二次函数的应用(最值问题)说课稿
高中二次函数说课稿8篇

高中二次函数说课稿8篇高中二次函数说课稿篇一[本课学问要点]会画出这类函数的图象,通过比拟,了解这类函数的性质。
[MM及创新思维]同学们还记得一次函数与的图象的关系吗?你能由此推想二次函数与的图象之间的关系吗?那么与的图象之间又有何关系?[实践与探究]例1.在同始终角坐标系中,画出函数与的图象。
解列表x…-x-x-xxxxx……xxxxxxxx……xxxxxxxxx…描点、连线,画出这两个函数的图象,如图26.2.3所示。
回忆与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探究观看这两个函数,它们的开口方向、对称轴和顶点坐标有那些是一样的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?例2.在同始终角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线。
解列表x…-x-x-xxxxxx…x-x-xxxx-x-x……-xx-x-x-x-x-x-xx…描点、连线,画出这两个函数的图象,如图26.2.4所示。
可以看出,抛物线是由抛物线向下平移两个单位得到的。
回忆与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的。
探究假如要得到抛物线,应将抛物线作怎样的平移?例3.一条抛物线的开口方向、对称轴与一样,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式。
解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2)。
因此所求函数关系式可看作,又抛物线经过点(1,1)。
所以故所求函数关系式为xxx。
回忆与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标[当堂课内练习]1.在同始终角坐标系中,画出以下二次函数的图象:观看三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的xxxx。
高中数学教学备课教案二次函数的应用函数的最值问题

高中数学教学备课教案二次函数的应用函数的最值问题高中数学教学备课教案二次函数的应用——函数的最值问题一、教学目标1. 理解二次函数的最值问题,包括最大值和最小值的定义及求解方法。
2. 能够利用二次函数的最值问题解决实际生活中的应用问题。
3. 掌握相关的解题技巧和方法。
4. 培养学生分析问题、解决问题的能力。
二、教学重难点1. 理解最值问题的定义和求解方法。
2. 应用最值问题解决实际问题的能力。
三、教学过程导入:通过与学生的互动讨论,引出最值问题的概念。
1. 什么是最值问题?最大值和最小值有何不同?2. 举例说明最值问题在日常生活中的应用场景。
讲解一:最值问题的基本思路与方法1. 对于一元二次函数 f(x) = ax^2 + bx + c,求最大值或最小值的过程。
2. 最值问题的关键在于找到临界点,即导数为0的点,进而求得函数的最值。
3. 通过二次函数的图像,直观地理解最值的求解过程。
演示一:求解一元二次函数的最值1. 设一个具体的一元二次函数,如 f(x) = x^2 - 4x + 3。
2. 计算导数 f'(x) = 2x - 4,并令其等于0,解方程得到临界点 x = 2。
3. 讨论 x 的取值范围及对应的函数值,确定最大值和最小值。
讲解二:应用二次函数最值解决实际问题1. 通过具体例子,介绍如何将实际问题转化为数学问题,利用最值问题求解。
(例子1:某汽车行驶问题;例子2:抛物线的喷水问题)2. 强调建立数学模型的重要性,培养学生的数学建模能力。
演示二:解决实际问题的步骤及方法1. 选择合适的变量与函数模型。
2. 建立函数模型并确定函数的最值。
3. 根据实际问题的限制条件,确定变量的取值范围。
4. 求解最值并给出合理的解释。
讲解三:其他相关问题的讨论1. 当函数的定义域为有限区间时,如何确定最值?2. 如何处理一元二次函数的最值问题时出现的特殊情况?演示三:解决其他相关问题的方法1. 分析问题,考虑定义域的限制及函数图像的特点。
北师大版九年级数学下册:2.4《二次函数的应用》说课稿

北师大版九年级数学下册:2.4《二次函数的应用》说课稿一. 教材分析北师大版九年级数学下册2.4《二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过学习,学生能够理解二次函数在实际生活中的意义,掌握二次函数解决实际问题的方法。
教材通过实例引导学生利用二次函数解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为二次函数问题,因此,在教学过程中,教师需要引导学生将实际问题抽象为二次函数模型,并运用二次函数的知识解决实际问题。
三. 说教学目标1.让学生理解二次函数在实际生活中的应用,体会数学与生活的联系。
2.培养学生将实际问题转化为二次函数模型,并运用二次函数解决实际问题的能力。
3.提高学生的数学思维能力,培养学生的数学素养。
四. 说教学重难点1.教学重点:让学生掌握二次函数解决实际问题的方法,培养学生的数学应用能力。
2.教学难点:如何引导学生将实际问题转化为二次函数模型,并运用二次函数的知识解决实际问题。
五.说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数学问题,运用数学知识解决实际问题。
2.利用多媒体教学手段,展示二次函数在实际生活中的应用实例,增强学生的直观感受。
3.采用小组合作学习的方式,让学生在讨论中思考,培养学生的团队合作能力。
六. 说教学过程1.导入:通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生发现这些问题都可以用二次函数来解决,激发学生的学习兴趣。
2.新课导入:介绍二次函数在实际生活中的应用,引导学生理解二次函数的实际意义。
3.实例讲解:通过具体实例,讲解如何将实际问题转化为二次函数模型,并运用二次函数解决实际问题。
4.课堂练习:让学生尝试解决一些实际问题,巩固所学知识。
5.总结提升:引导学生总结二次函数解决实际问题的方法,提高学生的数学应用能力。
九年级《二次函数的最值问题》的说课稿

九年级《二次函数的最值问题》的说课稿尊敬的各位老师,大家好。
今天我将对九年级数学课程中的《二次函数的最值问题》进行讲解和剖析。
这一课是我们在函数学习中的重要一环,也是我们中考复习的重点内容。
一、教学目标与要求1.知识与技能:让学生掌握二次函数最值的概念和求解方法,理解最值与函数图像的关系。
2.过程与方法:通过实例解析、图像观察和互动讨论,培养学生的分析、归纳和解决问题的能力。
3.情感态度价值观:让学生感受到数学在实际生活中的应用价值,激发他们的学习兴趣和探索精神。
二、教学重点与难点1.教学重点:二次函数最值的定义和计算方法,以及与函数图像的关系。
2.教学难点:理解最值与函数图像的内在联系,以及在实际问题中的应用。
三、教学方法与手段本课将采用多媒体教学为主,结合板书和互动讨论的方式进行。
通过实例解析、图像观察和问题引导,让学生在互动中学习,在讨论中提高。
四、教学过程1.导入新课:通过复习已学过的二次函数的性质和图像特征,为学习最值问题打下基础。
2.实例解析:通过分析几个实际问题的例子,让学生了解二次函数最值的实际应用。
3.图像观察:让学生观察不同函数图像的变化趋势,理解最值与图像的关系。
4.互动讨论:通过小组讨论和分享,让学生深入理解最值问题的求解方法。
5.课堂练习:通过一些具有代表性的练习题,让学生巩固所学知识。
6.总结评价:通过学生的自我总结和教师的评价,让学生了解自己的学习状况,为下一步的学习提供参考。
五、教学资源本课将利用多媒体教室、电脑软件和实物展示等教学资源,让学生更加直观地了解二次函数的图像和最值问题。
同时,我们还将准备一些练习册和试卷,以便学生巩固所学知识。
六、教学评价与反馈在教学过程中,我们将通过学生的表现和反馈进行评价。
评价方式包括课堂表现、小组讨论、作业完成情况等。
同时,我们还将及时反馈评价结果,让学生了解自己的学习状况,为下一步的学习提供参考。
七、教学反思与改进课后,我们将对本次教学进行反思和改进。
二次函数的最值”说课

“二次函数的最值”说课一、数学分析1. 所选的内容在初中数学中的作用和地位:二次函数的最值是二次函数性质的重要组成部分,是二次函数性质的综合概括和归宿,有着广泛的应用。
2. 所选的内容在计算能力方面的作用和地位:用配方法求二次函数的最值离不开代数式的加、减、乘、处、乘方等运算,对计算能力有着较高的要求,是初中函数部分教学的重点之一。
3. 所选的内容与数学其他内容的联系:二次函数的最值问题与一元二次方程的解法、代数式的恒等变形、一元二次不等式等知识之间有着紧密的联系,属于初高中衔接内容之一。
二、标准分析《数学课程标准( 2011 版)》对二次函数的最值问题的要求是:“会用配方法将数字系数的二次函数的表达式化为的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向、画出函数的对称轴,并能解决简单实际问题。
”这里的“配方法”在初中阶段涉及程度很高,“解决简单实际问题”往往引申到最值问题,在中考函数综合题中经常出现。
三、重点分析二次函数的最值问题的重点是由一般式的二次函数解析式怎样得道二次函数的最值。
我将以不同方式引导学生解决这个问题,重点放在用运算的方法即“用配方法将数字系数的二次函数的表达式化为的形式”这种方法上。
教学中我将对关于一个字母( x)的二次三项式的“配方”方法进行指导和变式训练,进而达到运算的熟练程度,初步形成运算技能。
难点是字母系数二次函数最值的确定。
(对于限定自变量取值范围的二次函数,怎样求函数的最值?可借助二次函数图象直观感受、数形结合加以突破。
)但其中的主线仍是“数学运算”!四、学情分析我现在教的九年级学生已经学过二次函数的图象和基本性质,并且在前面的学习中已理解并掌握了用配方法解一元二次方程的知识,这为探究“用配方法求二次函数的最值问题”打下了坚实的基础。
另外本班的学生,能够主动地思考,并乐于和同伴合作、交流,乐于展示自己的想法,有较强的自我发展意识。
因此,遵循学生的认知规律,针对学生的实际情况,结合课标提出的:“学生是学习的主体,教师是学生学习的组织者、引导者和合作者”,在教学活动中,我采用启发式教学法,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习。
二次函数说课稿11篇

二次函数说课稿11篇二次函数说课稿11篇作为一名教师,通常会被要求编写说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。
那么大家知道正规的说课稿是怎么写的吗?下面是小编为大家整理的二次函数说课稿,仅供参考,希望能够帮助到大家。
二次函数说课稿1一、说课内容:苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。
进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过知识再现,孕伏教学过程2、从学生活动出发,通过以旧引新,顺势教学过程3、利用探索、研究手段,通过思维深入,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(=x+b,≠0;=x ,≠0;= , ≠0)3.一次函数(=x+b)的自变量是什么?函数是什么?常量是什么?为什么要有≠0的条件?值对函数性质有什么影响?【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调≠0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
青岛版数学九年级下册《利用二次函数的性质确定函数最大值和最小值》说课稿

青岛版数学九年级下册《利用二次函数的性质确定函数最大值和最小值》说课稿一. 教材分析青岛版数学九年级下册《利用二次函数的性质确定函数最大值和最小值》这一节,是在学生已经掌握了二次函数的图像和性质的基础上进行教学的。
教材通过实例引出二次函数的最值问题,让学生理解二次函数在实际生活中的应用,提高学生学习数学的兴趣。
教材从生活实际出发,让学生感受数学与生活的紧密联系,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但学生在解决实际问题时,往往不能将所学知识与实际问题相结合,对于二次函数在实际生活中的应用还不够明确。
因此,在教学过程中,我将以实例引导学生,让学生理解二次函数在实际生活中的应用。
三. 说教学目标1.知识与技能目标:使学生理解二次函数的最值问题,掌握利用二次函数的性质确定函数最大值和最小值的方法。
2.过程与方法目标:通过实例分析,培养学生解决实际问题的能力,提高学生的数学应用意识。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神。
四. 说教学重难点1.教学重点:二次函数的最值问题,利用二次函数的性质确定函数最大值和最小值的方法。
2.教学难点:如何将实际问题转化为二次函数问题,利用二次函数的性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究,培养学生的动手能力和合作精神。
2.教学手段:利用多媒体课件辅助教学,直观展示二次函数的图像和性质,提高教学效果。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对二次函数最值的思考,激发学生的学习兴趣。
2.讲解新课:讲解二次函数的最值问题,引导学生掌握利用二次函数的性质确定函数最大值和最小值的方法。
3.案例分析:分析几个实例,让学生理解二次函数在实际生活中的应用,培养学生解决实际问题的能力。
浙教版数学九年级上册2.4《二次函数的应用》说课稿1

浙教版数学九年级上册2.4《二次函数的应用》说课稿1一. 教材分析《二次函数的应用》是浙教版数学九年级上册第2.4节的内容。
这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,主要让学生了解二次函数在实际生活中的应用,培养学生的数学应用能力。
教材通过实例引入二次函数的应用,让学生了解二次函数在实际生活中的重要性,并通过解决问题,提高学生解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、图像和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将数学知识应用到实际问题中,因此,在教学过程中,需要引导学生将二次函数知识与实际问题相结合,提高学生的数学应用能力。
三. 说教学目标1.知识与技能:让学生了解二次函数在实际生活中的应用,学会解决与二次函数相关的生活问题。
2.过程与方法:通过实例分析,培养学生将数学知识应用于实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养。
四. 说教学重难点1.教学重点:让学生了解二次函数在实际生活中的应用。
2.教学难点:如何引导学生将二次函数知识与实际问题相结合,解决实际问题。
五. 说教学方法与手段1.教学方法:采用案例分析法、问题驱动法、小组合作法等教学方法,引导学生主动探索、发现问题、解决问题。
2.教学手段:利用多媒体课件、黑板、粉笔等教学手段,辅助教学。
六. 说教学过程1.导入:通过一个实际问题引出二次函数的应用,激发学生的学习兴趣。
2.新课导入:介绍二次函数在实际生活中的应用,让学生了解二次函数的实际意义。
3.案例分析:分析几个与二次函数相关的实际问题,让学生学会如何用二次函数解决问题。
4.小组讨论:让学生分组讨论,探讨二次函数在实际生活中的其他应用。
5.总结提高:对二次函数的应用进行总结,引导学生学会将二次函数知识应用于实际问题。
6.课堂练习:布置一些与二次函数应用相关的练习题,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(三)分层评价
A层:(你能行!)
设计思路:
1.指出下列函数的最大或最小值
(1)y=
(2)
-3(x-1)2+5
(1,-4)
针对学困生 我设计了两 道题,学生 只要仔细观 察基本上都 能完成,尝 试到成功之 后,他们肯 定会向更高 层次发起进 攻。
(三)分层评价
B层:(你肯定行!) 有一块三角形余料如图所示, ∠C=90°,AC=30cm,BC=40cm, 要利用这块余料如图截出一个矩形 DEFC,设DE=xcm,矩形的面积ycm2 问矩形的边长分别是多少时,矩形 的面积最大? A D C
返回
( 五)布置作业
[选做]3.有一块三角形土地如图,他的 底边BC=100米,高AD=80米,某单位沿 着BC修一座底面是矩形的大楼,当这座 大楼的地基面积最大时,这个矩形的长和 宽各是多少米? A
E B F C
H
D G
五、板书设计
二次函数的应用——面积最大问题 做一做 例1
想一想
小结
六、教学评价 本节课的设计从内容上体现了 数学的应用价值,问题的呈现 符合学生的认知规律,组织形 式突出了学生的主体地位,三 维目标能落实到位,能达到预 期教学效果。
[做一做]:请你画一 个周长为40厘米的矩 形,算算它的面积是 多少?再和同学比比, 发现了什么?谁的面 积最大?
设计思路:
做一做中,我让每一 个同学动手画周长固 定的矩形,然后比较 谁的矩形面积最大, 目的一是为激发学生 的学习兴趣,二是为 了引出想一想。学生 通过画周长一定的矩 形,会发现矩形长、 宽、面积不确定,从 而回想起常量与变量 的概念,最值又与二 次函数有关,进而自 己联想到用二次函数 知识去解决,而不是 老师告诉他用函数。
1.
本阶段,让 学生总结这 节课的收获、 利用函数知 识解决实际 问题的方法 以及要注意 的问题,体 会科学就是 生产力这句 话的含义, 激发学生学 数学用数学 的信心。
(五)、布置作业
1.假设篱笆(虚线)的长度为15米,两 面靠墙围成一个矩形,要求面积最大, 如何围才能使矩形的面积最大? 2.如图34-10,张伯伯准备利用现有的一面墙和40 m长的篱笆,把墙外的空地围成四个相连且面积相 等的矩形养兔场。回答下面的问题: (1)设每个小矩形一边的长为xm,设四个小矩形 的总面积为y,请写出用x表示y的函数表达式。 (2)你能利用公式求出所得函数的图象的顶点坐 标,并说出y的最大值吗? (3)若墙的长度为10米,x取何值时,养兔场的面 积最大?
3.情感、态度与价值观:通过学生之间的讨
论、交流和探索,建立合作意识和提高探索能 力,激发学习的兴趣和欲望,体会数学在生活 中广泛的应用价值。
二、教学目标、重点、难点的确定
教学重点: 利用二次函数y=ax2+bx+c(a≠0)的 图象与性质,求面积最值问题 教学难点: 1、正确构建数学模型。 2、对函数图象顶点、端点与最值关系 的理解与应用
设计思路:
D
C
Q
A
B
P
本题设计了一 个动点问题, 学生见过,在 这儿旧貌换新 颜,让学生体 会新旧知识联 系,培养迁移 能力。
(四)师生小结
设计思路:
对于面积最值问题应该设图形一 边长为自变量,所求面积为应变 量建立二次函数的模型,利用二 次函数有关知识求得最值,要注意函 数的定义域。 2. 用函数知识求解实际问题,需要 把实际问题转化为数学问题再建 立函数模型求解,解要符合实际题意, 要注意数与形结合。
X
设计思路: 我选择了学生 感兴趣的最佳 下料问题,此题 目有一定难度, 但刚刚学完相 似形,教师给 出了自变量, 大部分同学因 该能想到解决 办法,解决不 了的可合作解 决。 返回
E
B F
(三)分层评价
C层(你一定是最棒的!) 在矩形ABCD中,AB=6cm,BC=12cm, 点P从点A出发,沿AB边向点B以1cm/秒的 速度移动,同时,点Q从点B出发沿BC边向 点C以2cm/秒的速度移动。如果P、Q两点 在分别到达B、C两点后就停止移动,回答 下列问题: (1)运动开始后第几秒时,△PBQ的面积 等于8cm2? (2)设运动开始后第t秒时,五边形 APQCD的面积为Scm2,写出S与t的函数关 系式,并指出自变量t的取值范围; (3)t为何值时S最小?求出S的最小值。
二次函数的应用(最值问题)说课稿
良乡三中
杨素芳
说课内容
一、教学内容的分析
二、教学目标、重点、难点的确定
三、教学方法与手段的选择 四、教学过程
五、板书设计 六、教学评价
一、教学内容的分析 ㈠ 地位与作用 ㈡ 课时安排 ㈢ 学情及学法分析
返回
㈠地位与作用:
二次函数的应用本身是学习二次函数 的图象与性质后,检验学生应用所学 知识解决实际问题能力的一个综合考 查。新课标中要求学生能通过对实际 问题的情境的分析确定二次函数的表 达式,体会其意义,能根据图象的性 质解决简单的实际问题。
设计思路: 通过复习题1让学 生回忆二次函数 的图象和顶点坐 标与最值,通过 做练习2复习求二 次函数的最值方 法;练习2(1) 的设计中,定义 域为x∈R,学生 求最值容易想到 顶点,无论是配 方、还是利用公 式都能解决;
返回
(一)复习引入
设计思路:
1.复习二次函数y=ax2+bx+c (a≠0)的图象、顶点坐标、 (2)中给了定义域 0≤x≤3,学生求最值时 可能还会利用顶点公 对称轴和最值 式求,忽略定义域的限 2+2x-3 2.(1)求函数y=x 制,设计此题就是为 了提醒学生注意求解 的最值。 函数问题不能离开定 2+2x-3的 (2)求函数y=x 义域这个条件才有意 义,因为任何实际问 最值。(0≤x ≤ 3) 题的定义域都受现实 3、抛物线在什么位置取最值?条件的制约,做完练
三、教学方法与手段的选择
由于本节课是应用问题,重在通过学习总结解决 问题的方法,故而本节课以“启发探究式”为主 线开展教学活动,解决问题以学生动手动脑探究 为主,必要时加以小组合作讨论,充分调动学生 学习积极性和主动性,突出学生的主体地位,达 到“不但使学生学会,而且使学生会学”的目的。 为了提高课堂效率,展示学生的学习效果,适当 地辅以电脑多媒体技术。
3、在巩固与应用中提高技能
10米 D C
设计思路:
例1的设计也是寻找了学生熟悉的 家门口的生活背景,从知识的角度 来看,求矩形面积也较容易,我在 A B 此设计了一个条件墙长10米来限制 解:设AD=x米,则AB=(32-2x)定义域,目的在于告诉学生一个道 米,设矩形面积为y米2,得到: 理,数学不能脱离生活实际,估计 大部分学生在求解时还会在顶点处 找最值,导致错解,此时教师再提 Y=x(32-2x)=-2x2+32x 醒学生通过画函数的图象辅助观察、 理解最值的实际意义,体会顶点与 [错解]由顶点公式得: 端点的不同作用,加深对知识的理 解,做到数与形的完美结合,通过 x=8米时,y最大=128米2 此题的有意训练,学生必然会对定 义域的意义有更加深刻的理解,这 而实际上定义域为11≤x ﹤16,由图象或增减性 样既培养了学生思维的严密性,又 可知x=11米时, y 2 为今后能灵活地运用知识解决问题 最大=110米 奠定了坚实的基础。
2、在解决问题中找出方法
设计思路:
[想一想]:某 工厂为了存放材 料,需要围一个 周长40米的矩形 场地,问矩形的 长和宽各取多少 米,才能使存放 场地的面积最大?
•
我把前面矩形的周长40厘米改为40米, 变成一个实际问题,目的在于让学生 体会其应用价值——我们要学有用的 数学知识。学生在前面探究问题时, 已经发现了面积不唯一,并急于找出 最大的,而且要有理论依据,这样首 先要建立函数模型,合作探究中在选 取变量时学生可能会有困难,这时教 师要引导学生关注哪两个变量,就把 其中的一个主要变量设为x,另一个设 为y,其它变量用含x的代数式表示, 找等量关系,建立函数模型,实际问 题还要考虑定义域,画图象观察最值 点,这样一步步突破难点,从而让学 生在不断探究中悟出利用函数知识解 决问题的一套思路和方法,而不是为 了做题而做题,为以后的学习奠定思 想方法基础。
返回
四、教学过程 (一)复习引入 (二)讲解新课 (三)分层评价 (四)师生小结 (五)布置作业
(一)复习引入
1.复习二次函数y=ax2+bx+c (a≠0)的图象、顶点坐标、 对称轴和最值 2.(1)求函数y=x2+2x-3 的最值。 (2)求函数y=x2+2x-3的 最值。(0≤x ≤ 3) 3、抛物线在什么位置取最值?
返回
二、教学目标、重点、难点的确定
结合本节课的教学内容和学生现有的学习水平,我确 定本节课的教学目标如下:
1.知识与技能:通过本节学习,巩固二次 函数y=ax2+bx+c(a≠0)的图象与性质, 理解顶点与最值的关系,会用顶点的性质 求解最值问题。
返回
二、教学目标、重点、难点的确定
2. 过程与方法:通过观察图象,理解顶点的 特殊性,会把实际问题中的最值转化为二次 函数的最值问题,通过动手动脑,提高分析 解决问题的能力,并体会一般与特殊的关系, 培养数形结合思想,函数思想。
3、在巩固与应用中提高技能
设计思路:
例1:小明的家门前有一块 空地,空地外有一面长10米 的围墙,为了美化生活环境, 小明的爸爸准备靠墙修建一 个矩形花圃 ,他买回了32米 长的不锈钢管准备作为花圃 的围栏(如图所示),花圃 的宽AD究竟应为多少米才 能使花圃的面积最大? D A C B
例1的设计也是寻找了学生熟悉的 家门口的生活背景,从知识的角度 来看,求矩形面积也较容易,我在 此设计了一个条件墙长10米来限制 定义域,目的在于告诉学生一个道 理,数学不能脱离生活实际,估计 大部分学生在求解时还会在顶点处 找最值,导致错解,此时教师再提 醒学生通过画函数的图象辅助观察、 理解最值的实际意义,体会顶点与 端点的不同作用,加深对知识的理 解,做到数与形的完美结合,通过 此题的有意训练,学生必然会对定 义域的意义有更加深刻的理解,这 样既培养了学生思维的严密性,又 为今后能灵活地运用知识解决问题 奠定了坚实的基础。