人教版九年级数学--二次函数与最大利润问题

合集下载

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
4.练习:布置一定数量的练习题,巩固学生对最大利润问题的解决方法。
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计一. 教材分析《二次函数与最大利润问题》这一节内容,是在学生学习了二次函数的基础上进行的。

教材通过实例引出二次函数在实际问题中的应用,让学生感受数学与生活的紧密联系,培养学生的应用意识。

同时,本题也是中考的热点题型,对于学生来说,理解和掌握二次函数在最大利润问题中的应用,对于提高他们的数学素养和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,将二次函数应用于实际问题中,求最大利润问题,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们解决问题的能力。

三. 教学目标1.理解二次函数在最大利润问题中的应用。

2.能够列出二次函数表示的生产成本函数,并求出最大利润。

3.培养学生的应用意识和解决问题的能力。

四. 教学重难点1.重点:二次函数在最大利润问题中的应用。

2.难点:如何将实际问题转化为二次函数问题,并求解最大利润。

五. 教学方法采用问题驱动的教学方法,通过实例引导学生主动探究二次函数在最大利润问题中的应用,培养学生的动手能力和解决问题的能力。

同时,辅以小组合作学习,让学生在讨论中加深对知识的理解。

六. 教学准备1.准备相关的实例,用于引导学生探究二次函数在最大利润问题中的应用。

2.准备PPT,用于展示问题和解答过程。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容:某工厂生产一种产品,固定成本为8000元,每生产一件产品的成本为200元,售价为300元,问工厂每月生产多少件产品时,可以获得最大利润?2.呈现(10分钟)引导学生将实际问题转化为数学问题,列出二次函数表示的生产成本函数和利润函数。

设每月生产x件产品,利润函数为:y = 300x - 200x - 8000 = 100x - 8000。

3.操练(10分钟)让学生尝试求解最大利润,引导他们发现这是一个二次函数的最大值问题。

人教版数学九年级上册:22.3 实际问题与二次函数 第2课时 二次函数与最大利润问题 教案

人教版数学九年级上册:22.3 实际问题与二次函数  第2课时  二次函数与最大利润问题  教案

22.3实际问题与二次函数第2课时二次函数与最大利润问题【知识网络】典案二导学设计一、阅读课本:二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x上市时间x/(月份) 1 2 3 4 5 6市场售价P(元/千克)10.5 9 7.5 6 4.5 3这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?。

人教版九年级数学上册第22章 二次函数 二次函数与商品利润问题

人教版九年级数学上册第22章 二次函数 二次函数与商品利润问题

某商店经营衬衫,已知获利(元)与销售单价(元)之间满
足关系式 = − + + ,则销售单价定为多少元时,
获利最多?最多获利为多少元?
自主探究
请同学们阅读课本50页探究2. 请同学们思考:
(1)调价包括哪几种情况? (涨价和降价两种)
(2)先来讨论涨价的情况.
①设每件涨价x元,你能否用含x的式子表示单件的利润和销售数量?
− = −( − )² + .
故当 = 时,W最大,为125.
答:当销售单价为13万元时,利润最大,最大利润为125万元.
变式 为满足市场需求,某超市在“端午节”来临前夕,购进一种品
牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根
据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700
例1 某商店从厂家以每件21元的价格购进一批商品,该商店可以
自行定价.若每件商品售价为 x 元,则可卖出(350-10x)件商
品,那么卖出商品所赚钱数y(元)与每件售价x(元)之间的
函数解析式为(
B)
A.y=-10x²-560x+7 350
C.y=-10x²+350x
B.y=-10x²+560x-7 350
− .当 =
× − × − −
× −


× −
= 时, 最大 =
= ,即当每盒售价定为60
元时,每天销售的利润P(元)最大,最大利润为8 000元.
(3)为稳定物价,有关管理部门限定:这种粽子每盒的售价不得高
盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数

数学九年级人教版第二课时二次函数最大利润问题ppt课件

数学九年级人教版第二课时二次函数最大利润问题ppt课件






知识点 2
“每……每……”的销售利润问题
3.将进货价为70元/件的某种商品按零售价100元/件出售时
每天能卖出20件,若这种商品的零售价在一定范围内每降价
1元/件,其日销售量就增加1件,为了获得最大利润,决定每件
降价x元,则单件的利润为
元,每天的销售量为
(30-x)
(20+x) 件,则每天的利润y(元)关于x(元)的函数关系式是
把(280,40),(290,39)代入,得
1
=- ,
280 + = 40,
10
解得
290 + = 39,
= 68,
1
∴y 与 x 之间的函数解析式为 y=- x+68(200≤x≤320).
10







(2)当每个房间每天的定价定为多少时,宾馆每天所获利润最
大?最大利润是多少元?
A.2500元
B.47500元
C.50000元
D.250000元
[解析] 因为抛物线的对称轴为直线x=500,在对称轴左侧,y随x的
增大而增大,因此在0<x≤450的范围内,当x=450时,函数有最大值
为47500.







6.(2021鄂尔多斯)鄂尔多斯市某宾馆共有50个房间供游客居
住,每个房间每天的定价不低于200元且不超过320元.如果
(1)求y与x之间的函数解析式(不必写出自变量的取值范围);
解:(1)根据题意,得y=300-10(x-60)=-10x+900.

人教版初中数学九上 微专题11 二次函数的应用(二)——利润问题

人教版初中数学九上 微专题11 二次函数的应用(二)——利润问题

3.(2021·抚顺)某厂家生产一批遮阳伞,成本价是 20 元/把,试销售时发 现:遮阳伞每天的销售量 y(把)与售价 x(元/把)之间满足一次函数关 系,且当售价为 28 元/把时,每天的销售量为 260 把;当售价为 30 元/把时, 每天的销售量为 240 把. (1)y 与 x 之间的函数解析式为 y=-10x+540 ; (2)设遮阳伞每天的销售利润为 w(元),则当售价定为多少时,才能使每 天的销售利润最大?最大利润是多少元? 解:由题意,得w=(x-20)(-10x+540)=-10(x-37)2+2 890. ∵-10<0, ∴当x=37时,w有最大值,最大值为2 890. 答:当售价定为37元/把时,才能使每天的销售利润最大,最大利润是2 890元.
x/辆
45678
y/万元
0 0.5 1 1.5 2
(1)y 与 x 之间的函数解析式为 y=12x-2(x22 万元,不考虑其他成本,则当月销售量 为多少时,该品牌汽车销售店销售利润最大?最大利润是多少? 解:设该品牌汽车销售店销售利润为w万元.
∴当x=8时,w有最大值,最大值为32. 答:当月销售量为8辆时,该品牌汽车销售店销售利润最大,最大利润是32万元.
4.(2021·铜仁)某品牌汽车销售店销售某种品牌的汽车,已知该品牌汽车 每辆的进价为 16 万元,且当每辆汽车的售价为 22 万元时,每月可销售 4 辆.现根据市场行情决定进行降价销售,通过市场调查得到了每辆汽车下降
的价格 y(万元)与月销售量 x(辆)(x≥4)满足一次函数关系,部分数据
如下表:
微专题11 二次函数的应用(二) ——利润问题
1.某商品的利润 y(元)与每件的售价 x(元)之间的函数解析式为 y=-x2 +8x+9,且每件的售价不低于 1 元不高于 3 元,则最大利润为 24 元. 2.某商店销售一批头盔,且售价为每顶 80 元时,每月可售出 200 顶.在创 建文明城市期间,计划将头盔降价销售,经调查发现:每降价 1 元,每月可 多售出 20 顶.已知头盔的进价为每顶 50 元,当该商店每月获得最大利润 时,每顶头盔的售价为 70 元.

人教版数学九年级上册实际问题与二次函数——利润最大(小)值问题课件

人教版数学九年级上册实际问题与二次函数——利润最大(小)值问题课件

即房价为180+170=350时,利润 y 有最大值。
分析题目的两个变量
解:设房租涨价10x元,则利润为y元,
y写 出(18函0 数10关x)系(50式 x) 20(50 x) (0 x 5写0)出等量关系
利润=房价×入住数量—支出
9000180x 500x 10x2 1000 20x
三、总结提升
实际问题
目 标
实际问题 的答案
归纳
二次函数
抽象
y ax2 bx c
图象 性质
利用二次函数的 图像和性质求解
变式1 原条件不变,旅游局为了促进低碳 环保,规定宾馆空房率不能超过20%,房 价定为多少的时候,利润最大?
y (18010x)(50 x) 20(50 x) (0 x 10) y
本题是以文字信息情势出现,求最大 利润的实际应用问题,要抓住题目中的关 键词来审题,对信息进行梳理、分析 。
二、解题过程
问题一:题目研究的是哪两个变量的关系? (利润随房价的变化而变化)
问题二:能根据题意列出等量关系吗?
(利润=房价×入住数量—支出) 问题三:等量关系中各数据关系是什么?
房价=180+涨价 入住数量=涨10元空一间 支出=20 ×入住数量
x 设涨价 元,利润为 y 元.
y (180 x)(50 x ) 20(50 x ) 0 x 50
10
10
9000 1 x2 32x 1000 2x
1
10
x2 34x 8000
10
当 x b 34 170 时,利润y 有最大值。
2a 2 ( 1 ) 10
一、题目分析
四、自我评价
1、数学教育要使学生掌握现代生活和学习中 所需要的数学知识与技能。题目的解决体现 了知识对日常生活的重大作用,学生对数学 知识实用性的有更深一层认识。

人教版九年级数学上知识点深度解析第2课时 商品利润最大问题

人教版九年级数学上知识点深度解析第2课时 商品利润最大问题

12345
3. 教材P51习题T2变式某种商品每件进价为20元,调 查表明:在某段时间内若以每件 x 元(20≤ x ≤30, 且 x 为整数)出售,可卖出(30- x )件.若使利润最 大,每件的售价应为 25 元.
12345
4. 教材P50探究2变式一件工艺品进价为100元,以 标价135元售出,每天可售出100件.根据销售统计, 一件工艺品每降价1元,则每天可以多售出4件.要使 日利润最大,则每件应降价 5 元.
12345
Hale Waihona Puke 谢谢观看运用策略常见的关系式: 商品 ①商品利润=商品售价-商品进价; 利润 ②商品利润、进价、利润率之间的关系: 最大 商品利润÷商品进价=商品利润率; 问题 ③标价=进价×(1+提高率);
④实际售价=标价×打折率.
当堂检测
1. 某超市销售一种商品,发现一周利润 y (元)与销
售单价 x (元)之间的关系满足 y =-2( x -20)2+
1558,由于某种原因,销售单价只能为15≤ x ≤22,
那么一周可获得最大利润是( A )
A. 1558元
B. 1550元
C. 1508元
D. 20元
12345
2. 某超市销售一种商品,每件成本为50元,超市的销 售经理经调查发现,该商品每月的销售量 y (件)与销 售单价 x (元)之间满足函数关系式 y =-5 x +550.若 设该商品每月所获利润为 w (元),则 w 与 x 之间化简 后的函数关系式为 w =-5 x2+800 x -27500 , w 的 最大值为 4500 .
第二十二章 二次函数
22.3 实际问题与二次函数 第2课时 商品利润最大问题
要点归纳
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:销售单价为10.5元时,最大利润为6400元.
问题3.已知某商品的进价为每件40元。
现在的售价是每件60元,每星期可卖 出300件。市场调查反映:如调整价格, 每降价一元,每星期可多卖出20件。 如何定价才能使利润最大?
解:设每件降价x元时的总利润为y元.
y=(60-40-x)(300+20x) 怎样确定x的 取值范围 =(20-x)(300+20x) =-20x2+100x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0≤x≤20) 所以定价为60-2.5=57.5时利润最大,最大 值为6125元.
22.3 实际问题与二次函数
第2课时 二次函数与商品利润
在日常生活中存在着许许多多的与数学知识有关的 实际问题。如繁华的商业城中很多人在买卖东西。
如果你去买商品,你会选买哪一家呢?如果你是商场经理, 如何定价才能使商场获得最大利润呢?
自主探究
问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调 整价格 ,每涨价1元,每星期要少卖出10件。要想获 得6090元的利润,该商品应定价为多少元?
2.某商店经营一种小商品,进价为2.5元,据市场 调查,销售单价是13.5元时平均每天销售量是 500件,而销售单价每降低1元,平均每天就可以 多售出100件.
(1)假设每件商品降低x元,商店每天销售这种 小商品的利润是y元,请你写出y与x之间的函数 关系式,并注明x的取值范围; (2)每件小商品销售价是多少元时,商店每天销 售这种小商品的利润最大?最大利润是多少? (注:销售利润=销售收入-购进成本)
问题4.已知某商品的进价为每件40元。
现在的售价是每件60元,每星期可卖 出300件。市场调查反映:如调整价格 , 每涨价一元,每星期要少卖出10件; 每降价一元,每星期可多卖出20件。 如何定价才能使利润最大?
由(2)(3)的讨论及现在的销 售情况,你知道应该如何定 价能使利润最大了吗?
答:综合以上两种情况,定价为65元时可获得 最大利润为6250元.
合作交流
问题2.已知某商品的进价为每件40元,每涨价一元, 每星期要少卖出10件。该商品应定价为多 少元时,商场能获得最大利润?
解:设每件涨价为x元时获得的总利润为y元. y =(60-40+x)(300-10x) (0≤x≤30) =(20+x)(300-10x) =-10x2+100x+6000 =-10(x2-10x ) +6000 =-10[(x-5)2-25 ]+6000 =-10(x-5)2+6250 当x=5时,y的最大值是6250. 定价:60+5=65(元)
分析:没调价之前商场一周的利润为 6000元; 设销售单价上调了x元,那么每件商品的利润 可表示为 (20+x)元,每周的销售量可表示为 件,一周的利润可表示为 (300-10x) (20+x)( 300-10x)元,要想获得6090元利润可 列方程 (20+x)( 300-10x) =6090 。
解析:(1)降低x元后,所销售的件数是(500+100x), y=-100x2+600x+5500 (0<x≤11 ) (2)y=-100x2+600x+5500 (0<x≤11 ) 配方得y=-100(x-3)2+6400
当x=3时,y的最大值是6400元.
即降价为3元时,利润最大.
所以销售单价为10.5元时,最大利润为6400元.
解决这类题目的一般步骤
(1)列出二次函数的解析式,并根据自变量的 实际意义,确定自变量的取值范围; (2)在自变量的取值范围内,运用公式法或通 过配方求出二次函数的最大值或最小值.
某商店购进一批单价为20元的日用品,如果以单 价30元销售,那么半个月内可以售出400件.根据销 售经验,提高单价会导致销售量的减少,即销售单价 每提高1元,销售量相应减少20件.售价提高多少元 时,才能在半个月内获得最大利润? 解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元
相关文档
最新文档