二次函数与最大利润问题教案
人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点
二次函数利润应用教学设计

二次函数利润应用教学设计第一篇:二次函数利润应用教学设计二次函数与实际问题利润的最大化问题——教学设计教学目标:1、探究实际问题与二次函数的关系2、让学生掌握用二次函数最值的性质解决最大值问题的方法3、让学生充分感受实际情景与数学知识合理转化的过程,体会如何遇到问题—提出问题—解决问题的思考脉络。
教学重点:探究利用二次函数的最大值性质解决实际问题的方法教学难点:如何将实际问题转化为二次函数的数学问题,并利用函数性质进行决策教学过程 : 情境设置:水果店售某种水果,平均每天售出20千克,每千克售价60元,进价20元。
经市场调查发现,在进价不变的情况下,若每千克这种水果在原售价的基础上每涨价1元,日销售量减少1千克;若每降价1元,日销售量将增加2千克。
现商店为增加利润,扩大销售,尽量减少库存,决定采取适当措施。
(1)如果水果店日销水果要盈利1200元,那么每千克这种水果应涨价或降价多少元?解:设每千克这种水果降价x元。
(60-20-x)(20+2x)=1200解得x=10或x =20 水果店扩大销售,尽量减少库存x=10不合题意,舍 x=20 答:每千克这种水果应降价20元。
(2)如果水果店日销水果要盈利最多,应如何调价?最多获利多少元?设计:问题1是利用一元二次方程解决问题,引导学生先根据题意判断出应只选择降价,只是一种可能。
通过分析“降价”让学生自主完成,教师点评,强调验根。
因学生已经学习过一元二次方程,困难不会太大。
问题2,引导学生由一元二次方程过度到二次函数,并想到利用二次函数最值的性质去解决问题。
给学生空间时间去思考。
老师问两个问题;1 怎样设?2什么方法去解决?解:设每千克这种水果降价x元。
y=(60-20-x)(20+2x) =-2 x²+60x+800 (0< x≤40) a=-2<0 y有最大值当x= 15时,y最大此时,y=1250答:每千克应降价15元,使获利最多,最多可获利1250元。
二次函数求最大利润问题的教学设计

二次函数求最大利润问题的教学设计范亚书一、学生知识状况分析学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y =ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。
学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法。
二、教学任务分析“怎样获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴。
二次函数化为顶点式后,很容易求出最大或最小值。
而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题。
因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践。
即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。
具体地,本节课的教学目标是:(一)知识与技能1、能根据实际问题建立二次函数关系式,并探求出何时刻,实际问题可取得理想值,增强学生解决实际问题的能力。
2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。
(二)过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观1、体会数学与人类社会的密切联系,了解数学的价值。
增进对数学的理解和学好数学的信心。
2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。
教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值三、教学过程分析本节课设计了六个教学环节:复习回顾、创设问题情境讲授新课、巩固练习、实践应用、课堂小结、课后作业。
人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计一. 教材分析《二次函数与最大利润问题》这一节内容,是在学生学习了二次函数的基础上进行的。
教材通过实例引出二次函数在实际问题中的应用,让学生感受数学与生活的紧密联系,培养学生的应用意识。
同时,本题也是中考的热点题型,对于学生来说,理解和掌握二次函数在最大利润问题中的应用,对于提高他们的数学素养和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题中,求最大利润问题,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们解决问题的能力。
三. 教学目标1.理解二次函数在最大利润问题中的应用。
2.能够列出二次函数表示的生产成本函数,并求出最大利润。
3.培养学生的应用意识和解决问题的能力。
四. 教学重难点1.重点:二次函数在最大利润问题中的应用。
2.难点:如何将实际问题转化为二次函数问题,并求解最大利润。
五. 教学方法采用问题驱动的教学方法,通过实例引导学生主动探究二次函数在最大利润问题中的应用,培养学生的动手能力和解决问题的能力。
同时,辅以小组合作学习,让学生在讨论中加深对知识的理解。
六. 教学准备1.准备相关的实例,用于引导学生探究二次函数在最大利润问题中的应用。
2.准备PPT,用于展示问题和解答过程。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容:某工厂生产一种产品,固定成本为8000元,每生产一件产品的成本为200元,售价为300元,问工厂每月生产多少件产品时,可以获得最大利润?2.呈现(10分钟)引导学生将实际问题转化为数学问题,列出二次函数表示的生产成本函数和利润函数。
设每月生产x件产品,利润函数为:y = 300x - 200x - 8000 = 100x - 8000。
3.操练(10分钟)让学生尝试求解最大利润,引导他们发现这是一个二次函数的最大值问题。
初中数学九年级《二次函数与最大利润问题》公开课教学设计

初中数学九年级《⼆次函数与最⼤利润问题》公开课教学设计22.3实际问题与⼆次函数第⼆课时⼆次函数与最⼤利润问题⼀、教学⽬标知识与技能:通过探究实际问题与⼆次函数的关系,让学⽣掌握利⽤顶点坐标解决最⼤值(或最⼩值)问题的⽅法。
过程与⽅法:通过研究⽣活中实际问题,让学⽣体会建⽴数学建模的思想;通过学习和探究“销售利润”问题,渗透转化及分类的数学思想⽅法。
情感态度与价值观:通过将“⼆次函数的最⼤值”的知识灵活⽤于实际,让学⽣亲⾃体会到学习数学的价值,从⽽提⾼学⽣学习数学的兴趣。
⼆、教学重点及难点教学重点:⽤⼆次函数的知识分析解决有关利润的实际问题。
教学难点:通过问题中的数量变化关系列出函数解析式。
三、学情分析我班学⽣已经学习了⼆次函数的定义、图象和性质,在此之前也学习了列代数式、列⽅程解应⽤题,所以学⽣具备了⼀定的建模能⼒,但我班学⽣的理解能⼒较弱,对应⽤题具有恐惧感,然⽽应⽤⼆次函数的知识解决实际问题需要很强的灵活应⽤能⼒,对学⽣⽽⾔建模难度很⼤。
三、教学过程(⼀)复习引⼊ (1)商家进了⼀批杯⼦,进货价是10元/个,以a 元/个的价格售出,则商家所获利润为()10a -元。
(2)某种商品的进价是400元,标价为600元,卖出3x 件,为了减少库存,商家采取打⼋折促销,卖出了(65)x +件,则商家所获利润为(1080400)x +元。
利润问题主要⽤到的关系式是:利润=售价-进价总利润=单件利润 ? 销售数量(⼆)创设情境问题(合作交流)童装的进价40元/件,售价60元/件,每星期可卖出300件。
如果调整价格,每涨价1元,每星期要少卖出10件。
要想获得7200元的利润,该商品应定价为多少元?分析:没调价之前商场⼀周的利润为 6000 元;设销售单价上调了x 元,那么每件商品的利润可表⽰为 (60-40+x ) 元,每周的销售量可表⽰为(300-10x ) 件,⼀周的利润可表⽰为(60-40+x )(300-10x )元,要想获得6090元利润可列⽅程 (60-40+x)(300-10x)=7200 。
二次函数与实际问题 利润问题

二次函数与实际问题利润问题二次函数与实际问题利润问题实用问题与二次函数——利润问题教案(1)一、利润公式一种商品的购买价是40元,现在是60元。
每周可以卖出50件。
本周销售商品的利润是多少?小结:总利润=二、问题探究问题1:某种商品的购买价格是30元/件。
如果你在一段时间内以每件x元的价格出售,你可以卖出(200-x)件。
你应该如何定价以实现利润最大化?问题2:已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。
市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。
该商品应定价为多少元时,商场能获得最大利润?分析问题:设每件涨价x元,则每星期售出商品的利润为y 元。
(1)将价格提高X元,每周销量减少;实际上卖了几件。
(2)商品的现行价格是元,购买价格是元。
跟据上面的两个问题列出函数表达式为:自变量x的取值范围解答过程:问题3:目前一种商品的售价是60元/件,每周可以卖出300件。
根据市场调查,每涨1元,每周就少卖10件;每降价1元,每周可多卖出18件。
已知商品的购买价格为40元/件。
如何定价以实现利润最大化?三、课堂练习1.据了解,一件商品的购买价格为40元/件,销售价格为60元/件,每周可销售300件。
市场调查显示,如果价格调整,每降低一元,每周就会多卖出18件。
当商品的价格应该是多少元时,商场能获得最大的利润吗?2、某商场销售某种品牌的纯牛奶,已知进价为每箱40元,市场调查发现:若每箱以50元销售,平均每天可销售100箱.价格每箱降低1元,平均每天多销售25箱;价格每箱升高1元,平均每天少销售4箱。
如何定价才能使得利润最大?3.旅行社组织30人组团出国旅游,单价为每人800元。
旅行社对30人以上的组团提供折扣,即每增加一人,每人的单价将减少10元。
你能帮我分析一下当旅行团数量减少时旅行社能获得的最大营业额吗?4、某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满。
18二次函数与最大利润问题教案

二次函数与最大利润问题一、教学目标(一)知识与技能:1.会列出实际问题中变量之间的二次函数关系,并感受数学的应用价值;2.运用配方法或公式法求出实际问题的最大值、最小值,发展解决问题的能力.(二)过程与方法:经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.(三)情感态度与价值观:1.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.二、教学重点、难点重点:探素销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.难点:从实际问题中抽象出二次函数建立函数模型,以利用二次函相关知识解决实际生活中的最大(小)值问题.三、教学过程教材导学1.二次函数y=2x2-8x+1图象的顶点坐标是________,当x=____时,y的最小值为____.2.某旅行社要接团去外地旅游,经计算所获利润y(元)与旅行团人数x(人)满足关系式y=-x2+100x.(1)二次函数y=-x2+100x的图象开口向___,有最___值,为_____;(2)要使旅行团所获利润最大,则此时旅行团应有___人.利润问题一.几个量之间的关系.1.总价、单价、数量的关系:总价=单价×数量2.利润、售价、进价的关系:利润=售价-进价3.总利润、单件利润、数量的关系:总利润=单件利润×数量二.在商品销售中,通常采用哪些方法增加利润?探究2某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?没调整价格之前的利润是_____元.解:(1)设每件商品涨价x元,每星期售出的利润为y元.则每星期少卖_____件,实际卖出_________件,销售额为_______________元,买进商品需付___________元.因此,所得利润y=___________________________,即y=_______________,其中,0≤x≤30.方法2:设每件商品涨价x元,每星期售出的利润为y元.则每件利润是___________元,每星期少卖____件,实际卖出________件,因此,所得利润y=_____________即y=___________,其中,0≤x≤30.解:(1)设每件商品涨价x元,每星期售出的利润为y元.y=-10x2+100x+6000,其中,0≤x≤30.根据上面的函数,填空:当x=____时,y最大,也就是说,在涨价的情况下,涨价____元,即定价_____元时,利润最大,最大利润是______元.解:(2)设每件商品降价x元,每星期售出的利润为y元.则每件利润是___________元,每星期多卖_____件,实际卖出_________件,因此,所得利润y =_____________________,即y =_______________,其中,_________.解:(2)设每件商品降价x 元,每星期售出的利润为y 元.y =-20x 2+100x +6000,其中,0≤x ≤20.根据上面的函数,填空:当x =____时,y 最大,也就是说,在降价的情况下,降价____元,即定价_____元时,利润最大,最大利润是______元.(1)涨价5元,即定价65元时,利润最大,最大利润是6250元;(2)降价2.5元,即定价57.5元时,利润最大,最大利润是6125元.由(1)(2)的讨论及现在的销售情况,你知道应如何定价能使利润最大了吗?当定价为65元时,能使利润最大,最大利润是6250元.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?解:设果园增种x 棵橙子树,总产量为y 个.则果园共有_______棵橙子树,这时平均每棵树结_________个橙子.y =(100+x )(600-5x ) 即 y =-5x 2+100x +60000 (0≤x ≤120)∵ a =-5<0∴ 当x ==10,y 最大=60500即果园增种10棵橙子树,总数为110棵时,可以使果园橙子的总产量最多,最多为60500个.归纳总结此类问题一般是先利用“总利润=总售价-总成本”或“总利润=每件商品的利润×销售数量”建立利润与价格之间的函数关系式(一般是二次函数),求出这个函数关系式的顶点坐标,从而可得最大利润.同时还要注意实际问题中自变量的取值范围.练习某商店经营某种商品,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?解:设每件商品降价x 元,总获利为y 元.依题意得y =(13.5-2.5-x )(500+200x ) 即 y =-200x 2+1700x +5500 (0≤x ≤11)∵ a =-200<0,∴ 当x =4.25,y 最大=9112.5即每件商品降价4.25元,销售单价是9.25元时,可以获得最大利润,最大利润是9112.5元.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.)5(2100-⨯-。
二次函数与最大利润问题 教学案例

二次函数与最大利润问题教学案例=-0.6(x-180)2+19440。
因此,每间客房的日租金提高到 180 元时,客房总收入最高,最高收入为 19440 元。
(续表)五:变式拓展(2010•武汉)某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时,房间会全部住满.当每个房间每天的房价每增加 10 元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出 20元的各种费用.根据规定,每个房间每天的房价不得高于 340 元.设每个房间的房价增加 x 元(x 为 10的正整数倍)。
(1)设一天订住的房间数为 y,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围;(2)设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?分析:本题是二次函数的应用,特别容易出现的错误是在求最值时不考虑自变量 x 的取值范围,直接求顶点坐标。
(1)理解每个房间的房价每增加 x 元,则减少房间x间,则可以得到 y 与x 之间的关系;10(2)每个房间订住后每间的利润是房价减去 20元,每间的利润与所订的房间数的积就是利润;(3)求出二次函数的对称轴,根据二次函数的增减性以及 x 的范围即可求解。
解题过程:解:(1)由题意得: y = 50 -x,且(0≤x≤160,且 x10为 10 的正整数倍)(2) w =(180 - 20 +x)(3) w =-1x2 + 34x +8000 =-1 (x -170)2 +1089010 10抛物线的对称轴是: x =-b= 170 ,抛物线的开口向2a下,当 x<170 时,w 随x 的增大而增大,但0≤x≤160,因而当 x=160 时,即房价是 340 元时,利润最本题是对上一题的变式,其易错点在于没能充分考虑自变量x 的取值范围(x为 10 的正整数倍)。
分析题目中的每个问题,理清思路,整理出解题过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1销售额是多少?
2成本是多少?
3利润y与每件涨价x元之间的函数关系式是什么?
4变量x的取值范围如何确定?
5如何求解最值?
教师引导学生确定变量x的范围的方法:300-10x≥0,x≥0
教师利用多媒体展示解答过程,指导学生进行比对:
解:设每件涨价x元,利润为y元,根据题意得:
y=(60+x)(300-10x)-40(300-10X)
(1)求y与x之间的函数解析式;
(2)当销售定价为多少时,每天的销售利润最大,最大利润是多少?
教师对学生的测评结果进行批阅、点评、讲解。
学生进行当堂检测,完成后,教师进行批阅、点评、讲解。
针对本课时的主要问题,从多个角度、分层进行检验,达到学有所成、了解课堂学习效果的目的。
课堂小结
2分钟
课堂小结:
1、谈一谈你在本节课中有哪些收货?哪些进步?
教学设计
基本信息
名称
二次函数与最大利润问题
执教者
赵娜
课时
1
所属教材目录
实际问题与二次函数
教材分析
最大利润问题是实际问题与二次函数这一部分内容中的一类典型的关于二次函数的实际应用问题,,二次函数的应用本身是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图像的性质解决简单的实际问题。而最大利润问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生也比较感兴趣,目的在于让学生通过最大利润这一类题学会用建模的思想去解决其它和函数有关的应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多的函数打下坚实的理论的思想方法的基础。
2、用一根长为20m的绳子围成一个矩形,则围成的矩形的最大面积是多少?
学生资助进行解答,教师做好指导和点评;
(提示:1题课指导学生用不同的方法解答;2题先确定矩形的长和宽,利用面积公式列出函数表达式,再求最值)
1、通过回顾二次函数的最值问题,为讲解新课进行铺垫。
2、复习运用二次函数解答面积问题,词用对比教学效果较明显。
学情分析
对九年级学生来说,在学习了一次函数和二次函数的图像与性质后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图像的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题。本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
解:设每件降价x元,利润为y元,根据题意得:
y=(60-x)(300+20x)-40(300+20 x)
=-20x2+100x+6000(0≤x≤20)
当x=2.5时,y有最大值为6125元.
总结:当定价为每件65元时,利润最大为6250元。
教师板书出学生所做总结:
1确定自变量和函数;
2利用“总利润=单位利润×数量”列函数解析式;
通过解答此题,使学生明确利润问题可以利用“总利润=单位利润×数量”列函数解析式。
通过解答此题,让学生体会函数模型在同一个问题中的不同情况下可以是不同的,培养学生考虑问题的全面性。
活动三:开放训练,体现应用
12分钟
应用举例:
例1、某商店购进一批单价为20元一件的日用品,如果以单价30元销售,那么半个月可售出400件,根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,售定价为多少,才能在半个月内获得最大利润?
教师指导学生做出总结,并板书出学生所做总结:
1确定自变量和函数;
2表示出单位利润和销售量;
3利用利润公式列出函数解析式;
4运用顶点公式求出最值。
拓展提高:
例2、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以45元的价格销售,则平均每天销售105箱;若每箱以50元的价格销售,则平均每天销售90箱,假定每天的销售量y(箱)与销售价x(元/箱)之间满足一次函数关系.
(3)当x=60时,w有最大值,但因为x≤55,所以当x=55时,w的值最大,为125元。
学生自主解答(教师巡视,指导),并让学生板书出解答过程。
解:设单价提高x元,利润为y元,依题意得:
y=(30+x-20)(400-20x)=-20x2+200x+4000(0≤x≤20)
所以当x=5时,y有最大值为4500元。
=-10x2+100x+6000(0≤x≤30)
因为a=-10<0,所以函数有最大值,
当x=5时,y有最大值为6250
教师指导、点拨,重点强调:
1怎样利用函数观点来认识问题;
2怎样能够建立函数模型;
3能够找到两变量之间的关系;
4怎样从利润问题中体会函数模型对解决实际问题的价值。
活动二:
按照上述涨价的问题,教师给予学生时间解答降价的最值问题。
学生分组讨论,如何利用函数模型解决问题,教师帮助学生解决问题。
通过日常生活中的实际问题,激发学生思考,培养学生探究意识和解决实际问题的能力。
活动二:实践探究,交流新知
10分钟
1、探究新知
活动一:针对课堂引入的问题进行探究,教师总结解题过程:
教师展示问题:(1)该如何定价呢?
(2)问题中的变量是什么?
3确定自变量的取值范围;
4利用公式求出问题中的最大利润。
学生先独立思考,教师给予引导。提示:(1)学生分组讨论如何利用函数模型解决问题:(2)利润随着价格的变化而变化。
教师指导学生完成涨价问题的函数解析式。
在教师的指导下,学生加大问题,与教师做出的展示结果进行比对。
在教师的指导下,学生总结加大问题的步骤和方法,学生代表进行说明,全班互相交流,进而共同确定解题思路。
A、130 B、120 C、110 D、100
4、最近,政府出台了一系列“三农”优惠政策,使农民收入大幅度增加,某农户生产经销一种农副产品.已知这种产品的成本价位20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80,
设这种产品每天的销售利润为y元.
A、20 B、25 C、30 D、40
2、服装店将进价为每件100元的服装按x元/件的价格出售,每天可销售(200-x)件,若想获得最大利润,则应定价为( )
A、150 B、160 C、170 D、180
3、某产品进货单价为90元/个,按100元/个出售时,能售出500个,若这种商品每涨价1元,其销售量就减少10个,那么为获得最大利润,其单价应定为( )
活动一:创设情境,导入新课
4分钟
问题:某商品现在的售价为每件60元,每周可卖出300件,市场调查反映:如调整价格,每涨价1元,每周要少卖10件;每降价1元,每周可多卖20件。已知商品的进价为每件40元,应如何定价才能使利润最大?
教师展示问题:该如何定价呢?
教师引导学生分析调整价格包括涨价和降价两种情况。2、学习本节课后,还存在源自些困惑?布置作业1分钟
课本第51页习题22.3第2、8题
板书设计
实际问题与二次函数(最大利润问题)
利润问题 二次函数的最值 例题
总利润=单位利当a>0时,函数有最小值
润×数量当a<0时,函数有最大值
顶点坐标公式
教学反思
在创设情境和探究新知环节中,通过解决实际生活中的利润问题,从而得到解答此类问题的一般方法,构建函数模型;在课堂训练环节中,教师给予学生充分的自由讨论时间,提高学生解答问题的积极性;关于授课效果,教师强调:(1)利用利润公式列函数解析式(2)在数量与价格的变化中利用表格形式表示数量关系;关于师生互动,从课堂发言和练习来看,借助实际问题和开放自由的讨论给予课堂活力,使学生能够充分理解利润问题的函数模型。
(1)求每天的销售量y(箱)与销售价x(元/箱)之间的函数解析式;
(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数解析式;
(3)当每箱苹果的销售价为多少时,可以获得最大利润?最大利润是多少?
教师做好总结和展示:
解:(1)得y=-3x+240
(2)由题意得:w=(x-40)(-3x+240)=-3x2+360x-9600
教学目标
知识与能力目标
1、能顺利的从简单的实际问题中抽象出数量关系进而建立二次函数的表达式;
2、理解实际问题中的最大利润应为函数图象上有意义的最高的点的纵坐标;
3、会根据具体的题意用二次函数的顶点坐标及非顶点坐标求出实际应用中的最大利润。
过程与方法目标
经历从实际问题中建立函数模型并应用二次函数的性质解决实际问题的过程,体会数学来源于生活、服务于生活的本质,探索并解决不同情况下的最值问题,进而提高学生分析问题、解决问题的能力。
当二次函数关系式中的自变量有特定的取值范围的条件下,确定最大值进而解决实际问题。
教学策略与设计说明
利用多媒体通过设置丰富的问题情境,鼓励学生进行探索和交流,让学生亲身经历知识的形成过程。
教学过程
教学环节(注明每个环节预设的时间)
教师活动
学生活动
设计意图
回顾
6分钟
1、请求出下列二次函数的最值:
(1)y=x2-4x-5 (2)y=-x2+3x
情感态度与价值观目标
培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神,让学生体验数学活动中充满着探索和创造,增强学好数学的信心。
教学重难点
重点
理解实际问题中的最大利润应为函数图象上有意义的最高的点的纵坐标;会根据具体的题意用二次函数的顶点坐标及非顶点坐标求出实际应用中的最大利润。