青岛市南区七年级2018-2019学年第二学期期末数学真题
(汇总3份试卷)2018年青岛市七年级下学期期末联考数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列调查方式中,适合采用全面调查的是()A.调查市场上一批节能灯的使用寿命B.了解你所在班级同学的身高C.环保部门调查某段水域的水质情况D.了解某个水塘中鱼的数量【答案】B【解析】由全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、要了解一批节能灯的使用寿命,由于具有破坏性,应当使用抽样调查,故A不合题意;B、调查你所在班级的同学的身高,人数少,范围小,应当采用全面调查的方式,故B正确;C、环保部门调查某段水域的水质情况,范围广,工作量大,不宜采用普查,而且只需要大概知道水质情况就可以了,应当采用抽样调查,,故C不合题意;D、了解某个水塘中鱼的数量,不便于检测而且不需要准确数量,采用抽样调查,故D不合题意;故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(毫米2),数据0.0000007用科学记数法表示为()A.6710-⨯D.8⨯C.7⨯B.60.710-710-⨯7010-【答案】C【解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 1<1时,n为负数.【详解】0.000 000 1=1×10-1.故选C.【点睛】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.不等式1433x ->的解集为( ) A .49x >- B .49x <- C .4x <- D .4x >- 【答案】C【解析】系数化为1即可得.【详解】解:不等式1433x ->的解集为x <−4, 故选:C .【点睛】 本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.将点A (-1,2)向右平移4个单位长度,再向下平移3个单位长度后,点的坐标是( ) A .(3,1)B .(-3,-1)C .(3,-1)D .(-3,1)【答案】C【解析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【详解】解:将点A (-1,2)的横坐标加4,纵坐标减3后的点的坐标为(3,-1),故选:C .【点睛】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.5.如图,把 ABC 纸片沿DE 折叠,当点A 落在同一平面的A′处,且落在四边形BCED 的外部时,∠A 与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A = ∠1 - 2∠2B .∠A = ∠1 - ∠2C .3∠A = 2∠1 - ∠2D .2∠A = ∠1 - ∠2【答案】D 【解析】根据翻折的性质可得3,A DE AED A ED ''==∠∠∠∠,再利用三角形的内角和定理和三角形的外角性质分别表示出AED ∠和A ED '∠,然后整理即可得解.【详解】如图,由翻折的性质得3,A DE AED A ED ''==∠∠∠∠∴()1318012=⨯︒-∠∠在△ADE 中,1803,3+AED A CED A =︒--=∠∠∠∠∠∠∴23+2A ED CED A '=+=∠∠∠∠∠+∠∴18033+2A A ︒--=+∠∠∠∠∠整理得2322180A ++=︒∠∠∠ ∴()121801+221802A ⨯⨯︒-+=︒∠∠∠∴212A ∠=∠-∠故答案为:D .【点睛】本题考查了三角形的翻折问题,掌握翻折的性质、三角形的内角和定理和三角形的外角性质是解题的关键. 6.下列命题中,属于真命题的是 ( )A .两个锐角的和是锐角B .在同一平面内,如果a⊥b,b⊥c,则a⊥cC .同位角相等D .在同一平面内,如果a//b ,b//c ,则a//c【答案】D【解析】试题解析:A. 两个锐角的和是锐角,错误;B. 在同一平面内,如果a ⊥b ,b ⊥c ,则a ∥c ,错误;C. 同位角相等,错误;D. 在同一平面内,如果a//b ,b//c ,则a//c ,正确.故选D.7.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大40°,若设∠1=x°、∠2=y°,则可得到方程组为( )A .4090x y x y =+⎧⎨+=⎩B .4090x y x y =-⎧⎨+=⎩C .40180x y x y =-⎧⎨+=⎩D .40180x y x y =+⎧⎨+=⎩【答案】A 【解析】分析:分别根据∠1的度数比∠2的度数大40°和∠1与∠2互余各列一个方程,组成方程组求解即可.详解:由题意得,4090x y x y =+⎧⎨+=⎩. 故选A.点睛:本题考查了二元一次方程组的几何应用,找出题目中的等量关系是解答本题的关键.8.如图,已知□ABCD 的面积为100,P 为边CD 上的任一点,E ,F 分别为线段AP ,BP 的中点,则图中阴影部分的总面积为( )A .30B .25C .22.5D .20【答案】B 【解析】先由△ABP 与□ABCD 同底等高,得出12ABP ABCD S S =,再由中线的性质得到ADE CBF CBP 11,22ADP S S S S ∆==,从而得到图中阴影部分的总面积.【详解】∵平行四边形ABCD∴S △ABP =12S 平行四边形ABCD , ∴S △ADP +S △CBP +S △ABP =S 平行四边形ABCD , ∴S △ADP +S △CBP=12S 平行四边形ABCD ∵ E ,F 分别为线段AP ,BP 的中点,∴S △ADE =12S △ADP , S △CBF =12S △CBP ∴S △ADE +S △CBF =12(S △ADP +S △CBP )=14S 平行四边形ABCD=14×100=25 故答案为B【点睛】本题主要考查了平行四边形的性质,三角形的面积,等底等高的三角形的面积等于平行四边形的面积的一半,三角形的中线把三角形分成面积相等的两部分.根据题目信息找出各部分的面积的关系是解题的关键.9.分式方程的解为( ).A .B .C .无解D .【答案】D【解析】试题分析:解分式方程的一般步骤:先去分母化分式方程为整式方程,再解这个整式方程即可,注意解分式方程最后一步要写检验.两边同乘得解这个方程得经检验是原方程的解故选D.考点:解分式方程点评:解方程是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.10.平移后的图形与原来的图形的对应点连线()A.相交B.平行C.平行或在同一条直线上且相等D.相等【答案】C【解析】根据平移的性质解答本题.【详解】经过平移的图形与原图形的对应点的连线的关系是平行或在同一条直线上且相等.故选:C【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.二、填空题题11.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积为____.44cm;【答案】2【解析】设小长方形的长为x,宽为y,根据图示可得到关于xy的两个方程,可求得解,从而可得到大长方形的面积,再根据阴影部分的面积=大长方形的面积-6个小长方形的面积求解即可.【详解】设小长方形的长为x,宽为y,如图可知,x+3y=14,①x+y−2y=6,即x−y=6,②①−②得4y=8,y=2,代入②得x=8,因此,大矩形ABCD的宽AD=6+2y=6+2×2=10.矩形ABCD面积=14×10=140(cm2),阴影部分总面积=140−6×2×8=44(cm2).【点睛】此题考查二元一次方程组的应用,解题关键在于列出方程12.如图所示,三角形纸片ABC,AB=10厘米,BC=7厘米,AC=6厘米.沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为_____厘米.【答案】1【解析】由折叠前后对应线段相等,可得DE=CD,BE=BC,再根据△AED的周长等于AD+DE+AE=AC+DE 即可得答案.【详解】解:∵折叠这个三角形顶点C落在AB边上的点E处,∴DE=CD,BE=BC=7cm,∴AE=AB﹣BE=10﹣7=3cm,∵AD+DE=AD+CD=AC=6cm,∴△AED的周长=AD+DE+AE=AC+DE=6+3=1cm.故答案为:1.【点睛】本题考查折叠的性质,解题的关键是掌握折叠前后对应线段相等.13.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.14325.36=2.9383253.6325360000.【答案】293.1325360000325.361000000325.36×100, 再代入计算即可求解.【详解】解:325360000=325.361000000⨯=325.36×100=293.1.故答案为293.1.【点睛】考查了立方根,关键是将325360000变形为325.361000000⨯.15.如图,在ABC∆中,,6,3AD BC BC AD⊥==,将ABC∆沿射线BC的方向平移2个单位后,得到三角形'''A B C,连接'A C ,则三角形''A B C的面积为__________.【答案】6【解析】根据平移前后的几何性质,由三角形面积公式即可容易求得.【详解】根据题意,因为ABC A B C'''≅,容易知624B C B C CC'''-=-'==;又A B C'''的高于ABC的高相等,均为3,故1143622A B CS B C AD''=⨯'⨯=⨯⨯=.故答案为:6.【点睛】本题考查平移的性质,以及三角形面积的计算,属基础题.16.若关于x,y的二元一次方程组23122x y kx y+-⎧⎨+-⎩==的解满足x-y>4,则k的取值范围是__.【答案】k>1.【解析】把方程组的解求出,即用k表示出x、y,代入不等式x-y>4,转化为关于k的一元一次不等式,可求得k的取值范围.【详解】23122x y kx y=①=②+-⎧⎨+-⎩,由①+②可得:3(x+y)=3k-3,所以:x+y=k-1③①-③得:x=2k,②-③得:y=-k-1,代入x-y>4可得:2k+k+1>4,解得:k>1,故填:k>1.【点睛】本题考查了二元一次方程组的解法,一元一次不等式的解法,解题的关键是求出方程组的解代入不等式可化为关于k的一元一次不等式求解.17.已知点A(﹣2,﹣1),点B(a,b),直线AB∥y轴,且AB=3,则点B的坐标是___【答案】(﹣2,2)或(﹣2,﹣4)【解析】试题解析:∵A(-2,-1),AB∥y轴,∴点B的横坐标为-2,∵AB=3,∴点B的纵坐标为-1+3=2或-1-3=-4,∴B点的坐标为(-2,2)或(-2,-4).三、解答题18.ABC在网格中的位置如图所示,请根据下列要求解答:(1)过点C作AB的平行线l.(2)过点A作BC的垂线段,垂足为D.(3)将ABC先向下平移5格,再向右平移6格得到EFG(点A的对应点为点E,点B的对应点为点F,点C的对应点为点G).【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)平移AB,使它经过点C,则可得到直线l满足条件;(2)利用网格特点作AD⊥BC于D;(3)利用网格特点和平移的性质画图.【详解】(1)如图,直线l为所作;(2)如图,AD为所作;(3)如图,△EFG为所作.【点睛】本题考查了平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.19.某电器超市销售每台进价分别为160元、120元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周3台4台1200元第二周5台6台1900元(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?【答案】(1)分别为200元、150元;(2)A种型号电风扇37台时,采购金额不多于7500元【解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50−a)台,根据金额不多余7500元,列不等式求解.【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:341200561900x yx y+=⎧⎨+=⎩,解得:200{150xy==,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤3712.答:超市最多采购A 种型号电风扇37台.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.20.已知,点A ,点D 分别在y 轴正半轴和负半轴上,AB DE ∥.(1)如图1,若44m m =-+,BAD m OED ∠=∠,求CAD ∠的度数;(2)在BAO ∠和DEO ∠内作射线AM ,EN ,分别与过O 点的直线交于第一象限内的点M 和第三象限内的点N .①如图2,若AM ,EN 恰好分别平分BAO ∠和DEO ∠,求AMN ENM ∠-∠的值;②若1MAO BAM n ∠=∠,1NEO NED n∠=∠,当4060AMN ENM ︒<∠-∠<︒,则n 的取值范围是__________.【答案】(1)60CAD ∠=︒;(2)①45AMN ENM ∠-∠=︒;②425n << 【解析】(1)利用二次根式的性质求得m 的值,根据三角形内角和定理结合已知条件构建方程,再利用平行线的性质即可求解;(2)①过M 作MF ∥AB ,NG ∥AB ,根据角平分线的性质和平行线的性质,求得∠AMN-∠ENM = α – θ,再根据平行线的性质和三角形内角和定理即可求解;②设MAO α∠=,OEN θ∠=,则BAM n α∠=,NED n θ∠=,根据①的解法即可求得∠AMN-∠ENM=n 90 1n ︒+,再解不等式组即可求解. 【详解】(1)∵44m m =-44m m -=-, ∴4040m m -≥⎧⎨-≤⎩, 解得:4m =,∴∠BAD=4∠OED ,∵∠OED+∠ODE=90︒①,∠BAD+∠ODE=180︒,即4∠OED +∠ODE=180︒②,联立①②解得:∠OED=30︒,∠ODE=60︒,∵AB ∥DE ,∴∠CAD=∠ODE=60︒;(2)①∵AM 、EN 是∠BAO 、∠DEO 的平分线,∴设BAM MAO α∠=∠=,OEN NED θ∠=∠=,过M 作MF ∥AB ,NG ∥AB 分别交AD 于F ,G ,∵AB ∥DE ,∴AB ∥MF ∥NG ∥DE ,∴∠FMA=∠BAM=α,∠FMN=∠MNG ,∠GNE=∠NED=θ,∴∠AMN=∠FMA+∠FMN=α +∠FMN , ∠ENM=∠GNE +∠MNG =θ +∠FMN ,∴∠AMN-∠ENM= α +∠FMN- θ-∠FMN= α – θ;∵∠ODE+∠OED=∠ODE+2 θ =90︒,∵AB ∥DE ,∴∠BAD+∠ODE=180︒,即2α+∠ODE=180︒,∴2α –2?θ=90︒,∴∠AMN-∠ENM=α–θ=45︒; ②∵1MAO BAM n ∠=∠,1NEO NED n∠=∠, ∴设MAO α∠=,OEN θ∠=,则BAM n α∠=,NED n θ∠=,过M 作MF ∥AB ,NG ∥AB 分别交AD 于F ,G ,∵AB ∥DE ,∴AB ∥MF ∥NG ∥DE ,∴∠FMA=∠BAM=n α,∠FMN=∠MNG ,∠GNE=∠NED=n θ,∴∠AMN=∠FMA+∠FMN=n α +∠FMN ,∠ENM=∠GNE +∠MNG =n θ +∠FMN ,∴∠AMN-∠ENM=n α +∠FMN-n θ-∠FMN=n α –n θ=()–n αθ; ∵∠ODE+∠OED=∠ODE+()1n θ+ =90︒,∵AB ∥DE ,∴∠BAD+∠ODE=180︒,即()1n α++∠ODE=180︒,∴()1n α+–()1n θ+=90︒,即α–θ=901n ︒+, ∴∠AMN-∠ENM=()–n αθ=n 90 1n ︒+; ∵4060AMN ENM ︒<∠-∠<︒,∴n 9040601n ︒︒<<︒+, 解不等式n 90601n ︒<︒+,化简得:n 213n <+, 解得:2n <, 解不等式n 90401n ︒︒<+,化简得:n 419n >+, 解得:45n >, ∴n 的取值范围是425n <<. 【点睛】本题考查了角的计算,解不等式组,角平分线的定义以及n 等分角的性质,平行线的性质,三角形内角和定理,准确识图,理清图中各角度之间的关系,用方程的思想解答是解题的关键.21.如图,在平面直角坐标系中,点,的坐标分别为,,将线段先向上平移个单位长度,再向右平移个单位长度,得到线段,连接,,构成平行四边形. (1)请写出点的坐标为________,点的坐标为________,________;(2)点在轴上,且,求出点的坐标;(3)如图,点是线段上任意一个点(不与、重合),连接、,试探索、、之间的关系,并证明你的结论.【答案】(1)8;(2)或(3)【解析】(1)根据平移直接得到点C,D坐标,用面积公式计算;(2)设出Q的坐标,OQ=|m|,用=建立方程,解方程即可;(3)作出辅助线,平行线,根据两直线平行,内错角相等,求解即可.【详解】解:(1)∵线段先向上平移个单位长度,再向右平移个单位长度,得到线段,且,,∴,;∵,,∴;(2)∵点在轴上,设,∴,∴,∵,∴,∴或,∴或.(3)如图,∵线段是线段平移得到,∴, 作, ∴, ∴, ∵, ∴, ∴, ∴.【点睛】 此题主要考查了平移的性质,计算三角形面积的方法,平行线的判定和性质,解本题的关键用面积建立方程或计算,作出辅助线是解本题的难点.22.某体育用品商店老板到体育商场批发篮球、足球、排球共30个,得知该体育商场篮球、足球、排球平均每个36元,篮球比排球每个多10元,排球比足球每个少8元.(1) 求出这三种球每个各多少元;(2) 经决定,该老板批发了这三种球的任意两种共30个,共花费了1060元,问该老板可能买了哪两种球?各买了几个;(3) 该老板打算将每一种球各提价20元后,再进行打折销售,若排球、足球打八折,篮球打八五折,在(2)的情况下,为获得最大利润,他批发的一定是哪两种球?各买了几个?计算并说明理由.【答案】(1)篮球每只40元,足球38元,排球30元;(2)若买的是足球和排球则求得可以是买足球20,排球10只;若买的是篮球和排球则是篮球16只,排球14只;(3)买篮球16只,排球14只利润最大.【解析】(1)分别设篮球每只x 元,足球y ,排球z ,根据题意可得出三个二元一次不定方程,联立求解即可得出答案.(2)假设:①买的是篮球和足球,分别为a 只和b 只,根据题意可得出两个方程,求出解后可判断出是否符合题意,进而再用同样的方法判断其他的符合题意的情况;(3)分别对两种情况下的利润进行计算,然后比较利润的大小即可得出答案.【详解】(1)设篮球每只x 元,足球y ,排球z ,得36333108x y z x z y z ⎧++=⎪⎪-=⎨⎪-=⎪⎩; 解得x=40;y=38;z=30;故篮球每只40元,足球38元,排球30元;(2)假设:①买的是篮球和足球,分别为a 只和b 只,则3040381060a b a b +=⎧⎨+=⎩; 解得4070a b =-⎧⎨=⎩,则不可能是这种情况; 同理若买的是足球和排球则求得可以是买足球20,排球10只;若买的是篮球和排球则是篮球16只,排球14只;(3)对两种情况分别计算,若为足球和排球,即(38+20)×0.8×20+(30+20)0.8×10=1328(元); 若为篮球和排球,即(40+20)×0.85×16+(30+20)×0.8×14=1376(元),∴买篮球16只,排球14只利润最大.23.观察下列等式:221401-⨯=①; 223415-⨯=②; 225429-⨯=③……根据上述规律解决下列问题:(1)完成第四个等式: ;(2)猜想第n 个等式(用含n 的式子表示),并证明其正确性.【答案】(1)2274313-⨯= ;(2)第n 个等式()()()222141411n n n ---=-+,证明见解析.【解析】(1)根据题目中的几个等式可以写出第四个等式;(2)根据题目中等式的规律可得第n 个等式.再将整式的左边展开化简,使得化简后的结果等于等式右边即可证明结论正确.【详解】解:(1)由题目中的几个例子可得,第四个等式是:72-4×32=13,故答案为72-4×32=13;(2)第n 个等式是:(2n-1)2-4×(n-1)2=()411-+n ,证明:∵(2n-1)2-4×(n-1)2=4n 2-4n+1-4(n 2-2n+1)=4n 2-4n+1-4n 2+8n-4=4n-3=()411-+n ,∴(2n-1)2-4×(n-1)2=()411-+n 成立.【点睛】本题考查整式的混合运算、数字的变化,解题的关键是掌握整式的混合运算法则、发现题目中等式的变化规律,写出相应的等式.24.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题.(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000人,依据以上图表估计该校喜欢体育的人数约为多少?【答案】(1)200人;20人;(2)补图见解析;(3)240人.【解析】(1)调查人数为20÷10%=200,喜欢动画的比例为(1﹣46%﹣24%﹣10%)=20%,喜欢动画的人数为200×20%=40人;(2)补全图形:(3)该校喜欢体育的人数约有:1000×24%=240(人).25.已知如图,直线EF与AB、CD分别相交于点E、F.(1)如图1,若∠1=120°,∠2=60°,求证AB∥CD;(2)在(1)的情况下,若点P是平面内的一个动点,连结PE、PF,探索∠EPF、∠PEB、∠PFD三个角之间的关系;①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;请阅读下面的解答过程,并填空(理由或数学式)解:如图2,过点P作MN∥AB,则∠EPM=∠PEB_____.∵AB∥CD(已知),MN∥AB(作图)∴MN∥CD_____.∴∠MPF=∠PFD∴∠_____+∠_____=∠PEB+∠PFD(等式的性质)即∠EPF=∠PEB+∠PFD②当点P在图3的位置时,∠EPF、∠PEB、∠PFD三个角之间有何关系并证明.③当点P在图4的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系:_____.【答案】两直线平行,内错角相等如果两条直线都和第三条直线平行,那么这两条直线也互相平行∠EPM∠MPF∠EPF+∠PFD=∠PEB【解析】(1)根据对顶角相等可得∠BEF的度数,根据同旁内角互补,两直线平行,即可得出结论;(2)①过点P作MN∥AB,根据平行线的性质得∠EPM=∠PEB,且有MN∥CD,所以∠MPF=∠PFD,然后利用等式性质易得∠EPF=∠PEB+∠PFD.②③的解题方法与①一样,分别过点P作MN∥AB,然后利用平行线的性质得到三个角之间的关系.【详解】(1)∵∠1=120°,∴∠BEF=120°,又∵∠2=60°,∴∠2+∠BEF=180°,∴AB∥CD;(2)①如图2,过点P作MN∥AB,则∠EPM=∠PEB(两直线平行,内错角相等).∵AB∥CD(已知),MN∥AB(作图),∴MN∥CD(平行于同一条直线的两条直线互相平行).∴∠MPF=∠PFD,∴∠EPM+∠FPM=∠PEB+∠PFD(等式的性质),即∠EPF=∠PEB+∠PFD,故答案为两直线平行,内错角相等;平行于同一条直线的两条直线互相平行;∠EPM,∠MPF;②∠EPF+∠PEB+∠PFD=360°;证明:如图3,过作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠BEP+∠EPM=180°,∠DFP+∠FPM=180°,∴∠BEP+∠EPM+∠FPM+∠PFD=360°,即∠EPF+∠PEB+∠PFD=360°;③∠EPF+∠PFD=∠PEB.理由:如图4,过作PM∥AB,∵AB∥CD,MP∥AB,∴MP∥CD,∴∠PEB=∠MPE,∠PFD=∠MPF,∵∠EPF+∠FPM=∠MPE,∴∠EPF+∠PFD=∠PEB.【点睛】本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( ) A .0.432×10-5B .4.32×10-6C .4.32×10-7D .43.2×10-7【答案】B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,这里1<a <10,指数n 是由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解: 0.00000432=4.32×10-6,故选B .【点睛】本题考查科学记数法.2.若点P (a ,b )在第四象限,则点Q (﹣a ,b ﹣1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】因为点P (a ,b )在第四象限,可确定a 、b 的取值范围,从而可得-a ,b-1的符号,即可得出Q 所在的象限.【详解】解:∵点P (a ,b )在第四象限,∴a>0,b<0,∴-a<0,b-1<0,∴点Q (-a ,b-1)在第三象限.故选:C.【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.要使式子2x -有意义,则的取值范围是( )A .x 0>B .x 2≥-C .x 2≥D .x 2≤ 【答案】D【解析】根据二次根式被开方数必须是非负数的条件,要使2x -在有意义,必须2x 0x 2-≥⇒≤. 故选D.4.下列图中,∠1和∠2是对顶角的有( )个.A.1个B.2个C.3个D.4个【答案】A【解析】根据对顶角的定义,有公共顶点且两条边都互为反向延长线的两个角称为对顶角,进行判定即可解答.【详解】在第一幅图和第四幅图中,∠1与∠2有一条边不互为反向延长线,故不是对顶角;在第二幅图中,∠1与∠2没有公共顶点,故不是对顶角;在第三幅图中,∠1与∠2有公共顶点且两边互为反向延长线,故是对顶角.综上所述,是对顶角的图形只有1个.故答案为A.【点睛】此题考查对顶角的定义,解题关键在于掌握其定义.5.下列运算正确的等式是()A.(5-m)(5+m)=m2-25 B.(1-3m)(1+3m)=1-3m2C.(-4-3n)(-4+3n)= -9n2+16 D.(2ab-n)(2ab+n)=4ab2-n2【答案】C【解析】解:A.(5-m)(5+m)= 25-m2,所以此选项是错误的;B.(1-3m)(1+3m)=1-9m2,所以此选项是错误的;C.(-4-3n)(-4+3n)= -9n2+16,此选项是正确;D.(2ab-n)(2ab+n)=4a2b2-n2,所以此选项是错误的;故选C.6.下列不等式变形中,一定正确的是()A.若ac>bc,则a>b B.若a>b,则am2>bm2C.若ac2>bc2,则a>b D.若a>0,b>0,且11a b>,则a>b【答案】C【解析】A. 若ac>bc,则a>b,当c≤0时不确定,所以原变形错误; B. 若a>b,则am2>bm2,当m²=0时,am2=bm2,所以原变形错误;C. 若ac2>bc2,则a>b,ac2>bc2得c²>0,所以原变形正确; D.若a>0,b>0,且11a b>,则a<b,原变形错误,故选C.7.如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n 个等腰直角三角形的面积S n=()A .2nB .22n -C .12n +D .12n -【答案】B 【解析】根据已知的条件求出S 1、S 2的值,然后通过这两个面积的求解过程得出一般化规律,进而可得出S n 的表达式.【详解】解:根据直角三角形的面积公式,得S 1=12=2-1; 根据勾股定理,得:AB=2,则S 2=1=20;A 1B=2,则S 3=21,依此类推,发现:S n =2n-2,故选B.【点睛】本题考查了等腰直角三角形的判定与性质,关键是要先从简单的例子入手得出一般化的结论,然后根据得出的规律去求特定的值.8.如果A ∠的补角与A ∠的余角互补,那么2A ∠是( )A .锐角B .直角C .钝角D .以上三种都可能 【答案】B【解析】由题意可得A ∠的补角为180°-∠A ,A ∠的余角为90°-∠A ,再根据它们互补列出方程求出∠A ,即可解答.【详解】解:∵A ∠的补角为180°-∠A ,A ∠的余角为90°-∠A∴180°-∠A+(90°-∠A )=180∴2A ∠=90°故答案为B .【点睛】本题考查了余角、补角以及一元一次方程,正确表示出∠A 的余角和补角是解答本题的关键. 9.不等式组 24357x x >-⎧⎨-≤⎩的解集在数轴上可以表示为( ) A . B . C . D .【答案】B【解析】不等式2x>-4,解得x>-2;不等式357x -≤,解得4x ≤;所以不等式组24{357x x --≤>的解集为24x -<≤, 4取得到,所以在数轴上表示出来在4这点为实心,-2取不到,所以在数轴上表示出来在-2这点为空心,表示出来为选项中B 中的图形,故选B【点睛】本题考查不等式组,解答本题需要考生掌握不等式组的解法,会求不等式的解集,掌握数轴的概念和性质 10.如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°【答案】C 【解析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A 、∠AOD 与∠BOC 是对顶角,所以∠AOD=∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C 、∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C .【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.二、填空题题11.已知4360{270x y z x y z --=+-=,那么x y z x y z -+++的值等于_________. 【答案】13【解析】把z 看做已知数表示出x 与y ,代入原式计算即可得到结果.【详解】方程组整理得:43627{x y z x y z -=+=①②,②×4−①得:11y=22z ,即y=2z ,把y=2z 代入②得:x=3z ,则原式=321 323 z z zz z z-+=++.【点睛】本題考査三元一次方程組的解法,解题的关键是用含x的代数式表示y、z,然后再求解就容易了. 12.如图是具有2 000多年历史的古城扬州市区内的几个旅游景点分布示意图.已知竹西公园的位置坐标为(300,300)(小正方形的边长代表100 m长).则荷花池的坐标为________;平山堂的坐标为___________;汪氏小苑的坐标为___________.【答案】荷花池(-200,-300)平山堂(-100,300)小苑(200,-200)【解析】以竹西公园向左3个单位,向下3个单位为坐标原点建立平面直角坐标系,根据平面直角坐标系坐标的特点写出即可.【详解】解:竹西公园的位置坐标为(300,300)(小正方形的边长代表100 m长).∴竹西公园向左3个单位,向下3个单位为坐标原点建立平面直角坐标系,∴平面直角坐标系的原点在瘦西湖,∴荷花池(-200,-300),平山堂(-100,300),小苑(200,-200).故答案为:荷花池(-200,-300),平山堂(-100,300),小苑(200,-200).【点睛】本题考查了坐标确定位置,根据竹西公园的位置确定出坐标原点的位置是解题的关键.13.在平面直角坐标系中,经过点Q(1,-5)且垂直于y轴的直线可以表示为直线_______________.【答案】5y=-【解析】根据经过点Q(1,-5)且垂直于y轴的直线上任意点的纵坐标都为-5,即可得到答案.【详解】由题意得:经过点Q(1,-5)且垂直于y轴的直线可以表示为:直线5y=-.故答案是:5y=-.【点睛】本题主要考查平面直角坐标系中,与坐标轴平行的直线的解析式,掌握与x轴平行的直线解析式为y=a(a 为常数),是解题的关键.14.对某班组织的一次考试成绩进行统计,已知80.5~90.5 分这一组的频数是7,频率是0.2,那么该班级的人数是_____人.【答案】1【解析】试题分析:根据题意直接利用频数÷频率=总数进而得出答案.解:∵80.5~90.5分这一组的频数是7,频率是0.2,∴该班级的人数是:7÷0.2=1.故答案为1.考点:频数与频率.15.在平面直角坐标系xOy 中,对于平面内任意一点(x,y),规定以下两种变化:① f (x,y) = (-x,y) .如 f (1,2) = (-1,2) ;② g ( x,y)=(x, 2 - y).根据以上规定:(1)g (1,2)=(___________);(2) f (g (2,-1))=(___________)【答案】(1,0)(﹣2,3)【解析】(1)根据所给规定进行进行计算即可;(2)根据所给规定进行进行计算即可.【详解】解:(1)∵g(x,y)=(x,2﹣y)∴g(1,2)=(1,2﹣2)=(1,0)故答案为:(1,0)(2)∵g(2,﹣1)=(2,3)且f(x,y)=(﹣x,y)∴f(g(2,﹣1))=f(2,3)=(﹣2,3)故答案为:(﹣2,3)【点睛】此题主要考查了点的坐标,关键是正确理解题目意思.16.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为______.【答案】-15【解析】观察所求的式子以及所给的方程组,可知利用平方差公式进行求解即可得.。
2018-2019学年七年级下学期期末考试数学试卷含答案解析

20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
人教版2018--2019学年度第二学期七年级数学(下)期末考试卷及答案

人教版2018—2019学年度第二学期七年级数学(下)期末考试卷及答案(满分:120分答题时间:100分钟)一、选择题(本大题共10小题,每小题2分,共计20分,请将下列各题中A、B、C、D选项中唯一正确的答案代号填到本题前的表格内)1. 下列调查中,适合采用全面调查(普查)方式的是()A.对觅湖水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.节能灯厂家对一批节能灯管使用寿命的调查D.对某班50名学生视力情况的调查2. 平面直角坐标系中点(-2, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3. 下列各数中是无理数的是()A. 3.14B.√16C.23D.√64. 9的算术平方根是()A. ±√9B.3C.-3D.±3 5. 不等式组{6−3x<0x≤1+23x的解集在数轴上表示为()6.新区四月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86,则这七天空气质量变化情况最适合用哪种统计图描述()A.折线统计图B.扇形统计图C.条形统计图D.以上都不对7. 已知{x=−1y=2是二元一次方程组{3x+2y=mnx−y=1的解,则m-n的值是()A.1B.2C.3D.48.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“一”方向排列,如: P1 (O,0), P2 (O,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2),.. 根据这个规律,点P2017 的坐标为()A. (-504,-504)B.(-505,-504)C. (504, -504 )D.(-504,505 )9. 如图,AC⊥BC,AD⊥CD,AB=a,CD=b,则AC的取值范围()A.大于b B.小于a C.大于b且小于a D.无法确定10. 通过估算,估计√19的值应在( ) A. 2〜3之间B. 3〜4之间C. 4〜5之间D. 5〜6之间二、填空题(本题共4小题,每小题3分,共12分)11. 在平面直角坐标系中,当M(x,y)不是坐标轴上点时,定义M 的“影子点”为M’(yx ,- xy ),点P(-3,2)的“影子点”是点P ’,则点P ’的“影子点”P"的坐标为______;12.如图,在3×3的方格内,填写了一些单项式.已知图中各行、各列及对角线上三个单项式之和都相等,则x 的值应为______;13. 高斯符号[x]首次出现是在数学家高斯(CF.Gauss)的数学著作《算术研究》一书中.对于任意实数x,通常用[x]表示不超过x 的最大整数,如[2.9] =2.给出如下结论:① [-3] =-3,②[-2.9] =-2,③[0.9] =0, ④ [x] + [-x] =0. 以上结论中,你认为正确的有____.(填序号) 14. 计算|√2-√3|+2√2=________;三、本大题共两小题,每小题8分,满分16分)15.已知实数a+9的平方根是±5,2b -a 的立方根是-2,求式子√a -√b 的值。
山东省2018-2019年七年级下册期末数学试卷含答案

山东省2018-2019年七年级下册期末数学试卷含答案1. 9的平方根为()A. 3B. -3C. ±32. 在平面直角坐标系中,点(1,-3)在()A. 第一象限B. 第二象限C. 第三象限3. 下列调查方式,你认为最合适的是()A. 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B. 旅客上飞机前的安检,采用抽样调查方式C. 了解北京市居民日平均用水量,采用全面调查方式4. 如图,能判定EB∥AC的条件是()A. ∠C=∠ABEB. ∠A=∠ABEC. ∠C=∠ABD5. 课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(,)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A. (5,4)B. (4,5)C. (3,4)6. 若m>n,则下列不等式中成立的是()A. m+a<n+bB. ma<nbC. ma>na7. 在方程组中,如果是它的一个解,那么a,b的值是()A. a=4,b=0B. a=-4,b=0C. a=1,b=28. 如图,数轴上的A、B、C、D四点中,与数-5表示的点最接近的是()A. 点AB. 点BC. 点C9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵。
设男生有x人,女生有y人,根据题意,列方程组正确的是()A. 3x+2y=52x+y=20B. 2x+3y=52x+y=20C. 3x+2y=20x+y=52D. 2x+3y=2010. 关于x、y的二元一次方程组2x+y=ax-3y=b的解为(x,y)=(2,-2),则a,b的值分别是()A. a=-2,b=-8B. a=8,b=-2C. a=2,b=-815. 下面是一个按某种规律排列的数阵:1 2 34 5 67 8 n根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第n-2个数是3n-6。
(2) 解方程组:$\begin{cases}2x-3y=1 \\3x+4y=717. 解不等式组:$\begin{cases}x+2y<2 \\3x-4y \leq 5根据以上信息,解答下列问题:(1) 问这次被抽检的电动汽车共有几辆?并补全条形统计图;(1) 在图中画出$\triangle A'B'C'$;(2) 写出点$A'$、$B'$的坐标;(1) 求每辆$A$型车和$B$型车的售价各为多少元。
青岛七年级下册数学期末考试卷及答案

七年级数学试题(满分120 分)一、选择题(每小题 3 分,计24 分,请把各小题答案填到表格内)题号 1 2 3 4 5 6 7 8答案1.如图所示,下列条件中,不能判断l 1∥l 2 的是..A.∠1=∠3 B .∠2=∠3 C .∠4=∠5 D .∠2+∠4=180°2.为了了解某市 5 万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是A .某市 5 万名初中毕业生的中考数学成绩B .被抽取500名学生(第 1 题图)C.被抽取500名学生的数学成绩 D .5 万名初中毕业生3.下列计算中,正确的是A. 3 2x x x B .6 2 3a a a C . 3x3x x D .3 3 6x x x4.下列各式中,与 2(a 1) 相等的是A. 2 1a B.2 2 1a a C.2 2 1a a D .2 1a5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有A .4 个B .5 个C .6 个D .无数个6.下列语句不.正.确.的是A.能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等C.三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7.下列事件属于不确定事件的是A.太阳从东方升起 B .2010 年世博会在上海举行C.在标准大气压下,温度低于0 摄氏度时冰会融化D.某班级里有 2 人生日相同8.请仔细观察用直.尺.和.圆.规.作一个角∠A′O′B′等于已知角∠AOB的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A′O′B′=∠AOB的依据是A.SAS B .ASA C.AAS D .SSS二、填空题(每小题 3 分,计24 分)(第8 题图)9.生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为cm .10.将方程2x+y=25 写成用含x 的代数式表示y 的形式,则y= .11.如图,AB∥CD,∠1=110°,∠ECD=7°0,∠E的大小是°.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是°.13.掷一枚硬币30 次,有12 次正面朝上,则正面朝上的频率为.14.不透明的袋子中装有 4 个红球、3 个黄球和 5 个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.15.下表是自18 世纪以来一些统计学家进行抛硬币试验所得的数据:(第16 题图)试验者试验次数n 正面朝上的次数m 正面朝上的频率布丰4040 2048 0.5069 m n德·摩根4092 2048 0.5005 费勤10000 4979 0.4979那么估计抛硬币正面朝上的概率的估计值是. A 16.如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如P果要得到O P=O P′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠O P′C;③∠OCP=∠OCP′;④PP′⊥O C.请你写出一个正确结OCP′果的序号:.三、解答题(计72 分)B 17.( 本题共8 分) 如图,方格纸中的△ABC的三个顶点分别在小正方形的顶(第16 题图)点( 格点) 上,称为格点三角形.请在方格纸上按下列要求画图.在图①中画出与△ABC全等且有一个公共顶点的格点△ A B C ;在图②中画出与△ABC全等且有一条公共边的格点△ A B C .18.计算或化简:(每小题 4 分,本题共8 分)(1)( —3) 0+(+ 2009 × (+5) 2010 (2)2(x+4) (x-4)19.分解因式:(每小题 4 分,本题共8 分)3 (2)-2x+x(1)x x2+120.解方程组:(每小题 5 分,本题共10 分)(1)x4x1503y2y300(2)x5%yx30053%y 25% 30021.(本题共8 分)已知关于x、y 的方程组a xbxb yay37的解是xy21 ,求a b 的值.CE22.(本题共9 分)如图,AB=EB,BC=BF,FABE CBF .EF和AC相等吗?为什么?AB(第22 题图)23.(本题9 分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费金额/ 元 5 50(1)请将表格补充完整;(2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12 分)上海世博会会期为2010 年5 月1 日至2010 年10 月31 日。
2018-2019学年山东省青岛版数学七年级下第二学期期末试题

青岛版数学七年级下册期末考试题考试时间:120分钟分值:120分班级:姓名:分数:一、选择题(本大题共14小题,共42.0分)1.如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A. B.C. D.2.将一直角三角板与两边平行的纸条如图放置.若∠1=60∘,则∠2的度数为( )A. 60∘B. 45∘C. 50∘D. 30∘3.下列说法正确的是()(1)如果∠1+∠2+∠3=180∘,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90∘,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A. 1个B. 2个C. 3个D. 4个4.时钟显示为8:20时,时针与分针所夹的角是()A. 130∘B. 120∘C. 110∘D. 100∘5. 如图,下列条件:①∠1=∠3,②∠2+∠4=180∘,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判断直线l 1//l 2的有( )A. 5个B. 4个C. 3个D. 2个6. 某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?设买了x 张甲种票,y 张乙种票,则所列方程组正确的是( )A. {x +y =3518x +24y =750B. {x +y =3524x +18y =750C. {x −y =3524x −18y =750D. {x −y =3518x −24y =750 7. 方程(m −2016)x |m|−2015+(n +4)y |n|−3=2018是关于x 、y 的二元一次方程,则( )A. m =±2016;n =±4B. m =2016,n =4C. m =−2016,n =−4D. m =−2016,n =48. 已知x 2−2(m −3)x +16是一个完全平方式,则m 的值是( )A. −7B. 1C. −7或1D. 7或−1 9. 计算(23)2015×(32)2016的结果是( )A. 23B. −23C. 32D. −32 10. 下列运算正确的是( )A. a 2+a 2=a 4B. (−b 2)3=−b 6C. 2x ⋅2x 2=2x 3D. (m −n)2=m 2−n 211. 将下列多项式因式分解,结果中不含有因式a +1的是( )A. a 2−1B. a 2+aC. a 2+a −2D. (a +2)2−2(a +2)+112. 若正多边形的一个外角是40∘,则这个正多边形是( )A. 正七边形B. 正八边形C. 正九边形D. 正十边形13. 已知点P(0,m)在y 轴的负半轴上,则点M(−m,−m +1)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限14. 已知点平面内不同的两点A(a +2,4)和B(3,2a +2)到x 轴的距离相等,则a 的值为()A. −3B. −5C. 1或−3D. 1或−5二、填空题(本大题共6小题,共18.0分)15. 如图,直线AB//CD ,∠C =44∘,∠E 为直角,则∠1=______.16. 若x m =2,x n =3,则x m+2n 的值为______.17. 已知a +1a =5,则a 2+1a 2的值是______.18. 因式分解:a 3−a =______.19. 已知x +y =10,xy =16,则x 2y +xy 2的值为______ .20. 如图,一艘船在A 处遇险后向相距50海里位于B 处的救生船报警.用方向和距离描述遇险船相对于救生船的位置______ .三、计算题(本大题共3小题,共18.0分)21. 解方程组:(1){y −3x =1x+2y=9(2){x +4y =14x−34−y−33=112.22. 计算(1)(m 2)n ⋅(mn)3÷m n−2(2)|−2|+(π−3)0−(1)−2+(−1)2016.323.因式分解(1)4a2−25b2(2)−3x3y2+6x2y3−3xy4(3)3x(a−b)−6y(b−a)(4)(x2+4)2−16x2.四、解答题(本大题共4小题,共32.0分)24.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72∘,OF⊥CD,垂足为O,求:(1)求∠BOE的度数.(2)求∠EOF的度数.25.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB;(2)若CE平分∠ACB,且∠1=80∘,∠3=45∘,求∠AFE的度数.26.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?27.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG//BC的理由;(2)如果∠B=54∘,且∠ACD=35∘,求∠3的度数.阳谷县实验中学侯典胜。
2018-2019学年山东省青岛七中七年级(下)期末数学试卷

2018-2019学年山东省青岛七中七年级(下)期末数学试卷一.选择题(共8小题)1.下列计算正确的是()A.x2+x3=2x5B.x2•x3=x6C.(﹣x3)2=﹣x6D.x6÷x3=x3 2.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6 3.下列各式中,不能用平方差公式计算的是()A.(﹣x﹣y)(x﹣y)B.(﹣x+y)(﹣x﹣y)C.(x+y)(﹣x+y)D.(x﹣y)(﹣x+y)4.计算(a﹣b)2的结果是()A.a2﹣b2B.a2﹣2ab+b2C.a2+2ab﹣b2D.a2+2ab+b25.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°6.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A.44°B.25°C.26°D.27°7.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为()x(kg)0123456y(cm)1212.51313.51414.515A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+128.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.二.填空题(共8小题)9.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为.10.下列正确说法的是.①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直.11.已知(9n)2=38,则n=.12.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm3.则R=.13.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A、B 两岛的视角∠ACB=度.14.若多项式a2+2ka+1是一个完全平方式,则k的值是.15.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=.16.如图,已知AB∥CD,则∠A、∠C、∠P的关系为.三.解答题(共8小题)17.如图,在小明的一张地图上,有A、B、C三个城市,但是图上城市C已被墨迹污染,只知道∠BAC=∠α,∠ABC=∠β,你能用尺规帮他在图中确定C城市的具体位置吗?18.计算题.(1)(﹣2003)0÷(﹣2)﹣3•(﹣)﹣2﹣4;(2)(x+3)2﹣(x+2)(x﹣2);(3)2002﹣202×198;(4)(2x﹣y+3)(2x+y﹣3);(5)[(2x+y)2﹣y(y+4x)﹣8xy]÷(﹣2x).其中x=﹣2,y=1.19.阅读下面的推理过程,在括号内填上推理的依据,如图:因为∠1+∠2=180°,∠2+∠4=180°(已知)所以∠1=∠4,()所以a∥c.()又因为∠2+∠3=180°(已知)∠3=∠6()所以∠2+∠6=180°,()所以a∥b.()所以b∥c.()20.已知(a+b)2=5,(a﹣b)2=3,求下列式子的值:(1)a2+b2;(2)4ab.21.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.22.小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?23.如图1,点A、B在直线l1上,点C、D在直线l2上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断l1与l2的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.24.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1:这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2 =a2+2ab+b2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D 就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接写出结论即可,不必写出解题过程)。
2018-2019学年七年级下期末考试数学试卷及答案

2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。