二次函数的应用一(最值问题)
第二十二章 第12课 二次函数的应用(1)——最值问题

解:∵四边形 ABCD 为矩形,∴BC=AD=4,CD=AB=3, 当运动 x 秒时,则 AQ=x,BP=x, ∴BQ=AB-AQ=3-x,CP=BC-BP=4-x, ∴S△ADQ=21AD·AQ=12×4x=2x, S△BPQ=12BQ·BP=12(3-x)x=23x-12x2,S△PCD=12PC·CD=12·(4- x)·3=6-32x,
又 S 矩形 ABCD=AB·BC=3×4=12,∴S=S 矩形 ABCD-S△ADQ- S△BPQ-S△PCD =12-2x-32x-12x2-6-32x=12x2-2x+6=12(x-2)2+4, 即 S=12(x-2)2+4,∴S 为开口向上的二次函数,且对称轴为 x =2,
2.如图,小明用铁栅栏及一面墙(墙足够长)围成一个矩形自行车 场地 ABCD,在 AB 和 BC 边各有一个 2 米宽的小门(不用铁栅 栏),小明共用铁栅栏 40 米,设矩形 ABCD 的边 AD 长为 x 米, 矩形的面积为 S 平方米.
(1)写出 S 与 x 的函数关系式; (2)如果要围成 192 平方米的场地,AD 的长是___6____. (3)当 x 取何值时,S 有最大值? 并求出最大值.
1.某商场经营某种品牌的童装,购进时的单价是 40 元.根据市场 调查,在一段时间内,销售单价是 60 元时,销售量是 100 件, 而销售单价每降低 1 元,就会多售出 10 件. (1)写出销售量 y(件)与销售单价 x(元)之间的函数解析式. (2)写出销售该品牌童装获得的利润 w(元)与销售单价 x(元)之 间的函数解析式.
则当 AC=__5____时,ABCD 的最大面积为__2_______.
4.在矩形 ABCD 中,AB=3,AD=4,动点 Q 从点 A 出发,以每 秒 1 个单位的速度,沿 AB 向点 B 移动;同时点 P 从点 B 出发, 仍以每秒 1 个单位的速度,沿 BC 向点 C 移动,连接 QP,QD, PD.若两个点同时运动的时间为 x 秒(0<x≤3),设△QPD 的面 积为 S,用含 x 的函数关系式表示 S;当 x 为何值时,S 有最小 值? 并求出最小值.
二次函数的最值问题与问题解决技巧

二次函数的最值问题与问题解决技巧二次函数是高中数学中一个重要的概念,它有许多实际应用并且涉及到最值问题。
解决这类问题需要一定的技巧和方法。
本文将介绍二次函数的最值问题以及解决这些问题的技巧。
一、二次函数的最值问题最值问题在数学中非常常见,它代表了在一定条件下,函数的最大值或最小值。
对于二次函数而言,最值问题可以通过确定二次函数的开口方向以及顶点位置来解决。
1. 二次函数的开口方向对于二次函数y=ax²+bx+c,其中a,b,c为常数,a不等于0。
通过a的正负可以判断二次函数的开口方向。
当a大于0时,二次函数的开口是向上的,形状像一个U;当a小于0时,二次函数的开口是向下的,形状像一个倒U。
2. 顶点的横坐标和纵坐标二次函数的最值就出现在顶点处,因此需要确定顶点的横坐标和纵坐标。
对于一般形式的二次函数y=ax²+bx+c,顶点的横坐标为x=-b/2a,可以通过对称轴求得;顶点的纵坐标为y=f(-b/2a),即将x=-b/2a代入函数中计算得到。
3. 最值问题的解答根据二次函数的开口方向和顶点的位置,可以得到最值问题的解答。
当二次函数开口向上时,顶点是函数的最小值;当二次函数开口向下时,顶点是函数的最大值。
二、解决二次函数最值问题的技巧解决二次函数最值问题的技巧主要包括图像法、配方法、导数法等。
1. 图像法通过绘制二次函数的图像,可以直观地找出函数的最值。
根据二次函数的开口方向和顶点的位置,可以判断最值是最小值还是最大值。
2. 配方法当二次函数的系数a不为1时,可以使用配方法将其转化为完全平方的形式,从而更容易找到最值。
例如对于二次函数y=ax²+bx+c,可以将x²+bx转化为(x+b/2a)²-b²/4a,然后再根据顶点的位置判断最值。
3. 导数法通过对二次函数求导,可以得到导函数,进而求出极值点。
导数为0处的x值就是函数的极值点,通过计算可以得到相应的y值。
下册第二章第10课二次函数的应用——最值问题-北师大版九年级数学全一册课件

当31≤x≤50时,W= x2+160x+1 850
(1)日销售量y(袋)与销售价x(元)的函数关系式;
(2)求当x为多少时,y有最小值,
(2)假设后续销售情况与试销阶段效果相同,要使
销售这种土特产每日的利润最大,每袋的销售
价应定为多少元?最大利润是多少元?
(2)依题意,设利润为W元, 得W=(x-10)(-x+40)=-x2+50x-400, 整理,得W=-(x-25)2+225. 当x=25时,W取得最大值,最大值为225. 故要使销售这种土特产每日的利润最大,每袋的 销售价应定为25元,最大利润是225元.
三级检测练
5 一级基础巩固练 8. 如图,用一段长为40 m的篱笆围成一边靠墙的草坪,
墙长16 m,当矩形的长BC为多少时,草坪面积最大? 最大面积为多少?
解:设AB=x m,则BC=(40-2x)m(12≤x<20), 面积为S m2. 根据题意得,S=x(40-2x)=-2x2+40x =-2(x-10)2+200, 因此当x=12,即AB=12 m,BC=16 m时,矩形草坪的 面积最大,最大面积为16×12=192(m2).
(2)依题意,得W=(y-18)·m.
故日销售量y(袋)与销售价x(元)的 (1)日销售量y(袋)与销售价x(元)的函数关系式;
由题意列得,a+2b=80,2a+3b=135.
函数关系式为y=-x+40. 根据题意得,S=x(40-2x)=-2x2+40x
∵
<0,∴当x=32时,W取最大值,
(1)确定k,b的值;
解:设AB=CD=x m,则AD=BC= (12-2x) m(0<x<6). 这个花园的面积是S=x(12-2x) =-2x2+12x=-2(x-3)2+18. 当x =3时,S取得最大值, 此时S=18. 即这个花园的最大面积为18 m2.
二次函数的应用最值问题

二次函数的应用最值问题二次函数是一个在数学中广泛应用的函数模型。
在实际问题和生产生活中,二次函数的最值问题也经常出现。
本文将介绍二次函数的最值问题,包括实际问题中的二次函数最值、生产生活中的二次函数最值、利用配方法求二次函数的最值、利用导数求解二次函数的最值、利用作图法求解二次函数的最值、利用公式法求解二次函数的最值和利用对称轴求解二次函数的最值等方面。
一、实际问题中的二次函数最值在实际问题中,二次函数最值通常出现在诸如最大利润、最小成本、最高产量等问题中。
例如,一个工厂生产一种产品,该产品的成本包括固定成本和可变成本。
固定成本是不随产量变化的成本,而可变成本是随产量变化的成本。
因此,总成本函数是一个开口向下的二次函数。
为了使总成本最低,需要找到自变量的取值,使得总成本函数的导数为零,并判断导数是否为零,从而确定最值是否存在。
二、生产生活中的二次函数最值在生产生活中,二次函数最值也经常出现。
例如,一个公司投资一个项目,该项目的收益随投资额变化,且收益函数是一个开口向下的二次函数。
为了使收益最大,需要找到投资额的最优解。
最优解可以通过求解收益函数的导数并令其为零得到。
三、利用配方法求二次函数的最值配方法是求二次函数最值的一种常用方法。
该方法的基本思想是将二次函数转化为一个完全平方项和一个常数项之和的形式,然后利用平方的非负性求出最值。
具体步骤如下:(1)将二次函数配方为一个完全平方项和一个常数项之和的形式;(2)根据平方的非负性,求出这个完全平方项的取值;(3)将这个完全平方项的取值代入配方后的二次函数中,求出最值。
四、利用导数求解二次函数的最值利用导数求解二次函数的最值是一种比较简单的方法。
该方法的基本思想是先求出二次函数的导数,然后令导数为零,解出此时的自变量取值,最后比较所有自变量取值对应的函数值,找出最大(或最小)的一个即可。
五、利用作图法求解二次函数的最值作图法是一种直观地求解二次函数最值的方法。
二次函数的最值与最值问题的应用

二次函数的最值与最值问题的应用二次函数是数学中常见的一类函数,具有很多重要的性质和应用。
其中最值与最值问题是二次函数的重要内容之一。
本文将详细介绍二次函数的最值性质,以及如何利用最值问题解决实际应用中的相关问题。
一、二次函数的基本性质二次函数的一般形式为:y = ax² + bx + c其中,a、b、c为常数,且a ≠ 0。
二次函数的图像为抛物线,开口方向取决于a的正负性。
在讨论二次函数的最值之前,我们先了解一些与最值相关的基本性质。
1. 首先,二次函数的开口方向由系数a的正负性决定。
当a > 0时,抛物线开口向上,函数的最小值出现在顶点上;当a < 0时,抛物线开口向下,函数的最大值出现在顶点上。
2. 其次,二次函数的顶点即为函数的最值点。
顶点坐标为(h, k),其中h为抛物线的对称轴的横坐标,k为函数的最值(最小值或最大值)。
3. 再次,二次函数的对称轴与顶点的横坐标相同。
对称轴的方程为x = h。
二、二次函数的最值问题二次函数的最值问题是指求解函数的最小值或最大值的问题。
在实际应用中,最值问题经常出现,例如求解投掷问题中的飞行距离最大值或者盈利问题中的最大利润等。
1. 求解二次函数的最值为了求解二次函数的最值,我们可以利用二次函数图像的特点,即找出抛物线的顶点坐标。
通过完成平方项的平方,将二次函数转换为顶点形式,可以轻松地求解最值问题。
例如,对于函数y = x² - 4x + 3,我们可以完成平方项的平方,将其转换为顶点形式:y = (x - 2)² - 1从中可以看出,顶点坐标为(2, -1),函数的最小值为-1。
因此,原二次函数的最小值为-1。
2. 应用最值问题最值问题在实际应用中非常常见,下面以一个具体的应用为例进行解析。
例题:某商品的价格为p(元),销量为x(件),已知该商品的价格和销量满足二次函数关系p = 0.5x² - 2x + 8,求该商品的最佳销量以及最佳价格。
二次函数的最值与应用学习二次函数的最值性质及其在实际问题中的应用

二次函数的最值与应用学习二次函数的最值性质及其在实际问题中的应用二次函数的最值与应用二次函数是高中数学中一个非常重要的概念,在学习二次函数的最值性质及其在实际问题中的应用之前,我们首先需要了解二次函数的基本形式和性质。
二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a不等于0,x、y为变量。
在此基础上,我们将深入探讨二次函数的最值及其在实际问题中的应用。
一、二次函数的最值性质二次函数的图像是一个抛物线,其开口方向由二次项的系数a的正负决定。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
对于一个二次函数而言,其最值即为函数的最大值和最小值。
1. 最值存在性对于二次函数y=ax^2+bx+c,当抛物线开口向上时,函数存在最小值;当抛物线开口向下时,函数存在最大值。
即最值存在性与a的正负相关。
2. 最值点的横坐标对于二次函数y=ax^2+bx+c,最值点的横坐标可以通过计算二次函数的自变量x的取值来确定。
最值点的横坐标为二次函数的顶点,顶点的横坐标为-x轴的对称轴,即x=-b/2a。
3. 最值点的纵坐标最值点的纵坐标可通过将最值点的横坐标代入二次函数中求得。
将x=-b/2a代入二次函数y=ax^2+bx+c中,可以求出最值点的纵坐标。
二、二次函数最值的应用二次函数的最值性质在实际问题中具有广泛的应用。
下面将介绍二次函数最值的几个常见应用场景。
1. 最值问题通过研究二次函数的最值性质,可以解决许多涉及最值问题的实际情况。
例如,我们要抛掷一个物体,求出其最高点的高度以及达到最高点时的时间。
可以建立一个关于时间的二次函数模型,然后通过最值性质计算出最高点的高度和达到最高点的时间。
2. 优化问题在实际生活中,许多问题可以通过优化函数来解决。
例如,我们要制造一个容积为V的长方体包装盒,为了节省材料成本,我们想使包装盒的表面积最小。
可以建立一个关于长方体各边长的二次函数模型,然后通过最值性质求解出使表面积最小的边长。
二次函数的实际应用----最值问题以及设计方案问题

二次函数的实际应用——最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小1.二次函数c 中,2b ac =,且0x =时4y =-,则( ) A.4y =-最大 B.4y =-最小 C.3y =-最大 D.3y =-最小2..已知二次函数22)3()1(-+-=x x y ,当x =_________时,函数达到最小值。
3..若一次函数的图像过第一、三、四象限,则函数()A.最大值B..最大值C.最小值D.有最小值4.若二次函数2()y a x h k =-+的值恒为正值, 则 _____. A. 0,0a k <> B. 0,0a h >> C. 0,0a k >> D. 0,0a k << 5.函数92+-=x y 。
当-2<X<4时函数的最大值为6.若函数322-+=x x y ,当24-≤≤-x 函数值有最 值为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(3分) (2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式.(3分)(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?(4分)2.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式;(2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)?类型二1.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。
二次函数的最值

二次函数的最值二次函数是一种非常常见和重要的数学函数形式,具有许多应用和特点。
其中一个重要的特点就是它的最值。
本文将介绍二次函数的最值问题,包括如何求解最值以及最值的应用。
一、最值的概念在数学中,最值是指一个函数在给定定义域上取得的最大值或最小值。
二次函数的最值是指二次函数在定义域内取得的最大值或最小值。
二、最值的求解求解二次函数的最值可以通过求导数或者求二次函数对称轴来实现。
1. 求导数法对于一般二次函数y = ax^2 + bx + c,其中a、b、c为常数,我们可以通过求导数来找到最值。
首先,对二次函数求一阶导数,然后令导数等于0,即求解方程ax^2 + bx + c = 0。
这样可以找到二次函数的驻点,将驻点代入二次函数,得到最值。
2. 对称轴法对于一般二次函数y = ax^2 + bx + c,我们可以通过求其对称轴来找到最值。
二次函数的对称轴公式为x = -b / (2a)。
将对称轴的x值代入二次函数,即可得到最值。
三、最值的应用最值问题在实际应用中有着广泛的应用,尤其是二次函数的最值。
1. 经济学应用在经济学中,二次函数的最值问题常用于研究成本、利润或者效益等方面。
通过分析二次函数的最值,可以帮助经济学家做出更合理的决策。
2. 物理学应用在物理学中,二次函数的最值问题常用于研究物体的运动轨迹、能量等方面。
通过分析二次函数的最值,可以帮助物理学家预测和解释实验现象。
3. 工程学应用在工程学中,二次函数的最值问题常用于研究设计优化、材料选取等方面。
通过分析二次函数的最值,可以帮助工程师在设计和实施工程项目时作出最佳决策。
四、例题演示假设有一个二次函数y = -x^2 + 2x + 3,我们来求解它的最值。
1. 求导数法首先,对二次函数求导数,得到y' = -2x + 2。
令导数等于0,即-2x + 2 = 0,解得x = 1。
将x = 1代入二次函数,得到y = 4。
所以,二次函数y = -x^2 + 2x + 3的最值为y = 4。