.a>4 D.a<411.如图,正方形OABC的两边OA.OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10) B.(﹣2,0)C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)12.如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1 B.x≥3 C.x≤﹣1 D.x≤3二、填空题(本题共8道小题,每题2分,共16分)13.多项式x2﹣1与多项式x2﹣2x+1的公因式是________14.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为______15.如图,点P为等边△ABC内一点,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=2,那么PP′=____________.16.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,则AD的长为_________.17.已知关于x的不等式x﹣a<0的只有三个正整数解,那么a的取值范围是______18.如图,在△ABC中,点D.E分别在AB.AC 边上,AB=AC,BE=BC,AE =DE=DB,那么∠A=_______度.19.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为________.20.已知△ABC中,BC=6,AB.AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是_______三.解答题(本题共7道小题,第21题5分,第22题10分,第23题6分,第24题6分,第25题6分,第26题6分,第27题9分,共48分)21.解不等式,并将解集在数轴上表示出来.22.因式分解(1)ax2﹣4ay2(2)x3﹣8x2+16x23.在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.24.如图,Rt△ABC,∠B=90°,AD平分∠BAC,交BC于点D,DF⊥AC于F.线段AB上一点E,且DE=DC.证明:BE=CF.25.阅读理解题:(1)原理:对于任意两个实数A.b,若ab>0,则a和b同号,即:若ab<0,则a和b异号,即:(2)分析:对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)或(Ⅱ)所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>026.某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)60 45租金(元/辆)550 450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?27.几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为_________;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为______-.(2)应用:点A为线段BC外一动点,如图3,分别以AB.AC为边,作等边△ABD和等边△ACE,连接CD.BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为________.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学第 页共6页
1 北师大版第二学期八年级期中数学试题及答案
姓名 班级 考号 得分:
一. 填空题(每空2分,共30分)
1. 用科学记数法表示0.000043为 。
2.计算:计算()=⎪⎭
⎫
⎝⎛+--1
311 ; 232()3y x =__________; a b b b a a -+-= ; y
x x
x y xy x 22+⋅+= 。
3.当x 时,分式51
-x 有意义;当x 时,分式1
1x 2+-x 的值为零。
4.反比例函数x
m y 1
-=
的图象在第一、三象限,则m 的取值范围是 ;在每一象限内y 随x 的增大而 。
5. 如果反比例函数x m
y =
过A (2,-3),则m= 。
6. 设反比例函数y=3m
x
-的图象上有两点A (x 1,y 1)和B (x 2,y 2),且
当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是 . 7.如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离树干底部m 8处,则这棵树在折断前(不包括树根)长度是 m.
8. 三角形的两边长分别为3和5,要使这个三角形是直角三角 A D
形,则第三条边长是 .
9. 如图若正方形ABCD 的边长是4,BE=1,在AC 上找一
点P E
使PE+PB 的值最小,则最小值为B C 10.如图,公路PQ 和公路MN 交
于点P,且∠NPQ=30°,公路PQ 上有一所学校A,AP=160米,若有一拖拉机
沿MN 方向以18米∕秒的速度行驶并对学校产生影响,
八年级数学第 页共6页
2
则造成影响的时间为 秒。
二.单项选择题(每小题3分,共18分)
11.在式子
1
a
、2xy π、2334
a b c 、56x +、78x y
+、109x y +中,分式的个数有( )
A 、2个
B 、3个
C 、4个
D 、5个 12.下面正确的命题中,其逆命题不成立的是( )
A.同旁内角互补,两直线平行
B.全等三角形的对应边相等
C.角平分线上的点到这个角的两边的距离相等
D.对顶角相等
13.下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( )
A . 1.5,2,3a b c ===
B . 7,24,25a b c ===
C .
6,8,10a b c === D. 3,4,5
a b c
=== 14.在同一直角坐标系中,函数y=kx+k 与(0)k
y k x
=
≠的图像大致是(
)
15
.如图所示:数轴上点A 所表示的数为a ,则a 的值是(
A
.16.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /
处,BC /
交AD 于E ,AD =8,AB =4,则DE 的长为( ).
A .3
B .4
C .5
D .6
三、解答题:
17.(8分)计算:
八年级数学第 页共6页
3 (1)x
y y x y x --
-2
2 (2)22111a a a a a ++---
18.(6分)先化简代数式1
121112-÷
⎪⎭⎫ ⎝⎛+-+-+a a
a a a a ,然后选取一个使原式有意义的a 的值代入求值.
19.(8分)解方程: (1)1233x x x
=+-- (2)482222-=-+-+x x x x x
20.(6分)已知:如图,四边形ABCD ,AB=8,BC=6,CD=26,AD=24,且AB ⊥BC 。
八年级数学第 页共6页
4
/ 2mm
求:四边形ABCD 的面积。
21. (6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度)(m y 是面条的粗细(横截面积))(2mm x 的反比例函数,其图像如图所示.
(1)写出y 与x 的函数关系式;
(2)当面条的总长度为50m 时,面条的粗细为多少?
(3)若当面条的粗细应不小于2
6.1mm ,面条的总长度最长是多少?
D
22. (8分)列方程解应用题:(本小题8分)
某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
方案(1):甲工程队单独完成这项工程,刚好如期完成;
方案(2):乙工程队单独完成这项工程,要比规定日期多5天;
方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由。
5
八年级数学第页共6页
八年级数学第 页共6页
6 23.(10分)已知反比例函数x
k
y =
图象过第二象限内的点A (-2,m )AB ⊥x 轴于B ,Rt △AOB 面积为3, 若直线y=ax+b 经过点A ,并且经过反比例函数x
k
y =的图象上另一点C
(n ,—2
3
),
(1) 反比例函数的解析式为 ,m= ,n= ; (2) 求直线y=ax+b 的解析式;
(3) 在y 轴上是否存在一点P ,使△PAO 为等腰三角形,若存在,请直接写出P 点坐标,若不存在,说明理由。
八年级数学第 页共6页
7 参考答案
一.1.4.3×10-5
2.4; 36278x y ; 1; 2
1
y 3.≠5 ; =1 4.m>1;减小 5.-6
6. m<3
7.16
8. 4或
34 9.5 10.
3
20
二.11.B 12.D 13.A 14.C 15.C 16.C
三.17. (1)解:原式=x
y y x --2
2 …1分 (2) 解:原式=)1)(1()1(11-++--+a a a a a a …..1分 =
x y y x y x -+-)
)((……2分 =111---+a a a a ……………….2分 =
)
()
)((y x y x y x --+-…....3分 =11--+a a a ……………………3分
=-x-y …………………4分 =
1
1
-a ………………………4分 18.(6分)解:原式=a
a a a a 1
.)1(1112-⎪
⎪⎭⎫
⎝⎛-+-+…………………1分 =a a a a a a 1
.)1(1)1()1)(1(22
-⎪⎪⎭
⎫ ⎝⎛-+--+…2分 =a a a a 1.)1(1122--+-…3分=1-a a …4分 选一个数代入计算…………………….………6分
19.(8分)解方程: (1)解:
3231--=-x x x …1分(2)解:)
2)(2(8
222-+=-+-+x x x x x x …1分 两边同时乘以(x-3)得 两边同时乘以(x+2)(x-2)得 1=2(x-3)-x ………..2分 x(x-2)-2
)2(+x =8……..2分 解得x=7 ………...…..3分 解得x=-2.....3分
经检验x=7是原方程的解…..4分 经检验 x=-2不是原方程的解,所以原方程无解…..4分 20.解:连接AC ,∵AB ⊥BC ,∴∠B=90°………………1分
八年级数学第 页共6页
8 ∴AC=22BC AB +=2268+=10………………….…2分 ∵222222
266762410CD AD AC
===+=+………3分
∴⊿ACD 为直角三角形……………………………..………4分 ∴四边形ABCD 的面积=ACD ABC S S +=
10242
1
8621⨯⨯+⨯⨯=144………6分 21. (6分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度)(m y 是面条的粗细(横截面积))(2mm x 的反比例函数,其图像
如图所示.
(1)x
y 128
=….…2分 (2)当y=50时,x
128
50= x=2.56∴面条的粗细为2.562mm ………….…4分
(3)当x=1.6时, 806
.1128
==y ∴当面条的粗细不小于26.1mm ,面条的总长度最长是80m …6分
22.解:在不耽误工期的情况下,我觉得方案(3)最省钱。
…………1分
理由:设规定日期为x 天,则甲工程队单独完成这项工程需x 天,乙工程队单独完成这项工程需(x+5)天,依题意列方程得:
15
4=++x x x …………4分 解得x=20…………5分
经检验x=20是原方程的解…………6分 x+5=20+5=25
方案(1)所需工程款为:1.5×20=30万元 方案(2)所需工程款为:1.1×25=27.5万元
方案(3)所需工程款为:1.5×4+1.1×20=28万元
∴在不耽误工期的情况下,我觉得方案(3)最省钱…………8分 23.(1)x
y 6
-
=;m=….……3分(2)2
3
43+-
=x y …………6分 (3)答:存在点P 使△PAO 为等腰三角形;
点P 坐标分别为:
P 1
; P 2(0,6); P 3
(0,; P 4(0,
6
13
) ……10分。