二次函数实际应用利润最大值问题.doc

合集下载

九年级数学二次函数应用之最大利润问题

九年级数学二次函数应用之最大利润问题

变式训练1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴,规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系,随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益z(元)会相应降低且z与x之间也大致满足如图②所示的一次函数关系。

(1)在政府未出补贴措施前,该商场销售彩电的总收益额为多少元?,(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益W(元)最大,政府应将每台补贴款额x定为多少?并求出总收益w的最大值。

题型三:实际问题中的方案决策例3 某小区有一长100 m ,宽80m 的空地,现将其建成花园广场,设计图案如图所示。

阴影区域为绿化区域(四块绿化区域是全等矩形),空白区域为活动区域,且四周出口一样宽,宽度不小于50 m ,不大于60 m 。

预计活动区域每平方米造价60元,绿化区域每平方米造价50元。

(1)设其中一块绿化区域的长边长为xm ,写出工程总造价y (元)与x ( m )的函数式系式(写出x 的取值范围); (2)如果小区投资46.9万元,问能否完成工程任务?若能,请写出x 为整数的所有工程方案;若不能,请说明理由。

(参考数据:732.13 )一、能力培养某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件。

已知产销两种产品的有关信息如下表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲 6 a20 200乙20 10 40+0.05x280其中a为常数,且3≤a≤5。

(1)若产销甲乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由。

二次函数与实际问题-最大利润问题

二次函数与实际问题-最大利润问题
二次函数是解决实际问题 中常用的数学工具,具有 广泛的应用领域。
2 实际问题的挑战与机

实际问题的解决需要面对 各种挑战,但也提供了发 展和创新的机遇。
3 未来的发展趋势
随着技术的进步和需求的 变化,二次函数在解决实 际问题中的应用将继续发 展和演变。
可以引入其他约束、考虑风险和不确定性,提高决策的全面性和鲁棒性。
VI. 二次函数实践与练习
1 实际问题的解决方法和演示
通过实际案例和示例演示,帮助学习者理解 和应用二次函数解决实际问题。
2 练习题
提供一些练习题,加深对二次函数和实际问 题的理解。
VII. 二次函数与实际问题-总结与展望
1 二次函数的重要性
二次函数与实际问题-最 大利润问题
I. 二次函数概述
1 什么是二次函数?
二次函数是一个在方程中有二次项的函数,一般形式为y=ax^2+bx+c。
2 二次函数的一般式和标准式
一般式为y=ax^2+bx+c,标准式为y=a(x-h)^2+k。
3 二次函数图像
二次函数的图像可以是抛物线,开口向上或向下,取决于a的正负。
通过分析实际情况建立利润函数,将利润与决策因素相联系。
2
寻找最大值
通过求导或观察图像,找到利润函数的最大值,例,演示如何使用二次函数解决最大利润问题。
IV. 二次函数在其他问题中的应用
二次函数解决投影高度 问题
通过建立二次函数模型,可 以计算出物体的最大或最小 高度。
II. 最大利润问题简介
1 什么是最大利润问题?
最大利润问题是在实际情况中,通过优化决策来实现最大化利益的问题。
2 实际应用场景

二次函数的实际应用之利润最大(小)值问题

二次函数的实际应用之利润最大(小)值问题

1二次函数的实际应用——利润最大(小)值问题知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=, 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当a b x 2-=,ab ac y 442-=最小值; 当0<a 时,函数有最大值,并且当a b x 2-=,ab ac y 442-=最大值. 如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当a b x 2-=,ab ac y 442-=最值, 如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.商品定价一类利润计算公式:经常出现的数据:商品进价;商品售价1;商品销售量1;商品售价2(商品定价);商品销售量2;其他成本。

◆单价商品利润=商品定价-商品进价 ◆△(价格变动量)=商品定价-商品售价1(或者直接等于商品调价); ◆销售量变化率=销售变化量÷引起销售量变化的单位价格; ◆商品总销售量=商品销售量1±△×销售量变化率; ◆ 总利润(W )=单价商品利润×总销售量-其他成本其他成本单位价格变动销售量变化商品销售量)商品售价(商品定价)总利润(-⨯∆±⨯-=]1[1W[例]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?2 [练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?2.(2011十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30 x )存在如下图所示的一次函数关系式.⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?3、某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图) (1)求y 与x 之间的函数关系(2)设公司获得的总利润为 W 元,求 W 与x 之间的函数关系式,并写出自变量 的取值范围;根据题意判断:当x 取何值时,W 的值最大?最大值是多少?4.(2011湖北)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?。

实际问题与二次函数商品利润最大问题

实际问题与二次函数商品利润最大问题

实际问题与二次函数商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x档的产品一天的总利润为y元,则有y=[10+2(x-1)][76-4(x -1)]=-8x2+128x+640=-8(x-8)2+1152.当x=8时,y最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.(1)求y2的解析式;(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎪⎨⎪⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。

二次函数的实际应用(利润最值问题)附答案

二次函数的实际应用(利润最值问题)附答案

第3课时 二次函数的实际应用——最大(小)值问题[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值.解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润则:)10300)(4060(1x x y -+-= )60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--= )15)(20(20+--=x x6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元? 解:⑴设一次函数表达式为b kx y +=. 则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x 400502-+-=x x225)25(2+--=x当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中, “某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程.3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元)(30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案).解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x16)35(12≤-≤x∴31≤x ≤34或36≤x≤39. 作业布置:1.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元. 解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x (元/千克) … 25 24 23 22 … 销售量y (千克) (200)250030003500…(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,•∵点(•25,2000),(24,2500)在图象上, ∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500.(2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500, 当销售价为21元/千克时,能获得最大利润,最大利润为32000元.3.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q 关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x元.∴Q=(1000-10x)(30+x)+200x=-10x2+900x+30000.(3)设总利润为W元则:W=Q-1000×30-400x=-10x2+500x=-10(x2-50x) =-10(x-25)2+6250.当x=25时,总利润最大,最大利润为6250元.答:这批蟹放养25天后出售,可获最大利润.4.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) . (1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y )40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时,年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万.元).,应选乙地.可编辑。

二次函数--(利润最大值问题)-顶点在范围内

二次函数--(利润最大值问题)-顶点在范围内

22.3(3.1)---(利润最大值问题)-顶点在范围内一.【知识要点】1.解题步骤:(1).设:设出两变量;(2).列:列出函数解析式;(3).定:确定自变量的取值范围;(4).判:判断存在最大(小)值;(5).求:求出对称轴,并判断对称轴是否在取值范围;(6).算:计算最值。

二.【经典例题】1.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?2.(绵阳2019年第21题本题满分11分)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.(1)求甲、乙两种客房每间现有定价分别是多少元?(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?3.善于不断改进学习方法的小迪发现,对解题进行回顾反思,学习效果更好.某一天小迪有20分钟时间可用于学习.假设小迪用于解题的时间x (单位:分钟)与学习收益量y 的关系如图1所示,用于回顾反思的时间x (单位:分钟)与学习收益y 的关系如图2所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(1)求小迪解题的学习收益量y 与用于解题的时间x 之间的函数关系式;(2)求小迪回顾反思的学习收益量y 与用于回顾反思的时间x 的函数关系式; (3)问小迪如何分配解题和回顾反思的时间,才能使这20分钟的学习收益总量最大?4.(2019年绵阳期末第23题)某镇在国家“精准扶贫”的政策指引下,充分利用自身资源,大力种植蔬菜,增加收入.(1)该镇2016年蔬菜产量为50吨,2018年达到72吨。

实际问题与二次函数------最大利润问题

实际问题与二次函数------最大利润问题

22.3.2实际问题与二次函数------最大利润问题一、教学目标:1、知识与技能:通过探究实际问题与二次函数关系,能用配方法或公式法求二次函数最值,并由自变量的取值范围确定实际问题的最值。

2、过程与方法:(1)、通过研究生活中实际问题,体会建立数学建模的思想. (2)、通过学习和探究“销售利润”问题,渗透转化及分类的数学思想方法.3、情感态度:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣。

二、学情分析:学生已经学习了二次函数的定义、图象和性质,学习了列代数式,列方程解应用题,这些内容的学习为本节课奠定了基础,使学生具备了一定的建模能力,但运用二次函数的知识解决实际问题要求学生能比较灵活的运用知识,对学生来说要完成这一建模过程难度较大。

三、教学重难点:教学重点:1、理解数学建模的基本思想,能从实际问题中抽象出二次函数的数学模型。

2、能根据实际问题,确立二次函数解析式,并用配方法或公式法求最值教学难点:从实际情景中抽象出函数模型。

四、教学过程:【活动1】小视频导入本节课的探究内容:某运动服的进价为每套40元,售价是每套60元时,每星期可卖出300套,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10套,每降价1元,每星期可多卖出20套,问:如何定价才能使利润最大?(设计说明:教师通过小视频将这个实际问题呈现给学生,但本问题是一道较复杂的市场营销问题,不能直接建立函数模型,需要分类讨论,初中学生分类讨论的思想较薄弱,这给解题造成了障碍,造成学习上的困难,因此,并没有马上去处理这个问题而是先进行一下知识储备。

)【活动2】小组合作探究解决自主学习中存在的问题:1、与利润有关的几个等式:(1)总价、单价、数量的关系;(2)单件利润、售价、进价的关系;(3)总利润、单件利润、数量的关系。

2、如何求2(0)y ax bx c a=++≠的最值?你有几种方法?3、二次函数2=-+的对称轴是直线,顶点坐标是y x2(3)5当x= 时,y有最值,是。

(完整版)二次函数最大利润求法经典.doc

(完整版)二次函数最大利润求法经典.doc

一、某商品现在的售价为每件60 元,每星期可卖出300 件,市场调查反映:每涨价 2 元,每星期少卖出20 件。

已知商品的进价为每件40 元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润 =售价 -进价(2)销售总利润 =单件利润×销售数量问题 1:售价为x 元时,每件的利润可表示为( x-40 )问题 2:售价为x 元,售价涨了多少元?可表示为( x-60)问题 3:售价为x 元,销售数量会减少,减少的件数为x-6020 (件)2问题 4:售价为 x 元,销售数量为y(件),那么 y 与 x 的函数关系式可表示为y 300 x-60300 10( x 60) =10x 90020 =2x f 0因为60 0x自变量 x 的取值范围是x 60问题 4:售价为x 元,销售数量为y(件),销售总利润为W (元),那么 W 与 x 的函数关系式为W ( x 40) y=( x 40)( 10 x900)=10x2 1300 x 36000问题 5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 W ( x 40) y= ( x 40)( 10x 900)= 10 x2 1300 x 36000= 10( x2 130x) 36000= 10 (x2 130x 652 ) 652 36000=10( x 65)24225036000=10( x 65)26250所以可知,当售价为65 元时,可获得最大利润,且最大利润为6250 元二、某商品现在的售价为每件60 元,每星期可卖出300 件,市场调查反映:每降价 2 元,每星期可多卖出40 件,已知商品的进价为每件 40 元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润 =售价 -进价(2)销售总利润 =单件利润×销售数量问题 1:售价为 x 元时,每件的利润可表示为( x-40 )问题 2:售价为 x 元,售价降了多少元?可表示为( 60-x)问题 3:售价为 x 元,销售数量会增加,增加的件数为60 x40 (件)2问题 4:售价为 x 元,销售数量为y(件),那么 y 与 x 的函数关系式可表示为y 300 60 x300 20(60 x) =20 x 150040 =2x f 0因为x 060所以,自变量x 的取值范围是0 x 60问题 4:售价为 x 元,销售数量为y(件),销售总利润为W (元),那么 W 与 x 的函数关系式为W (x 40) y=( x 40) (20x1500)=20x2 2300x 60000问题 5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为W ( x 40) y= ( x 40) (20x 1500)= 20x2 2300x 60000= 20( x2 115x) 600002 2= 20 x2 115x 115 ) 115 600002 2= 20( x 115 )2 66125 600002= 20( x 57.5) 2 66125 60000= 20( x 57.5) 2 6125所以可知,当售价为57.5 元时,可获得最大利润,且最大利润为6125 元三、某商品现在的售价为每件价 2 元,每星期可多卖出4060 元,每星期可卖出 300 件,市场调查反映:每涨价 2 元,每星期少卖出件,已知商品的进价为每件 40 元,如何定价才能使利润最大?20 件;每降分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润 =售价 -进价(2)销售总利润 =单件利润×销售数量根据题目内容,完成下列各题:1、涨价时( 1)售价为 x 元,销售数量为y(件),那么 y 与 x 的函数关系式可表示为y 300 x-60300 10( x 60) =10x 900 220 =因为x f 0x 60 0自变量 x 的取值范围是x 60( 2)售价为 x 元,销售数量为y(件),销售总利润为 W (元),那么 W 与 x 的函数关系式为W1 (x 40) y= ( x 40)( 10 x 900)=10x2 1300 x 36000(3)售价为 x 元,销售总利润为 W (元)时,可获得的最大利润是多少?W1= ( x 40)( 10x 900)= 10 x2 1300 x 36000= 10( x2 130x) 36000= 10 (x2 130x 652 ) 652 36000=10( x 65)24225036000=10( x 65)26250所以可知,当售价为65 元时,可获得最大利润,且最大利润为6250 元2、降价时:( 1)售价为 x 元,销售数量为y(件),那么 y 与 x 的函数关系式可表示为60 x300 20(60 x) =20 x 1500y 300 40 =2x f 0因为x 060所以,自变量 x 的取值范围是 0 x 60( 2)售价为 x 元,销售数量为 y (件),销售总利润为 W (元),那么 W 与 x 的函数关系式为W 2 = (x 40) y= ( x 40) ( 20x 1500)=20x 2 2300x 60000( 3)售价为 x 元,销售总利润为 W (元)时,可获得的最大利润是多少?因为W 2 = ( x 40) ( 30060 x 40 )2= (x 40) ( 20x 1500)=20 x 2 2300 x 60000= 20( x 2115x) 6000022= 20 x 2115x115 ) 115 600002 2= 20( x 115)266125 600002= 20( x 57.5) 266125 60000= 20( x 57.5)26125所以可知,当售价为57.5 元时,可获得最大利润,且最大利润为 6125 元本题解题过程如下:解:设售价为 x 元,利润为 W ( 1)涨价时,W 1 = ( x 40) ( 300 -x-60 20 )2= ( x 40)( 10x 900)= 10 x2 1300 x 36000= 10( x2 130x) 36000= 10 (x2 130x 652 ) 652 36000= 10( x 65)2 42250 36000= 10( x 65)2 6250所以可知,当售价为65 元时,可获得最大利润,且最大利润为6250 元( 2)降价时,W2= (x60 x40) (300+ 40 )2= ( x 40)(20x 1500)= 20x2 2300x 60000= 20( x2 115x) 600002 2= 20 x2 115x 115 ) 115 600002 2= 20( x 115 )2 66125 600002= 20( x 57.5) 2 66125 60000= 20( x 57.5) 2 6125所以可知,当售价为57.5 元时,可获得最大利润,且最大利润为6125 元综上所述,售价为65 元或售价为 57.5 元时,都可得到最大利润,最大利润分别为6250 元或 6125 元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题18 二次函数利润最值问题-B 组
一、知识准备:
化简并求出对称轴、最值
y (10 2x 6)( 3x 1)
二、典例剖析
问题一:某商店销售服装,现在的售价是为每件60 元,每周可卖出300 件。


知商品的进价为每件40 元,那么一周的利润是多少?
分析:(1)卖一件可得利润为:
(2)这一周所得利润为:
(3)你认为:利润、进价、售价、销售量有什么关系?
总结:一件利润=
总利润=
问题二:某商品进价为每件40 元,现在的标价为每件60 元,每周可卖出300 件,市场调查反映:每涨价 1 元,每周少卖出10 件。

1、填空:设每件涨价x 元,每周总利润为y 元,则每件售价为元,每件的利润为元,每周少卖出件,每周卖出件,每周的利润为元。

2、当商品的售价为多少元时,能使每周利润最大?最大利润是多少?
三、活学活用
问题一:某商品现在的售价为每件60元,每周可卖出300件,市场调查反映:如果商品每降价1元,每周可多卖出20件,已知商品的进价为每件40元,当商品售价为多少时,能使每周利润最大?最大利润是多少?
问题二:某商店购进一批单价为20元的日用商品,如果以单价30元销售那么半月内可售出400件,根据销售经验,推广销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半月内获得最大利润?。

相关文档
最新文档