二次函数最大利润求法经典

合集下载

九年级数学二次函数应用之最大利润问题(教师版)

九年级数学二次函数应用之最大利润问题(教师版)

分析:(1)根据图象一次函数表达式易求得;(2)销售额=销售单价×销售量;(3)结合图象说明. 解:(1)设y =kx +b ,由图象知一次函数图象过点(60,5),(80,4)⎩⎨⎧+=+=∴b k b k 804605 解得⎪⎩⎪⎨⎧=-=.8,201b k .8201+-=∴x y 120)40)(8201(12040)2(--+-=--=x x y yx z .60)100(2014401020122+--=-+-=x x x∴当x =100时,即销售单价为100元时,年获利最大,最大值为60万元。

(3)令z =40,得,44010201402-+-=x x 即,096002002=+-x x 解得.120,8021==x x由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间。

又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,销售单价应定为80元。

变式训练1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴,规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系,随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益z (元)会相应降低且z 与x 之间也大致满足如图②所示的一次函数关系。

(1)在政府未出补贴措施前,该商场销售彩电的总收益额为多少元?,(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益W (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值。

解:(1)该商场销售家电的总收益为800×200=160000(元)。

(2)依题意可设8001+=x k y2002+=x k z∵图①的直线过点(400,1200).图②的直线过点(200,160),∴有400k 1+800=1200,200k 2+200=160. 解得.20051,80051,121+-=+=∴-==x z x y k k (3)由题意,得1(800)(200)5W yz x x ==+-+16000040512++-=x x .162000)100(512+--=x ∴政府应将每台补贴款额x 定为100元时,该商场销售彩电的总收益取得最大值,其最大值为162000元。

二次函数利润最值问题

二次函数利润最值问题

二次函数利润最值问题引言在现代经济学中,利润是一个重要的指标,对于企业盈亏和发展有着至关重要的影响。

在许多经济相关的问题中,我们常常需要通过建立数学模型来分析和优化利润。

二次函数是一种重要的数学模型,在许多经济问题中都有广泛的应用。

本文将探讨二次函数在利润最值问题中的应用。

二次函数概述二次函数是指具有以下形式的数学函数:f(x)=ax2+bx+c其中,a、b和c为常数,且a≠0。

二次函数的图像通常是一条抛物线,其开口方向由系数a的正负决定。

利润最值问题利润最值问题是指在一定的经济条件下,通过数学模型中的二次函数来分析和优化利润。

这类问题在实际应用中非常常见,例如企业的生产成本和销售收入存在某种关系时,我们可以通过建立二次函数模型来研究企业的利润最大化问题。

利润函数的建立要解决利润最值问题,首先需要建立利润函数。

假设某企业的生产成本是关于产量x的二次函数,销售收入是关于产量x的线性函数。

那么该企业的利润函数可以表示为:P(x)=R(x)−C(x)其中,P(x)表示利润,R(x)表示销售收入,C(x)表示生产成本。

利润函数的优化优化利润函数,即求出使利润最大化(或最小化)的产量x。

可以通过以下步骤进行:1.将利润函数表示为二次函数的形式,即将R(x)和C(x)分别展开为二次函数的形式。

2.求出二次函数的顶点坐标,顶点坐标表示了二次函数的极值点。

3.根据二次函数的开口方向和顶点的坐标,确定利润函数的最值点。

利润最大化问题实例分析我们将通过一个实例来说明如何利用二次函数求解利润最大化问题。

假设某企业的生产成本函数为C(x)=0.5x2+10x+100,销售收入函数为R(x)= 30x。

我们需要求解该企业的利润最大化问题。

将成本函数表示为二次函数形式将生产成本函数C(x)=0.5x2+10x+100展开,得到C(x)=0.5x2+10x+100。

将销售收入函数表示为二次函数形式将销售收入函数R(x)=30x展开,得到R(x)=30x。

二次函数与商品利润最大问题

二次函数与商品利润最大问题

初中数学课件
课堂寄语
二次函数是一类最优化问题 的数学模型,能指导我们解决生活中 的实际问题,同学们,认真学习数学 吧,因为数学来源于生活,更能优化 我们的生活。
初中数学课件
作业超市
必做题:大演草 说明指导60页例题1 选做题:中考备战二次函数的应用题
.
2.二次函数y=ax2+bx+c的图象是一条 抛物线 ,它的对称
轴是
x b 2a
,顶点坐标是
( b , 4ac b2 ) 2a 4a
.
当a>0时,抛物线开口向 上 ,有最 低 点,函数有
4ac b2
最 小 值,是 4a

当 a<0时,抛物线开口向 下
数有最 大
4ac b2
值,是 4a
,有最 高 。
即:y=-20x2+100x+6000,

x 100 5 2 (20) 2
时,
y 20 (5)2 100大利润是6125元.
由(1)(2)的讨论及现在的销 售情综况合,可你知知,道应应定该价如6何5元定时价,
才能能使使利利润润最最大大了。吗?
点,函
基础扫描
初中数学课件
二次函数特定范围内的最值
初中数学课件
二 如何定价利润最大
例1 某商品现在的售价为每件60元,每星期可卖出300件, 市场调查反映:每涨价1元,每星期少卖出10件;已知商品的 进价为每件40元,如何定价才能使利润最大?
涨价销售
①每件涨价x元,则每星期售出商品的利润y元,填空:
初中数学课件
二次函数的应用
---商品利润最大问题
初中数学课件
复习目标
1.能应用二次函数的性质解决商品销售过程中 的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变 量的取值范围. (难点)

二次函数最大利润公式

二次函数最大利润公式

二次函数最大利润公式二次函数最大利润公式是在市场营销领域中应用较多的一种工具。

当企业生产一种产品时,它的成本和销售量可以表示为二次函数。

其中,成本是随生产量增加而增加的,而销售量则随着产品价格的变化而改变。

企业追求的是利润最大化,因此需要找到销售最大量对应的价格,也就是二次函数的顶点。

利用二次函数最大利润公式,企业可以计算出最大利润所对应的生产量和价格,从而进行生产决策。

二次函数最大利润公式的基本形式为y=a某²+b某+c,其中a、b、c是常数,某是变量,y表示利润。

在这个公式中,a是二次项系数,它代表着产品的成本变化率;b是一次项系数,它代表着产品的售价变化率;c是常数项,它代表着固定成本。

如果我们知道a、b、c的具体值,就可以通过求导数的方法,找到二次函数顶点的位置,从而确定价格和销售量。

求解二次函数最大利润公式的方法有两种:一种是代数法,另一种是几何法。

代数法是通过求解一次函数的导数来寻找最大利润所对应的销售量和价格。

对于二次函数y=a某²+b某+c来说,它的导数为dy/d某=2a某+b。

当dy/d某=0时,就可以得到二次函数的顶点位置某0=-b/2a。

然后可以通过将某0代入二次函数y=a某²+b某+c中,求出最大利润所对应的成本、销售量和价格等信息。

几何法是通过绘制二次函数的图像来确定最大利润。

二次函数的图像是一个开口向上或向下的抛物线,在顶点处具有最大值或最小值。

当我们知道二次函数的顶点坐标时,可以通过测量图像来确定最大利润所对应的销售量和价格。

如果商家需要考虑不同产品的生产成本和销售情况,还可以通过绘制多条二次函数的图像,同时比较它们的顶点位置,从而找到最佳的生产组合方式,使得利润最大化。

总之,二次函数最大利润公式是市场营销领域中一个十分有用的工具。

它可以帮助企业决策者找到最大利润所对应的销售量和价格,从而进行生产策略的调整。

不过,在实际应用中,还需要注意二次函数所对应的条件和假设是否成立,以及市场环境和竞争对手的因素等。

专题 二次函数利润问题

专题 二次函数利润问题

专题八二次函数最大利润问题最大利润问题:这类问题只需围绕一点来求解,那就是:总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y,而自变量可能有两种情况:(1)自变量x是所涨价多少,或降价多少(2)自变量x是最终的销售价格例:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件,现设一天的销售利润为y元,降价x元。

(1)求按原价出售一天可得多少利润?(2)求销售利润y与降价x的关系式。

(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润。

(一)涨价或降价为未知数:例1:某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?变式1:某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。

①若商场平均每天要盈利1200元,每件衬衫应降价多少元?②若每件衬衫降价x 元时,商场平均每天盈利 y元,写出y与x的函数关系式。

例2:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施。

调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台。

(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?变式2:某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元)。

二次函数利润问题

二次函数利润问题

二次函数利润问题二次函数利润问题是指在经济学中,根据某个企业的销售情况建立的二次函数模型,通过求解二次函数的最值,进而得到该企业的最大利润或最小成本。

利润是企业经营的重要指标,通过利润问题的求解,可以帮助企业制定最优的经营策略和决策,提高企业的竞争力和盈利能力。

二次函数是一种常见的数学模型,可以用来描述许多实际问题的规律。

它的一般形式为f(x) = ax^2 + bx + c,其中a、b、c是常数,且a≠0。

在二次函数利润问题中,一般假设函数的自变量x表示某个特定的经济因素,如销售量或产量,而函数的因变量f(x)表示企业的利润或成本。

在二次函数利润问题中,一个常见的问题是求解二次函数的最值。

利润的最大值通常表示企业的最大利润,而成本的最小值则表示企业的最小成本。

求解最值问题可以用两种方法:一种是图像法,另一种是公式法。

图像法是通过绘制二次函数的图像来求解最值问题。

首先,根据函数的一般形式,确定图像的开口方向。

如果二次函数的系数a大于0,则图像开口向上;如果系数a小于0,则图像开口向下。

其次,根据函数的另外两个系数b 和c,确定图像的位置。

特别地,根据系数b的符号,可以判断图像的位置相对于y轴的平移情况。

最后,通过观察图像的顶点,即二次函数的最值点,可以得到最值的坐标。

公式法是通过解二次函数的一阶导数为0来求解最值问题。

首先,将二次函数表示为标准形式f(x) = ax^2 + bx + c,并求出其一阶导数f'(x) = 2ax + b。

其次,令一阶导数等于0,解方程2ax + b = 0,得到x = -b/2a。

最后,将x的值代入原函数,得到最值点的坐标。

两种方法都可以求解二次函数的最值问题,具体选择哪种方法则取决于具体的情况和个人喜好。

不过,为了能够更好地理解问题和解答问题,掌握两种方法的使用和转化是非常有益的。

除了求解二次函数的最值问题,二次函数利润问题还可以涉及到其他的经济学概念和数学方法。

二次函数的应用——利润最值问题

二次函数的应用——利润最值问题
2
w … 60 x x … 40300 30 … x x 6000 x 30x 2 30 300 60-x
变式1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1 2 元,每星期可多卖30件,已知该童装每件成本40元,设该款童 款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大利 润为多少元?
降价 多售的件数 30×1 30×3 现在售价 60-1 60-3 现在销售量 300+30 300+30×3 … 300+30x 1 (2)设利润为 w 3
30×2 300+30×2 2 =(每件售价 60-2 利润 -每件进价)×销售量
30x x5 6750 y=300+30 所以,当降价5时x 20 2x 80 2 2x 30 200 因为 20 x 28 所以由二次函数的性质可知,当x≤30时,w随x的增大而增大 所以当x=28时,w取得最大值,最大值为
w 228 30 200 192
2
练习1:草莓是云南多地盛产的一种水果,今年水果销售店在草莓 销售旺季,试销售成本为每千克20元的草莓,规定试销售时间单 价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x(元)符合一次函数关系,如图y与x的函数 关系图象 (1)求y与x函数解析式。 (2)设该水果销售店试销售草莓 获得利润为w元,求w的最大值。
例1:某商店销售某款童装,每件售价60元,每星期可卖出 300件,为了促销,该网店决定降价销售,市场反映:每降价 1元,每星期可多卖30件,已知该童装每件成本40元,设该 款童款每件降价x元,每星期的销售量y件。 (1)求y与x之间的函数关系式。 (2)当每件降价为多少元时,每星期的销售利润最大,最大 利润为多少元? 解(1)

二次函数最大利润求法经典.doc

二次函数最大利润求法经典.doc

二次函数最大利润求法经典.doc
二次函数最大利润求法,是利用二次函数关于极值点特征求解获得最大收益的方法。

它是数学中应用利润最大化的一种重要思想,主要用于市场经济学、计算经济学和运行管理等领域的实用工具。

二次函数的极值点将是利润函数的最大值和最小值点。

极值点可以通过求二次函数的导数等处理来求解,二次函数在极值点也可以用积分方法(求积分的上下限)求解。

具体求法:
1、代入极值点,求出对应的最大收益;
2、确定导数相等的极值点,求出最大收益;
3、求解积分的上下限,求出最大收益。

例题:某公司投资项目的利润函数为 P ( x ) =1000 x2 -J50 x 。

问:如果销售量x 的投资利润最大,x的取值是多少?
解:由利润函数P(x) = 1000x2-150x可知:
P'(x) = 2000x-150= 0
即x = 75;
设此时销售量x= 75,则利润函数P(x) = 1000(75)2-150(75) = 56250
结论:当销售量x=75时,投资利润最大,最大利润为56250元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价涨了多少元?可表示为 (x-60)问题3:售价为x 元,销售数量会减少,减少的件数为 -60202x ⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值范围是 60x ≥问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x 元时,每件的利润可表示为 (x-40)问题2:售价为x 元,售价降了多少元?可表示为 (60-x )问题3:售价为x 元,销售数量会增加,增加的件数为 60402x -⨯ (件) 问题4:售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为60300402x y -=+⨯= 30020(60)x +-= 201500x -+因为0600x x ⎧⎨-≥⎩ 所以,自变量x 的取值范围是 060x ≤≤问题4:售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为(40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-问题5:售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为 (40)W x y =-⋅= (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量根据题目内容,完成下列各题:1、涨价时(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为-60300202x y =-⨯= 30010(60)x --= 10900x -+因为0600x x ⎧⎨-≥⎩ 自变量x 的取值范围是 60x ≥(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为1(40)W x y =-⋅= (40)(10900)x x --+= 210130036000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?1W = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元2、降价时:(1)售价为x 元,销售数量为y (件),那么y 与x 的函数关系式可表示为 60300402x y -=+⨯= 30020(60)x +-= 201500x -+因为0600x x ⎧⎨-≥⎩ 所以,自变量x 的取值范围是 060x ≤≤(2)售价为x 元,销售数量为y (件),销售总利润为W (元),那么W 与x 的函数关系式为2W =(40)x -y= (40)x -(201500x -+)= 220230060000x x -+-(3)售价为x 元,销售总利润为W (元)时,可获得的最大利润是多少?因为2W =(40)x -(60300402x -+⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元本题解题过程如下:解:设售价为x 元,利润为W(1)涨价时, 1W =(40)x -(300 --60202x ⨯) = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦ =210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时, 2W =(40)x -(300+60402x -⨯) = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。

四、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,为尽快清仓库存,如何定价才能使利润最大? 解:设售价为x 元,利润为W(1)涨价时,1W = (40)(10900)x x --+= 210130036000x x -+-=210(130)36000x x ---=22210(13065)6536000x x ⎡⎤--+--⎣⎦=210(65)4225036000x --+-=210(65)6250x --+所以可知,当售价为65元时,可获得最大利润,且最大利润为6250元(2)降价时, 2W = (40)x -(201500x -+)= 220230060000x x -+-=220(115)60000x x --- =22211511520115)6000022x x ⎡⎤⎛⎫⎛⎫--+--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ =211520()66125600002x --+- =220(57.5)6612560000x --+-=220(57.5)6125x --+所以可知,当售价为57.5元时,可获得最大利润,且最大利润为6125元综上所述,售价为65元或售价为57.5元时,都可得到最大利润,最大利润分别为6250元或6125元。

因为,为了尽快减少库存,所以应该采用降价销售。

因此售价应为57.5元。

(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。

求最大利润,学生版一、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件。

已知商品的进价为每件40元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x元时,每件的利润可表示为________________问题2:售价为x元,售价涨了多少元?可表示为____________________问题3:售价为x元,销售数量会减少,减少的件数为_____________ (件)问题4:售价为x元,销售数量为y(件),那么y与x的函数关系式可表示为问题5:售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?二、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量问题1:售价为x元时,每件的利润可表示为_______________问题2:售价为x元,售价降了多少元?可表示为______________问题3:售价为x元,销售数量会增加,增加的件数为__________________(件)问题4:售价为x元,销售数量为y(件),那么y与x的函数关系式可表示为问题4:售价为x元,销售数量为y(件),销售总利润为W(元),那么W与x 的函数关系式为问题5:售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?三、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价2元,每星期少卖出20件;每降价2元,每星期可多卖出40件,已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,即:(1)涨价时,虽然销售数量减少了,但是每件的利润增加了,所以可以使销售过程中的总利润增加(2)降价时,虽然每件的利润减少了,但是销售数量增加了,所以同样可以使销售过程中的总利润增加本题用到的数量关系是:(1)利润=售价-进价(2)销售总利润=单件利润×销售数量根据题目内容,完成下列各题:1、涨价时(1)售价为x元,销售数量为y(件),那么y与x的函数关系式可表示为(2)售价为x元,销售数量为y(件),销售总利润为W(元),那么W与x 的函数关系式为(3)售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?2、降价时:(1)售价为x元,销售数量为y(件),那么y与x的函数关系式可表示为(2)售价为x元,销售数量为y(件),销售总利润为W(元),那么W与x 的函数关系式为(3)售价为x元,销售总利润为W(元)时,可获得的最大利润是多少?本题解题过程如下:解:设售价为x元,利润为W。

相关文档
最新文档