函数与导数大题答案
函数与导数例高考题汇编(含答案)

函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。
2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。
函数与导数大题训练试题+答案

函数与导数大题训练1已知函数.23)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值;(II )若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;(III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围.2. 设.2)(ln )()(2)(--==--=epqe e g x x f x f x q px x g ,且,其中(e 为自然对数的底数)(Ⅰ)求p 与q 的关系;(Ⅱ)若)(x g 在其定义域内为单调函数,求p 的取值范围; (Ⅲ)证明:①)1(,1)(->-≤x x x f②).2,()1(412ln 33ln 22ln 2222≥∈+--<+++n N n n n n nn Λ3.设函数a x x a x f +++-=1)(2,]1,0(∈x ,+∈R a . (1)若)(x f 在]1,0(上是增函数,求a 的取值范围; (2)求)(x f 在]1,0(上的最大值.答案1解:(I )23)13)(1(33323)(+-+-=-+='x x x x x x f , 令1310)(-==='x x x f 或得(舍去))(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时单调递减. ……………………………………3分 ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值 ……………………………4分(II )由0]3)(ln[|ln |>+'+-x x f x a 得xx a x x a 323lnln 323lnln ++<+->或, …………① ……………………5分 设332ln 323ln ln )(2x x x x x h +=+-=,xxx x x g 323ln323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g Θ, 03262)62(31323)(22>++=+⋅+='xx xx x x x h ,………………………………6分 ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln ),61()31(<><>a a g a h a 或即或 ………………………8分(III )由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;当]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减 ……………………10分 而)1()37(),0()37(ϕϕϕϕ>>, ]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+=>-+-+=≤-=0215ln )1(067267)72ln()37(02ln )0(b b b ϕϕϕ .37267)72ln(215ln +-+<≤+∴b …………… ……12分 2. 解:(I )由题意:,ln 2)(x x q px x g --= 又2)(--=eqpe e g 12 2 ()()011()()0 0,....... ........3q p pe qe p q e p q e e ep q e e p q e e∴--=--∴-+-=-+=+≠∴=而分(Ⅱ)由(I )知:,ln 2)(x xqpx x g --= 分恒成立或满足在只需为单调函数在要使令4..................................................................0)(0)(:),0()(,),0()(,2)(22)(2222'≤≥+∞+∞+-=+-=-+=x h x h x h x g p x px x h x px px x x p p x g ①当p=0时,h (x )=-2x'220 ()0,()0,()(0,), 0...... .. (5x)x h x g x x g x p >∴<∴=-<∴+∞∴=Q 在单调递减适合题意分②当p px p x px x h 1,2)(,02=+-=>其对称轴为图象为开口向上抛物线时∈(0,+∞)'min 11() 0,1 ()0,()0()(0,), 1................................................7h x p p p h x g x p pg x p ∴=--≥≥≥≥∴+∞∴≥只需即时在单调递增适合题意分③当p <0时,px p x px x h 1,2)(,2=+-=其对称轴为图象为开口向下抛物线时 ),0(+∞∉ 只需h (x )≤0,即p ≤0时h (x )≤0在(0,+∞)恒成立.0),0()(0)('适合题意单调递减在<∴+∞∴<∴p x g x g综上①②③可得,p ≥1或p ≤0(Ⅲ)证明:①即证)1(0)1ln(->≤-+x x x 设xxx k x x x k +-=-+=1)(,)1ln()('''(1,0)()0,() (0,)()0,()0(), ()(0)0x k x k x x k x k x x k x k x k ∴∈->∴∴∈+∞<∴∴=∴≤=时为单调递增函数时为单调递减函数为的极大值点 即x x x x ≤+∴≤-+)1ln(,0)1ln(…………………………………………11分 ②由①知,01,)1ln(>+≤+x x x 又 设1ln 0,1-≤∴>+=t t t x t 则22*2222222222222222ln 11ln 11,2, ln 1, 1, (1),2ln 2ln 3ln 1111...(11...1)2232311111111[(1)(...)][(1)...]222334(1)2311111[1(22334n n n n N n n n n n n n nn n nn n n n n n -∈≥∴≤-∴≤=-∴≤-∴+++≤-+-++-=--+++<--+++⨯⨯+=---+-Q 11...]1n n ++-+211121[1()]2214(1)n n n n n --=---=++∴结论成立…… ………14 分3.当]1,0(∈x 时,11)(2++-='x x ax f .(1)要使)(x f 在]1,0(∈x 上是增函数,11)(2++-='x x a x f 0≥在]1,0(上恒成立,即22111xx x a +=+≤在]1,0(上恒成立. 而211x+在]1,0(上的最小值为2,又+∈R a ,∴20≤<a . (2)ⅰ)20≤<a 时,)(x f 在]1,0(上是增函数,1)21()1()]([max +-==a f x f .ⅱ)2>a 时,0)(='x f ,得112-=a x ∈]1,0(. Θ当1102-<<a x 时,0)(>'x f ;当1112≤<-x a 时,0)(<'x f , ∴1)11()]([22max --=-=a a a f x f .1.已知()x f 定义在R 上的函数,对于任意的实数a ,b 都有()()()a bf b af ab f +=,且()12=f Ⅰ)求⎪⎭⎫ ⎝⎛21f 的值;(Ⅱ)求()n f -2的解析式(*∈N n )2.已知函数f (x )=ln (e x +a )(a 为常数)是实数R 上的奇函数,函数g (x )=λf(x)+sinx 是区间[-1,1]上的减函数。
高中数学函数与导数练习题及参考答案

高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。
解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。
函数与导数习题及答案

函数与导数 一、选择题1.已知f(x)=xln x ,若00',2)(x x f 则=等于( )A .2eB .eC.ln 22D .ln 22、设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .33.若函数c bx ax x f ++=24)(满足f′(1)=2,则f′(-1)等于( )A .-1B .-2C .2D .04.设函数f (x )=ax 3+2,若f ′(-1)=3,则a 等于( ) A .-1 B.12 C .1 D.135.设f (x )为可导函数,且lim h →∞ f (3)-f (3+h )2h=5,则f ′(3)等于( )A .5B .10C .-5D .-106.曲线y =4x -x 3在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =7x +2 C .y =x -4D .y =x -2 7.在曲线y =x 2上切线倾斜角为π4的点是( ) A .(0,0) B .(2,4) C .(14,116)D .(12,14)8.设曲线y =1+cos x sin x 在点(π2,1)处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1 B.12 C .-2D .29.已知f (x )=12x 2-cos x ,]1,1[-∈x ,则导函数f ′(x )是( )A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数10.已知曲线y=x24-3ln x的一条切线的斜率为-12,则切点的横坐标为( )A.3 B.2 C.1 D.1 211.设函数f(x)=-2x1+x2,则f(x)( )A.在(-∞,+∞)内单调递增B.在(-∞,+∞)内单调递减C.在(-1,1)内单调递减,其余区间单调递增D.在(-1,1)内单调递增,其余区间单调递减12.如图所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是( )A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(-3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(-3,2)上是单调函数13.已知函数f(x)=mx3+3(m-1)x2-m2+1(m>0)的单调递减区间是(0,4),则m 等于( )A.3 B.13C.2 D.1214.函数f(x)=12x2-ln x的单调递减区间是( )A.(-1,1] B.(0,1] C.[1,+∞) D.(0,+∞)15.若f(x)是定义在R上的可导函数,且对任意x∈R,满足f(x)+f′(x)>0,则对任意实数a,b( )A.a>b⇔e a f(b)>e b f(a) B.a>b⇔e a f(b)<e b f(a)C.a>b⇔e a f(a)<e b f(b) D.a>b⇔e a f(a)>e b f(b)16.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1)D .(-∞,+∞)17.已知函数f (x )的定义域为(a ,b ),导函数f ′(x )在(a ,b )上的图象如图所示,则函数f (x )在(a ,b )上的极大值点的个数为( ) A .1 B .2 C .3D .418.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b 等于( ) A .-1 B .0 C .1 D .219.已知定义在R 上的奇函数f (x ),设其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值范围是( )A .(-1,2)B .(-1,12)C .(12,2)D .(-2,1)20.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角α为( ) A.π4 B .0 C.3π4D .1 21.已知点A (1,2)在函数f (x )=ax 3的图象上,则过点A 的曲线C :y =f (x )的切线方程是( ) A .6x -y -4=0 B .x -4y +7=0C .6x -y -4=0或x -4y +7=0D .6x -y -4=0或3x -2y +1=022.若函数f (x )=13x 3+x 2-23在区间(a ,a +5)内存在最小值,则实数a 的取值范围是( ) A .[-5,0) B .(-5,0) C .[-3,0)D .(-3,0)23.若函数y =x 3-3ax +a 在(1,2)内有极小值,则实数a 的取值范围是( ) A .1<a <2 B .1<a <4 C .2<a <4D .a >4或a <124.已知函数f (x )=x 3+ax 2+x +2 (a >0)的极大值点和极小值点都在区间(-1,1)内,则实数a 的取值范围是( ) A .(0,2] B .(0,2) C .[3,2)D .(3,2)25.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(1,+∞) C .(-∞,-2)D .(-∞,-1)26.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98]C .[-6,-2]D .[-4,-3]27.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .228.曲线y =ln x 在x =3处的切线的倾斜角为( ) A.π6 B.π4 C.π3 D.π229.曲线f (x )=x 3+x -2在点P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(2,8)或(-1,-4)D .(1,0)或(-1,-4)30.函数f (x )=12x 2-ln x 的最小值为( )A.12B .1C .-2D .3 31.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =( )A .1 B.12C .0D .-132.函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图像大致是( )A B C D33.定义域为R 的函数f (x ),满足f (0)=1,f ′(x )<f (x )+1,则不等式f (x )+1<2e x 的解集为( )A .{x ∈R |x >1}B .{x ∈R |0<x <1}C .{x ∈R |x <0}D .{x ∈R |x >0}34.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在区间[-1,1]上是减函数,则a 的取值范围是( )A .0<a <34 B.12<a <34 C .a ≥34 D .0<a <1235.设1<x <2,则 ln x x ,⎝⎛⎭⎪⎫ln x x 2,ln x 2x 2的大小关系是( ) A.⎝ ⎛⎭⎪⎫ln x x 2<ln x x <ln x2x 2 B.ln x x <⎝⎛⎭⎪⎫ln x x 2<ln x2x 2 C.⎝ ⎛⎭⎪⎫ln x x 2<ln x 2x 2<ln xxD.ln x 2x 2<⎝ ⎛⎭⎪⎫ln x x 2<ln xx36.函数214y x x=+的单调增区间为( ) A .(0,)+∞B .1(,)2+∞C .(,1)-∞-D .1(,)2-∞-37.如果函数()y f x =的图象如左下图,那么导函数'()y f x =的图象可能是( )38.已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A .eB .e -C .1eD .1e-39.函数f (x )=ax 3-x 在R 上为减函数,则( ) A .0a ≤B .1a <C .0a <D .1a ≤40.函数()f x 的定义域为R ,(1)2f -=,对任意x R ∈,'()2f x >,则()24f x x >+的解集为( )A .(1,1)-B .(1,)-+∞C .(,1)-∞-D .(,)-∞+∞41.已知函数32()(6)1f x x ax a x =++++有极大值和极小值,则实数a 的取值范围是( ) A .(1,2)- B .(,3)(6,)-∞-+∞U C .(3,6)-D .(,1)(2,)-∞-+∞U42.函数2ln xy x=的极小值为( )A .24e B .0 C .2eD .143.函数,[0,4]x y xe x -=∈的最小值为( ) A .0B .1eC .44e D .22e 44.设直线x t =与函数2()f x x =,()ln g x x =的图象分别交于点,M N ,则当||MN 达到最小时t 的值为( ) A .1B .12C .5 D .2 45.设函数2()(,,)f x ax bx c a b c =++∈R .若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为()y f x =的图象是( )二、填空题1.曲线y =ln x -1在x =1处的切线方程为____________.2.已知函数3()3f x x ax a =--在(0,1)内有最小值,则a 的取值范围是___________. 3.若曲线5()ln f x ax x =+存在垂直于y 轴的切线,则实数a 的取值范围是________.4.已知直线1y x =+与曲线ln()y x a =+相切,则a 的值为________.5. 已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.6.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________.7.设函数f(x)=(x2+2x-2)e x(x∈R),则f(x)的单调递减区间是________.) 8.已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.9.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是____________.10.设函数f(x)=ax+1x+b(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.则函数f(x)的解析式为____________.11.已知函数f(x)=ln x-f′(-1)x2+3x-4,则f′(1)=________.12.已知曲线y=13x3上一点P(2,83),则过点P的切线方程为____________________________________.13.已知定义在区间(-π,π)上的函数f(x)=x sin x+cos x,则f(x)的单调递增区间是________________.14.已知函数f(x)=x2+3x-2ln x,则函数f(x)的单调递减区间为__________.15.已知函数f(x)=12x2-2ax-a ln x在(1,2)上单调递减,则a的取值范围是________.16.设函数y=f(x),x∈R的导函数为f′(x),且f(x)=f(-x),f′(x)<f(x).则下列三个数:e f(2),f(3),e2f(-1)从小到大依次排列为________________.17.曲线y=x(x+1)(2-x)有两条平行于直线y=x的切线,则两切线之间的距离是________.18.已知函数f(x)=x ln k-k ln x(k>1)的图象不经过第四象限,则函数g(x)=f(x)+k的值域为________.19.若函数f(x)=ln x+ax存在与直线2x-y=0平行的切线,则实数a的取值范围是________________.20.函数f(x)=ax-cos x,x∈[π4,π3],若∀x1,x2∈[π4,π3],x1≠x2,f(x2)-f(x1)x2-x1<0,则实数a的取值范围是________.21.若f (x )=13x 3-ax 2+x 在R 上不是单调函数,则a 的取值范围是________________.22.已知函数f (x )=e x1+ax 2(a >0),若f (x )为R 上的单调函数,则实数a 的取值范围是________.23.函数f (x )=2ln x +x 2在点x =1处的切线方程是________.24.已知函数f (x )=x 3+ax 2+bx +c ,若f (1)=0,f ′(1)=0,但x =1不是函数f (x )的极值点,则abc 的值为________. 25.已知函数ln ln ()a xf x x+=在[1,)+∞上为减函数,则实数a 的取值范围为___________. 三、解答题1.已知函数2()(2),(,)x f x x ax e x a R =++∈.(Ⅰ)当0a =时,求函数()f x 的图像在点(1,(1))A f 处的切线方程; (Ⅱ)若()f x 在R 上单调,求a 的取值范围; (Ⅲ)当52a =-时,求函数()f x 的极小值.2.已知函数f (x )=ln 2x -kx 在定义域内单调递减,求实数k 的取值范围.3.已知函数f (x )=(x +1)2(x -2),当x ∈[a ,a +2]时,f (x )的最大值为0,求实数a 的取值.4.已知x=0是函数f(x)=x3+bx2+cx的一个极值点,f(x)的图像经过点A(3,0).设f(x)在其图像上不同两点P(x1,y1),Q(x2,y2)处的切线分别为l1,l2.当l1∥l2时,求证x1+x2为定值.5.已知函数f(x)=ax2-2x+ln x(a∈R).若函数f(x)有两个极值点,求a的取值范围,并说明f(x)的极小值小于-3 2.6.设三次函数f(x)=ax3+bx2+cx+d(a<b<c),在x=1处取得极值,其图像在x =m处的切线的斜率为-3a.(1)求证:0≤ba<1;(2)若函数f(x)在区间[s,t]上单调递增,求|s-t|的取值范围.7.已知函数f(x)=e x2-1e x-ax(a∈R).(1)当a=32时,求函数f(x)的单调区间;(2)若函数f(x)在[-1,1]上为单调函数,求实数a的取值范围.8.若x0是函数y=f(x)的极值点,同时也是其导函数y=f′(x)的极值点,则称x0是函数y=f(x)的“致点”.(1)已知a>0,求函数f(x)=(x2+ax+1)e x的极值和单调区间;(2)函数f(x)=(x2+ax+1)e x是否有“致点”?若有,求出“致点”;若没有,试说明理由.9.设函数f(x)=(x-1)e x-kx2.(1)当k=1时,求函数f(x)的单调区间;(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.10.已知函数f(x)=ax3+bx+c在x=2处取得极值c-16.(1)求a,b的值;(2)若f(x)有极大值28,求f(x)在[-3,3]上的最小值.11.已知函数f(x)=x3+bx2+cx的图象在点(1,f(1))处的切线方程为6x-2y-1=0,f′(x)为f(x)的导函数,g(x)=a e x(a,b,c∈R,e为自然对数的底数).(1)求b,c的值;(2)若∃x0∈(0,2],使g(x0)=f′(x0)成立,求a的取值范围.12.(2015·南平质检)已知函数f (x )=sin x ,g (x )=mx -x 36(m 为实数). (1)求曲线y =f (x )在点P (π4,f (π4))处的切线方程; (2)求函数g (x )的单调递减区间;(3)若m =1,证明:当x >0时,f (x )<g (x )+x 36.13.(2015·北京)设函数f (x )=x 22-k ln x ,k >0. (1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1, e ]上仅有一个零点.14.已知函数f (x )=sin x +cos x ,f ′(x )是f (x )的导函数. (1)求函数F (x )=f (x )f ′(x )+(f (x ))2的最大值和最小正周期; (2)若f (x )=2f ′(x ),求1+sin 2x cos 2x -sin x cos x 的值.15.已知函数f (x )=ax -e x (a >0). (1)若a =12,求函数f (x )的单调区间; (2)当1≤a ≤1+e 时,求证:f (x )≤x .16.已知函数f (x )=ax +ln x ,a ∈R , (1)求f (x )的单调区间;(2)设g (x )=x 2-2x +1,若对任意x 1∈(0,+∞),总存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.17.(2015·陕西)设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎝ ⎛⎭⎪⎫0,23内有且仅有一个零点(记为a n ),且0<a n -12<13⎝ ⎛⎭⎪⎫23n .18.(2015·山东济宁育才中学上学期期中)已知a ∈R ,函数f (x )=12ax 2-ln x . (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线的斜率; (2)讨论f (x )的单调性;(3)是否存在实数a ,使得方程f (x )=2有两个不等的实数根?若存在,求出a 的取值范围;若不存在,请说明理由.19.已知函数f(x)=ln x-ax2+(a-2)x.(1)若f(x)在x=1处取得极值,求a的值;(2)求函数y=f(x)在[a2,a]上的最大值.20.已知函数f(x)=e x-ax-1(a∈R).(1)求函数f(x)的单调区间.(2)函数F(x)=f(x)-x ln x在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由.(3)若g(x)=ln(e x-1)-ln x,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取值范围.21.已知函数f(x)=e x-a2x2e|x|.(1)若f(x)在[0,+∞)上是增函数,求实数a的取值范围;(2)证明:当a≥1时,不等式f(x)≤x+1对x∈R恒成立;(3)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得f(x0)>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.22.已知函数f(x)=x-ln x-1.(1)求曲线y=f(x)在x=2处的切线方程;(2)若x∈(0,+∞)时,f(x)≥ax-2恒成立,求实数a的取值范围.23.已知函数f(x)=x2-3x+a ln x(a>0).(1)若a=1,求函数f(x)的单调区间和极值;(2)设函数f(x)图像上任意一点处的切线l的斜率为k,当k的最小值为1时,求此时切线l的方程.24.设函数f (x )=p ⎝ ⎛⎭⎪⎫x -1x -2ln x ,g (x )=2e x (p >1,e 是自然对数的底数).(1)若对任意x ∈[2,e],不等式f (x )>g (x )恒成立,求p 的取值范围;(2)若对任意x 1∈[2,e],总存在x 2∈[2,e],使不等式f (x 1)>g (x 2)成立,求p 的取值范围.25.已知函数f (x )=1+ln xx .(1)若函数f (x )在区间⎝ ⎛⎭⎪⎫2a -1,a +14内有极值,求实数a 的取值范围;(2)当x ≥1时,不等式f (x )≥kx +1恒成立,求实数k 的取值范围;(3)求证:[(n +1)!]2>(n +1)e n -2+2n +1.(n ∈N *,e 为自然对数的底数)26.已知函数f (x )=(2-a )(x -1)-2ln x ,g (x )=e x -x +1.(a 为常数,e 为自然对数的底数)(1)当a =1时,求f (x )的单调区间;(2)若函数f (x )在区间⎝ ⎛⎭⎪⎫0,12上无零点,求a 的最小值;(3)若对任意给定的x 0∈(0,1],在(0,e]上总存在两个不同的x i (i =1,2),使得f (x i )=g (x 0)成立,求a 的取值范围.27.设a ∈R ,函数2()()e x f x x ax a =--.(1)若1a =,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)求函数()f x 在[2,2]-上的最小值.28.已知函数3()1f x x ax =--.(Ⅰ)若()f x 在(,)-∞+∞上单调递增,求实数a 的取值范围;(Ⅱ)是否存在实数a ,使()f x 在(1,1)-上单调递减?若存在,求出a 的取值范围;若不存在试说明理由.29.已知函数()ln 3()f x a x ax a =--∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为45o ,对于任意的[1,2]t ∈,函数32()['()]2mg x x x f x =++在区间(,3)t 上总不是单调函数,求m 的取值范围.30.已知函数()()x f x x k e =-.(Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.31.已知函数2()ln(1)(1)f x a x x =+++在1x =处有极值. (Ⅰ)求实数a 值;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)令()'()g x f x =,若曲线()g x 在(1,(1))g 处的切线与两坐标轴分别交于,A B 两点(O 为坐标原点),求AOB ∆的面积.32.已知函数()ln(21)1f x a x bx =+++.(Ⅰ)若函数()y f x =在1x =处取得极值,且曲线()y f x =在点(0,(0))f 处的切线与直线230x y +-=平行,求a 的值;(Ⅱ)若12b =,试讨论函数()y f x =的单调性.33.已知函数2()1x af x x +=+(其中a R ∈).(Ⅰ)若函数()f x 在点(1,(1))f 处的切线为12y x b =+,求实数,a b 的值; (Ⅱ)求函数()f x 的单调区间.34.已知函数()ln a f x x x=+.(Ⅰ)当0a <时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在[1,]e 上的最小值是32,求a 的值.35.已知函数()2ln pf x px x x=--. (Ⅰ)若2p =,求曲线()f x 在点(1,(1))f 处的切线方程;(Ⅱ)若函数()f x 在其定义域内为增函数,求正实数p 的取值范围.36.已知函数()32331f x ax x a=-+-(R a ∈,且0)a ≠,求()f x '及函数()f x 的极大值与极小值.37.已知函数1()ln f x a x x=-,a ∈R .(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,求a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)当1a =,且2x ≥时,证明:(1)25f x x -≤-.38.已知函数()ln a xf x x x-=+,其中a 为大于零的常数. (Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线与直线1-2y x =平行,求a 的值; (Ⅱ)求函数()f x 在区间[1,2]上的最小值.39.已知函数22()ln axf x x e=-(a ∈R ,e 为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0,)()P t t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x 和22212(,())()P x f x x x ≠,求证:120x x +=.一、选择题1-5 BDBCD 6-10 DDADB 11-15 CABBD 16-20 BBCAA21-25 DCBDC 26-30 CBADA 31-35 BADCA 36-40 BACAB 41-45 BBADD 二、填空题1、x -y -2=02、(0,1)3、(-∞,0)4、25、86、a =37、(-4,0) 8、a =8 9、(-∞,-1)∪(0,1) 10、f (x )=x +1x -111、a =3. 12、[45,+∞) 13、(-π,-π2]和[0,π2] 14、.⎝⎛⎭⎪⎫0,12 15、12x -3y -16=0或3x -3y +2=0 16、f (3)<e f (2)<e 2f (-1) 17、16227 18、[e ,+∞) 19、(-∞,2-1e )∪(2-1e,2) 20、(-∞,-1)∪(1,+∞) 21、(-∞,-32] 22、[e ,+∞) 23、4x -y -3=0 24、9 25、(0,1] 三、解答题1、解:2()[(2)2]x f x e x a x a '=++++(Ⅰ)当a=0时,2()(2),x f x x e =+2()(22)x f x e x x '=++,(1)3f e =,(1)5f e '=,∴函数f (x )的图像在点A (1,f (1))处的切线方程为y-3e=5e (x-1),即5ex-y-2e=0(Ⅱ)2()[(2)2]x f x e x a x a '=++++,考虑到0x e >恒成立且2x 系数为正,∴f (x )在R 上单调等价于 2(2)20x a x a ++++≥恒成立. ∴(a+2)2-4(a+2)≤0,∴-2≤a ≤2 , 即a 的取值范围是[-2,2], (若得a 的取值范围是(-2,2),可扣1分)(Ⅲ)当52a =-时, 25()(2),2x f x x x e =-+211()()22x f x e x x '=--,令()0f x '=,得12x =-,或x ,令()0f x '>,得12x <-,或x ,令()0f x '<,得112x -<<x,()f x ',f (x )的变化情况如下表X1(,)2-∞-12- 1(,1)2- 1 (1,+∞)()f x '+0 -0 +f (x )Z极大值]极小值Z所以,函数f (x )的极小值为f (1)=2e2..解:∵函数f (x )在定义域内单调递减,∴f ′(x )=2ln xx -k ≤0在(0,+∞)上恒成立.设φ(x )=ln xx ,则φ′(x )=1-ln x x 2,∴φ(x )在(0,e)上单调递增,在(e ,+∞)上单调递减,∴φ(x )max =φ(e)=1e ,故实数k 的取值范围为⎣⎢⎡⎭⎪⎫2e ,+∞3.解:f ′(x )=2(x +1)(x -2)+(x +1)2=3(x -1)(x +1),所以f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减, 所以极大值为f (-1)=0.又f (2)=0,所以a +2=2或⎩⎨⎧a ≤-1,a +2≥-1,得a =0或-3≤a ≤-1.4.证明:由f (x )=x 3+bx 2+cx ,得f ′(x )=3x 2+2bx +c .由x =0是函数f (x )的一个极值点知f ′(0)=c =0.又由f (x )的图像经过点A (3,0),得f (3)=27+9b +3c =0, 所以b =-3,所以f (x )=x 3-3x 2.由l 1∥l 2,得f ′(x 1)=f ′(x 2),即3x 21-6x 1=3x 22-6x 2, 即3(x 1-x 2)(x 1+x 2-2)=0.因为x 1-x 2≠0,所以x 1+x 2=2, 所以当l 1∥l 2时,x 1+x 2为定值.5.解:f ′(x )=2ax 2-2x +1x,由题知2ax 2-2x +1=0在(0,+∞)上有两个不同的实根.设方程2ax 2-2x +1=0的两根为x 1,x 2,且0<x 1<x 2,根据题意得0<a <12, 所以f (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减, 在(x 2,+∞)上单调递增, 所以f (x )极小值=f (x 2).f (x 2)<-32的证明如下:由f ′(x 2)=0,得2ax 22-2x 2+1=0,则a =2x 2-12x 22∈⎝ ⎛⎭⎪⎫0,12,解得x 2>12且x 2≠1.f (x 2)=x 22·2x 2-12x 22-2x 2+ln x 2=-x 2-12+ln x 2,令g (x )=-x -12+ln x ,g ′(x )=-1+1x =1-x x ,则g (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,在(1,+∞)上单调递减,所以g (x )max <g (1)=-32,所以f (x )的极小值小于-32.6.解:(1)证明:f ′(x )=3ax 2+2bx +c ,由题设,得f ′(1)=3a +2b +c =0,① f ′(m )=3am 2+2bm +c =-3a .②∵a <b <c ,∴6a <3a +2b +c <6c ,∴a <0,c >0.将①代入②得3am 2+2bm -2b =0,∴Δ=4b 2+24ab ≥0,得⎝ ⎛⎭⎪⎫b a 2+6ba ≥0,∴b a ≤-6或b a ≥0③.将c =-3a -2b 代入a <b <c 中,得-1<ba <1.④ 由③④得0≤ba <1.(2)由(1)知,f ′(x )=3ax 2+2bx +c (a <0),Δ=4b 2-12ac >0,∴方程f ′(x )=3ax 2+2bx +c =0有两个不等的实根,不妨设其为x 1,x 2,又f ′(1)=3a +2b +c =0,∴不妨令x 1=1,则x 2=-2b3a -1, ∴x 2<0<x 1,∴当x <x 2或x >x 1时,f ′(x )<0;当x 2<x <x 1时,f ′(x )>0.∴函数f (x )的单调递增区间是[x 2,x 1].∵|x 1-x 2|=2+2b3a ,0≤b a <1,∴2≤|x 1-x 2|<83.∵函数f (x )在区间[s ,t ]上单调递增,∴[s ,t ]⊆[x 2,x 1],∴0<|s -t |<83,即|s -t |的取值范围是⎝ ⎛⎭⎪⎫0,83.7.解 (1)当a =32时,f (x )=e x 2-1e x -32x , f ′(x )=12e x [(e x )2-3e x +2]=12e x (e x -1)(e x -2), 令f ′(x )=0,得e x =1或e x =2,即x =0或x =ln 2; 令f ′(x )>0,得x <0或x >ln 2; 令f ′(x )<0,得0<x <ln 2.∴f (x )的增区间是(-∞,0],[ln 2,+∞),减区间是(0,ln 2). (2)f ′(x )=e x 2+1e x -a , 令e x =t ,由于x ∈[-1,1], ∴t ∈[1e ,e].令h (t )=t 2+1t (t ∈[1e ,e]),h ′(t )=12-1t 2=t 2-22t 2,∴当t ∈[1e ,2)时,h ′(t )<0,函数h (t )为单调递减函数; 当t ∈(2,e]时,h ′(t )>0,函数h (t )为单调递增函数.故h(t)在[1e,e]上的极小值点为t=2,且h(2)= 2.又h(e)=e2+1e<h(1e)=12e+e,∴2≤h(t)≤e+12e.∵函数f(x)在[-1,1]上为单调函数,①若函数在[-1,1]上单调递增,则a≤t2+1t对t∈[1e,e]恒成立,所以a≤2;②若函数f(x)在[-1,1]上单调递减,则a≥t2+1t对t∈[1e,e]恒成立,所以a≥e+12e,综上可得a的取值范围是(-∞,2]∪[e+12e,+∞).8.解(1)由已知得,f′(x)=(x2+ax+1)e x+e x(2x+a)=[x2+(a+2)x+a+1]e x=(x +a+1)(x+1)e x.∵a>0,∴-a-1<-1.∴当x∈(-∞,-a-1)时,f′(x)>0;当x∈(-a-1,-1)时,f′(x)<0;当x∈(-1,+∞)时,f′(x)>0.f(x)的单调递增区间为(-∞,-a-1)和(-1,+∞),单调递减区间为(-a-1,-1).且当x=-1时,f(x)有极小值(2-a)e-1,当x=-a-1时,f(x)有极大值(a+2)e-a-1.(2)由(1)知,f′(x)=(x+a+1)(x+1)e x,令g(x)=f′(x),则g′(x)=[x2+(a+4)x+2a+3]e x.假设f(x)有“致点”x0,则x0首先应是f(x)的极值点,即f′(x0)=0,∴x0=-1或x0=-a-1.当a=0时,-a-1=-1,此时f′(x)≥0恒成立,f(x)无极值.∴要使f(x)有极值,须a≠0.若x0=-1,则由题意可知g′(-1)=0,∴1-(a+4)+2a+3=0,解得a=0,与a≠0矛盾,即-1不是f(x)的“致点”.若x0=-a-1,则g′(-a-1)=0,即(a+1)2-(a+4)·(a+1)+2a+3=0,解得a =0,与a≠0矛盾,即-a-1也不是f(x)的“致点”.∴函数f(x)无“致点”.9.解(1)当k=1时,f(x)=(x-1)e x-x2,∴f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,即x(e x-2)>0,∴x>ln 2或x<0.令f′(x)<0,即x(e x-2)<0,∴0<x<ln 2.因此函数f(x)的单调递减区间是(0,ln 2);单调递增区间是(-∞,0)和(ln 2,+∞).(2)易知f′(x)=e x+(x-1)e x-2kx=x(e x-2k).∵f(x)在[0,+∞)上是增函数,∴当x≥0时,f′(x)=x(e x-2k)≥0恒成立.∴e x-2k≥0,即2k≤e x在[0,+∞)上恒成立.由于e x≥1,∴2k≤1,则k≤12.又当k =12时,f ′(x )=x (e x -1)≥0,当且仅当x =0时取等号. 因此,实数k 的取值范围是(-∞,12]. 10.解 (1)因为f (x )=ax 3+bx +c , 故f ′(x )=3ax 2+b .由于f (x )在x =2处取得极值c -16,故有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧ 12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧ 12a +b =0,4a +b =-8,解得⎩⎪⎨⎪⎧a =1,b =-12. (2)由(1)知f (x )=x 3-12x +c ,f ′(x )=3x 2-12=3(x -2)(x +2). 令f ′(x )=0,得x 1=-2,x 2=2. 当x ∈(-∞,-2)时,f ′(x )>0, 故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0, 故f (x )在(-2,2)上为减函数; 当x ∈(2,+∞)时,f ′(x )>0, 故f (x )在(2,+∞)上为增函数.由此可知f (x )在x =-2处取得极大值f (-2)=16+c , f (x )在x =2处取得极小值f (2)=c -16. 由题设条件知16+c =28,解得c =12. 此时f (-3)=9+c =21,f (3)=-9+c =3, f (2)=-16+c =-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.11.解(1)由题意得f′(x)=3x2+2bx+c,∴f′(1)=2b+c+3=3.又f(1)=b+c+1,点(1,f(1))在直线6x-2y-1=0上,∴6-2(b+c+1)-1=0,故b=-32,c=3.(2)∵g(x0)=f′(x0),∴a e x0=3x20-3x0+3,∴a=3x20-3x0+3e x0.令h(x)=3x2-3x+3e x,则h′(x)=-3(x2-3x+2)e x,令h′(x)=0,得x=1或x=2.当x变化时,h(x)与h′(x)在x∈(0,2]上的变化情况如下表所示:]Z∴h(x)在x∈(0,2]上有极小值h(1)=3e ,又h(2)=9e2,h(0)=3>9e2,∴h(x)在x∈(0,2]上的取值范围为[3e,3),∴a的取值范围为[3e,3).12.(1)解 由题意得所求切线的斜率k =f ′(π4)=cos π4=22. 切点P (π4,22),则切线方程为y -22=22(x -π4), 即x -2y +1-π4=0. (2)解 g ′(x )=m -12x 2.①当m ≤0时,g ′(x )≤0,则g (x )的单调递减区间是(-∞,+∞); ②当m >0时,令g ′(x )<0, 解得x <-2m 或x >2m ,则g (x )的单调递减区间是(-∞,-2m ),(2m ,+∞). (3)证明 当m =1时,g (x )=x -x 36.令h (x )=g (x )+x 36-f (x )=x -sin x ,x ∈(0,+∞), h ′(x )=1-cos x ≥0,则h (x )是(0,+∞)上的增函数,故当x >0时,h (x )>h (0)=0,即sin x <x ,f (x )<g (x )+x 36. 13.(1)解 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx .由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:]Z所以,f (x ,k (k f (x )在x =k 处取得极小值f (k )=k (1-ln k )2,无极大值.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e ,当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1, e ]上的唯一零点.当k >e 时,f (x )在区间(0, e )上单调递减,且f (1)=12>0,f (e)=e -k 2<0, 所以f (x )在区间(1, e ]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1, e ]上仅有一个零点14.解 (1)已知函数f (x )=sin x +cos x , 则f ′(x )=cos x -sin x , 代入F (x )=f (x )f ′(x )+(f (x ))2,可得F (x )=cos 2x +sin 2x +1=2sin(2x +π4)+1, 当2x +π4=2k π+π2(k ∈Z ),即x =k π+π8(k ∈Z )时,F (x )max =2+1,其最小正周期T =2π2=π.(2)由f (x )=2f ′(x ),易得sin x +cos x =2cos x -2sin x ,解得tan x =13.∴1+sin2xcos2x-sin x cos x =2sin2x+cos2xcos2x-sin x cos x=2tan2x+11-tan x=116.15.(1)解当a=12时,f(x)=12x-ex.f′(x)=12-e x,令f′(x)=0,得x=-ln 2.当x<-ln 2时,f′(x)>0;当x>-ln 2时,f′(x)<0,∴函数f(x)的单调递增区间为(-∞,-ln 2);单调递减区间为(-ln 2,+∞).(2)证明令F(x)=x-f(x)=e x-(a-1)x,①当a=1时,F(x)=e x>0,∴f(x)≤x成立.②当1<a≤1+e时,F′(x)=e x-(a-1)=e x-e ln(a-1),∴当x<ln(a-1)时,F′(x)<0;当x>ln(a-1)时,F′(x)>0,∴F(x)在(-∞,ln(a-1))上单调递减,在(ln(a-1),+∞)上单调递增,∴F(x)≥F(ln(a-1))=e ln(a-1)-(a-1)·ln(a-1)=(a-1)[1-ln(a-1)],∵1<a≤1+e,∴a-1>0,1-ln(a-1)≥1-ln[(1+e)-1]=0,∴F(x)≥0,即f(x)≤x成立.综上,当1≤a≤1+e时,f(x)≤x.16.解(1)f′(x)=a+1x=ax+1x(x>0).①当a≥0时,由于x>0,故ax+1>0,f′(x)>0,所以f(x)的单调递增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a ,在区间(0,-1a )上,f ′(x )>0,f (x )单调递增. 在区间(-1a ,+∞)上,f ′(x )<0,f (x )单调递减.综上所述,当a ≥0时,f (x )的单调递增区间为(0,+∞);当a <0时,f (x )的单调递增区间为(0,-1a ),f (x )的单调递减区间为(-1a ,+∞). (2)由已知,转化为f (x )max <g (x )max , 又g (x )max =g (0)=1.由(1)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意. 当a <0时,f (x )在(0,-1a )上单调递增,在(-1a ,+∞)上单调递减, 故f (x )的极大值即为最大值,即f (x )max =f (-1a )=-1+ln(-1a )=-1-ln(-a ), 所以1>-1-ln(-a ),解得a <-1e 2. 故实数a 的取值范围是(-∞,-1e 2).17.(1)解 方法一 由题设f n ′(x )=1+2x +…+nx n -1, 所以f n ′(2)=1+2×2+…+(n -1)2n -2+n g 2n -1,① 则2f n ′(2)=2+2×22+…+(n -1)2n -1+n g 2n ,②①-②得,-f n ′(2)=1+2+22+…+2n -1-n g 2n =1+2-2n1-2-n g 2n =(1-n )2n -1,所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2, 可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n+1. (2)证明 因为f n (0)=-1<0,f n ⎝ ⎛⎭⎪⎫23=23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 1-23-1=1-2×⎝ ⎛⎭⎪⎫23n ≥1-2×⎝ ⎛⎭⎪⎫232>0, 所以f n (x )在⎝ ⎛⎭⎪⎫0,23内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0, 所以f n (x )在⎝ ⎛⎭⎪⎫0,23内单调递增,因此f n (x )在⎝ ⎛⎭⎪⎫0,23内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x-1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12, 故12<a n <23,所以0<a n -12=12a n +1n <12×⎝ ⎛⎭⎪⎫23n +1=13⎝ ⎛⎭⎪⎫23n.18.解 (1)当a =1时,f (x )=12x 2-ln x (x >0), f ′(x )=x -1x ,x >0,∴k =f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线的斜率为0.(2)f ′(x )=ax -1x =ax 2-1x ,x >0.当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减; 当a >0时,令f ′(x )=0,解得x =aa (负值舍去). 当x ∈(0,a a )时,f ′(x )<0,f (x )在(0,aa )上单调递减; 当x ∈(a a ,+∞)时,f ′(x )>0,f (x )在(aa ,+∞)上单调递增. (3)存在a ∈(0,e 3),使得方程f (x )=2有两个不等的实数根. 理由如下:由(2)可知当a ≤0时,f ′(x )<0,f (x )在(0,+∞)上单调递减,方程f (x )=2不可能有两个不等的实数根;当a >0时,函数f (x )在(0,a a )上单调递减,在(aa ,+∞)上单调递增,使得方程f (x )=2有两个不等的实数根,等价于函数f (x )的极小值f (a a )<2,即f (a a )=12+12ln a <2,解得0<a <e 3,所以a 的取值范围是(0,e 3).19.解: (1)∵f (x )=ln x -ax 2+(a -2)x ,∴函数的定义域为(0,+∞).∴f ′(x )=1x -2ax +(a -2)=1-2ax 2+(a -2)x x =-(2x -1)(ax +1)x.∵f (x )在x =1处取得极值, 即f ′(1)=-(2-1)(a +1)=0,∴a =-1.当a =-1时,在⎝ ⎛⎭⎪⎫12,1内f ′(x )<0,在(1,+∞)内f ′(x )>0,∴x =1是函数y =f (x )的极小值点.∴a =-1.(2)∵a 2<a ,∴0<a <1.f ′(x )=1x -2ax +(a -2)=1-2ax 2+(a -2)x x=-(2x -1)(ax +1)x,∵x ∈(0,+∞),∴ax +1>0,∴f (x )在⎝ ⎛⎭⎪⎫0,12上递增;在⎝ ⎛⎭⎪⎫12,+∞上递减,①当0<a ≤12时,f (x )在[a 2,a ]上单调递增,∴f (x )max =f (a )=ln a -a 3+a 2-2a ;②当⎩⎪⎨⎪⎧a >12,a 2<12,即12<a <22时,f (x )在⎝ ⎛⎭⎪⎫a 2,12上单调递增,在⎝ ⎛⎭⎪⎫12,a 上单调递减,∴f (x )max =f ⎝ ⎛⎭⎪⎫12=-ln 2-a 4+a -22=a 4-1-ln 2;③当12≤a 2,即22≤a <1时,f (x )在[a 2,a ]上单调递减, ∴f (x )max =f (a 2)=2ln a -a 5+a 3-2a 2.20.解: (1)由f (x )=e x -ax -1,得f ′(x )=e x -a .当a ≤0时,对∀x ∈R ,有f ′(x )>0,所以函数f (x )在区间(-∞,+∞)上单调递增;当a >0时,由f ′(x )>0,得x >ln a ;由f ′(x )<0,得x <ln a ,此时函数f (x )的单调增区间为(ln a ,+∞),单调减区间为(-∞,ln a ). 综上所述,当a ≤0时,函数f (x )的单调增区间为(-∞,+∞); 当a >0时,函数f (x )的单调增区间为(ln a ,+∞),单调减区间为(-∞,ln a ).(2)函数F (x )=f (x )-x ln x 的定义域为(0,+∞),由F (x )=0,得a =e x -1x -ln x (x >0),令h (x )=e x -1x -ln x (x >0),则h ′(x )=(e x -1)(x -1)x 2,由于x >0,e x -1>0,可知当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0, 故函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,故h (x )≥h (1)=e -1.(随着x >0的增长,y =e x -1的增长速度越来越快,会超过并远远大于y =x 的增长速度,而y =ln x 的增长速度则会越来越慢.则当x >0且x 无限接近于0时,h (x )趋向于正无穷大.)故当a >e -1时,函数F (x )有两个不同的零点; 当a =e -1时,函数F (x )有且仅有一个零点; 当a <e -1时,函数F (x )没有零点.(3)由(1)知当a =1时,对∀x >0,有f (x )>f (ln a )=0,即e x -1>x ,当x >0时,e x -1>x ,故对∀x >0,g (x )>0,先用分析法证明:∀x >0,g (x )<x .要证对∀x >0,g (x )<x ,只需证对∀x >0,e x -1x <e x,即证对∀x >0,x e x -e x +1>0,构造函数H (x )=x e x -e x +1(x >0),则H ′(x )=x e x >0,故函数H (x )在(0,+∞)上单调递增,所以H (x )>H (0)=0,则对∀x >0,x e x -e x +1>0成立.当a ≤1时,由(1)知,f (x )在(0,+∞)上单调递增,则f (g (x ))<f (x )在(0,+∞)上恒成立;当a >1时,由(1)知,函数f (x )在(ln a ,+∞)上单调递增,在(0,ln a )上单调递减,故当0<x <ln a 时,0<g (x )<x <ln a ,所以f (g (x ))>f (x ),则不满足题意. 所以满足题意的a 的取值范围是(-∞,1].21.解: (1)∵x ∈[0,+∞),∴f (x )=e x ⎝ ⎛⎭⎪⎫1-a 2x 2, ∴f ′(x )=e x ⎝ ⎛⎭⎪⎫-a 2x 2-ax +1 .由题意,f ′(x )≥0在[0,+∞)上恒成立,当a =0时,f ′(x )=e x >0恒成立,即满足条件. 当a ≠0时,要使f ′(x )≥0,而e x >0恒成立,故只需-a2x 2-ax +1≥0在[0,+∞)上恒成立,即⎩⎪⎨⎪⎧-a 2>0,-a2·02-a ·0+1≥0,解得a <0. 综上,a 的取值范围为a ≤0.(2)证明:由题知f (x )≤x +1即为e x -a2x 2e |x |≤x +1. 在x ≥0时,要证明e x -a2x 2e |x |≤x +1成立, 只需证e x ≤a 2x 2e x +x +1,即证1≤a2x 2+x +1e x ,①令g (x )=a 2x 2+x +1e x ,得g ′(x )=ax +1·e x -(x +1)e x (e x )2=ax -xe x ,整理得g ′(x )=x ⎝ ⎛⎭⎪⎫a -1e x ,∵x ≥0时,1e x ≤1,结合a ≥1,得g ′(x )≥0,∴g (x )在[0,+∞)上是增函数,故g (x )≥g (0)=1,从而①式得证.在x ≤0时,要使e x -a2x 2e |x |≤x +1成立,只需证e x ≤a 2x 2e -x +x +1,即证1≤a2x 2e -2x +(x +1)e -x ,②令m (x )=ax 22e -2x+(x +1)e -x ,得m ′(x )=-x e -2x [e x +a (x -1)], 而φ(x )=e x +a (x -1)在x ≤0时为增函数, 故φ(x )≤φ(0)=1-a ≤0,从而m ′(x )≤0,∴ m (x )在x ≤0时为减函数,则m (x )≥m (0)=1,从而②式得证.综上所述,原不等式e x -a2x 2e |x |≤x +1,即f (x )≤x +1在a ≥1时恒成立.(3)要使f (x 0)>x 0+1成立,即e x 0-a 2x 20e x 0>x 0+1,变形为ax 202+x 0+1e x 0-1<0,③要找一个x 0>0使③式成立,只需找到函数t (x )=ax 22+x +1e x -1的最小值,满足t (x )min <0即可.∵t ′(x )=x ⎝ ⎛⎭⎪⎫a -1e x ,令t ′(x )=0得e x =1a ,则x =-ln a ,在0<x <-ln a 时,t ′(x )<0,在x >-ln a 时,t ′(x )>0,即t (x )在(0,-ln a )上是减函数,在(-ln a ,+∞)上是增函数,∴ 当x =-ln a 时,t (x )取得最小值t (-ln a )=a2(ln a )2+a (-ln a +1)-1.下面只需证明:a2(ln a )2-a ln a +a -1<0在0<a <1时恒成立即可.令p (a )=a2(ln a )2-a ln a +a -1,则p ′(a )=12(ln a )2≥0,从而p (a )在(0,1)上是增函数,则p (a )<p (1)=0,从而a2(ln a )2-a ln a +a -1<0,得证. 于是t (x )的最小值t (-ln a )<0,因此可找到一个常数x 0=-ln a (0<a <1),使得③式成立.22.解: (1)由题意得,f ′(x )=1-1x ,∴f ′(2)=1-12=12,f (2)=1-ln 2,∴曲线y =f (x )在x =2处的切线方程为y -(1-ln 2)=12(x -2)⇒x -2y -2ln 2=0.(2)当x ∈(0,+∞)时,f (x )≥ax -2恒成立,∴a ≤1+1x -ln xx ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x 2,令g ′(x )=0⇒x =e 2, 可得g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,∴g (x )min =g (e 2)=1-1e 2,即a ≤1-1e 2,故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,1-1e 2 23.解: (1)f (x )的定义域为(0,+∞),当a =1时,f ′(x )=2x -3+1x =2x 2-3x +1x,由f ′(x )>0得x <12或x >1,由f ′(x )<0得12<x <1,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12,(1,+∞);单调递减区间为⎝ ⎛⎭⎪⎫12,1.∴f (x )的极大值为f ⎝ ⎛⎭⎪⎫12=-54-ln 2;极小值为f (1)=-2.(2)由题意知f ′(x )=2x -3+ax ≥22a -3=1,∴a =2,此时2x =a x ,即2x =2x ,∴x =1,切点为(1,-2), ∴此时的切线l 的方程为x -y -3=0.24.解: (1)由不等式f (x )-g (x )=p ·⎝ ⎛⎭⎪⎫x -1x -2ln x -2e x >0对x ∈[2,e]恒成立, ∴p >2x ln x +2e x 2-1对x ∈[2,e]恒成立.令h (x )=2x ln x +2ex 2-1,x ∈[2,e],则p >h (x )max .∵h ′(x )=-2(1+x 2)ln x -2x (2e -x )-2(x 2-1)2<0.∴h (x )在区间[2,e]上是减函数,∴h (x )max =h (2)=4ln 2+2e 3,故p >4ln 2+2e3.(2)依题意f (x )min >g (x )min .∵f ′(x )=p +p x 2-2x >0,∴f (x )在[2,e]上单调递增,故f (x )min =f (2).又g (x )=2ex 在[2,e]上单调递减,故g (x )min =g (e),由f (2)>g (e),解得p >4+4ln 23. 25.解: (1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln xx 2,由f ′(x )=0得x =1,当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0,所以f (x )在(0,1)上单调递增,在(1,+∞)上单调递减,故函数f (x )在x =1处取得唯一的极值,由题意得⎩⎪⎨⎪⎧a +14>2a -1,2a -1<1<a +14⇒34<a <1,故实数a 的取值范围为⎝ ⎛⎭⎪⎫34,1.(2)x ≥1时,不等式f (x )≥k x +1化为1+ln x x ≥kx +1⇒k ≤(x +1)(1+ln x )x ,令g (x )=(x +1)(1+ln x )x,由题意知k ≥g (x )在[1,+∞)上恒成立,g ′(x )=x -ln x x 2,再令h (x )=x -ln x (x ≥1),则h ′(x )=1-1x ≥0,当且仅当x =1时取等号, 因此h (x )=x -ln x 在[1,+∞)上递增,所以h (x )≥h (1)=1>0,故g ′(x )=x -ln xx 2>0,所以g (x )在[1,+∞)上递增,g (x )min =g (1)=2, 因此k ≤2,即k 的取值范围为(-∞,2].(3)由(2)知,当x ≥1时,f (x )≥2x +1恒成立,即1+ln x x ≥2x +1,∴ln x ≥1-2x +1>1-2x .令x =k (k +1),k ∈N *,则有ln[k (k +1)]>1-2k (k +1)=1-2⎝ ⎛⎭⎪⎫1k -1k +1,分别令k =1,2,3,…,n ,。
高中函数和导数试题及答案

高中函数和导数试题及答案一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 3C. 2x + 1D. 3x + 22. 若函数f(x) = sin(x) + cos(x)的导数是:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)3. 已知函数g(x) = 2x^3 - 5x^2 + 7x - 1,其在x = 1处的导数值是:A. -1B. 0C. 1D. 2二、填空题4. 若f(x) = 4x^3 - 5x^2 + 6x - 7,求f'(x) = __________。
5. 若f(x) = x^4 + 2x^3 - 3x^2 + 4x + 5,求f'(2) = __________。
三、解答题6. 已知函数h(x) = x^3 - 6x^2 + 11x - 6,求h'(x),并求h'(1)的值。
7. 已知函数k(x) = √x,求k'(x),并讨论k(x)的单调性。
四、综合题8. 已知函数F(x) = ln(x) + x^2,求F'(x),并讨论F(x)在x > 0时的增减性。
答案解析:一、选择题1. 正确答案:A. 2x + 3解析:f'(x) = 2x + 3,根据导数的幂规则和线性规则计算得出。
2. 正确答案:A. cos(x) - sin(x)解析:f'(x) = cos(x) - sin(x),根据三角函数的导数规则计算得出。
3. 正确答案:B. 0解析:g'(x) = 6x^2 - 10x + 7,代入x = 1得g'(1) = 0。
二、填空题4. 答案:12x^2 - 10x + 6解析:根据导数的幂规则和线性规则计算。
5. 答案:44解析:f'(x) = 4x^3 + 6x^2 - 6x + 4,代入x = 2计算得出。
导数大题综合(含答案)

导数大题综合1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.2.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数()ln f x ax x x =-,且()f x 在e x =处的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.6.(2022春·广东深圳·高二校考期中)已知函数()2ln f x x a x =-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围.7.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2ln f x ax x =+.(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.8.(2022春·广东江门·高二校联考期中)已知函数()32f x x ax bx c =+++的图象在点()1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.10.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2cos sin f x ax ax x x =--(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R a f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()1ln f x a x bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222m f x x x-≥+恒成立,求实数m 的取值范围.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()e ln =--x af x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2a f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.18.(2022春·广东江门·高二江门市第二中学校考期中)已知函数()e xf x ax =-,R a ∈.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数19.(2022春·广东深圳·高二深圳市高级中学校考期中)已知函数()2sin 1,R f x x a x a =++∈.(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.20.(2022春·广东东莞·高二校联考期中)已知函数()()22ln f x ax a x x=-++(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1xxf x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln af x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数21()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.24.(2022春·广东广州·高二广州市玉岩中学校考期中)已知2()e (2)e (R)x x f x a a x a =+--∈(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.25.(2022春·广东深圳·高二校考期中)已知函数()21ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥26.(2022春·广东江门·高二江门市新会东方红中学校考期中)已知函数e ()ln e x f x x x x -=--,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12af x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.28.(2022春·广东广州·高二校考期中)已知函数()sin x x x f -=.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.29.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()2ln =++f x x ax bx (其中,a b 为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.30.(2022春·广东佛山·高二校联考期中)已知函数()e ()=-∈R x f x ax a .(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.导数大题综合答案1.(2022春·广东东莞·高二校联考期中)已知函数()2395f x x x =-+.(1)求函数()f x 的单调递减区间;(2)求函数()f x 的极值.的切线方程是0x y b ++=.(1)求实数a ,b 的值;(2)求函数()f x 的极值.3.(2022春·广东佛山·高二佛山一中校考期中)已知函数()2ln f x x a x bx =++在()()1,1f 处的切线方程为30x y ++=.(1)求a 、b 的值;(2)求()f x 的极值点,并计算两个极值之和.所以,函数()f x 的极大值点为12x =,极大值为2ln 224f ⎛⎫=-- ⎪⎝⎭,极小值点为22x =,极小值为()22ln 26f =-,所以,函数()f x 的极大值和极小值为()133224f f ⎛⎫+=-⎪⎝⎭.4.(2022春·广东深圳·高二校考期中)已知=1x -是函数()323f x x x ax =-++的一个极值点.(1)求()f x 的单调区间;(2)求()f x 在区间[]4,4-上的最大值.(1)()'236f x x x a =-++, =1x -是函数()f x 的一个极值点∴()'190f a -=-+=,∴9a =,∴()'2369f x x x =-++,令()'0f x <,解得1x <-或3x >;令()'0f x >,解得13x -<<.所以函数()f x 的减区间为()(),1,3,∞∞--+,增区间为()1,3-.(2)由(1)()3239f x x x x =-++,又 ()f x 在[]4,1--上单调递减,在[]1,3-上单调递增,在[]3,4上单调递减∴函数()f x 在的极大值为()327f =,又()476f -=,∴函数()f x 在区间[]4,4-上的最大值为()476f -=.5.(2022秋·广东茂名·高二茂名市第一中学校考期中)已知函数()ln 2f x x x =+.(1)求函数()f x 的极值;(2)证明:2()f x x x>-.(1)若函数()f x 在点()()3,3f 处切线的斜率为4,求实数a 的值;(2)若函数()()21ln 222a ag x x f x x ⎛⎫=--- ⎪⎝⎭在[]1,4上是减函数,求实数a 的取值范围..(1)讨论()f x 的单调性;(2)设函数()2g x x =-+,若任意31,e x ⎡⎤∈⎣⎦,使得()()f x g x ≤,求a 的取值范围.的图象在点1,1P -处的切线斜率为12-,且()f x 在=1x -处取得极值.(1)求()f x 的解析式;(2)当[]2,2x ∈-时,求()f x 的最大值与最小值.(2)由(1)可知,()f x 在[)2,1--上单调递增,在(]1,2-上单调递减,且()115f -=,()212f =-,()28f -=,∴()max 15f x =,()min 12f x =-.9.(2022春·广东广州·高二校考期中)已知函数()1ln f x x a x =--(其中a 为参数).(1)求函数()f x 的单调区间:(2)若对任意()0,x ∈+∞都有()0f x ≥成立,求实数a 的取值集合.(1)当1a =时,求()f x 在[],ππ-上的值域;(2)当0x >时,()0f x ≥,求实数a 的取值范围.【详解】(1)由题意知()2cos sin f x x x x x =--,()()21cos sin f x x x x '=-+,[],x ππ∈-时,1cos 0x -≥,sin 0x x ≥,[],x ∴∈-ππ时,()0f x '≥恒成立,所以()f x 单调递增,∴()()()f f x f ππ-≤≤,即()33f x -π≤≤π所以()f x 的值域为[]3,3ππ-.(2)注意到()00f =,()2cos sin cos f x a a x ax x x '=-+-,若1a ≥,()()2cos sin 2cos sin f x ax x x x x x x =--≥--,由(1)知,当[]0,x π∈时,()()00f x f ≥=;当(),x π∈+∞时,2cos sin 2110x x x x x x x -->--=->,所以()0f x ≥恒成立,符合题意;若0a ≤,()()2cos sin f x ax x x =--,当[]0,x π∈时,()0f x ≤,不合题意,舍去;11.(2022春·广东深圳·高二深圳市光明区高级中学校考期中)已知函数2()ln (1)()2=+-+∈R f x x x a x a ,2()()(1)2=-++a g x f x x a x .(1)讨论()f x 的单调性;(2)任取两个正数12,x x ,当12x x <时,求证:()()()1212122--<+x x g x g x x x .12.(2022春·广东深圳·高二校考期中)已知函数()ln f x ax bx x=++且曲线()y f x =在点()()1,1f 处的切线方程为210x y -+=.(1)求实数,a b 的值;(2)若关于x 的不等式()3222mf x x x-≥+恒成立,求实数m 的取值范围.∴()()min 11g x g ==-⎡⎤⎣⎦,即1m ≤-所以实数m 的取值范围为(],1-∞-.13.(2022春·广东广州·高二广州市第十六中学校考期中)已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间;(2)若2a =,求()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最值;(3)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.(参考数据:ln 20.693≈)14.(2022春·广东佛山·高二顺德一中校考期中)已知函数()ln =--f x a xx x(1)当0a =时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最值;(2)讨论函数()f x 的单调性.当1e a <<时,当ln 1a x <<时,()0f x '<,()f x 单调递减;当0ln x a <<或1x >时,()0f x ¢>,()f x 单调递增;当e a =时,()0f x ¢>在定义域上恒成立,()f x 单调递增;当e a >时,当1ln x a <<时,()0f x '<,()f x 单调递减;当01x <<或ln x a >时,()0f x ¢>,()f x 单调递增;综上:当1a ≤时,()f x 的单调递增区间为()1,+∞,单调递减区间为()0,1;当1e a <<时,()f x 的单调递增区间为()0,ln a ,()1,+∞,单调递减区间为()ln ,1a ;当e a =时,()f x 的单调递增区间为()0,∞+;当e a >时,()f x 的单调递增区间为()0,1,()ln ,a +∞;单调递减区间为()1,ln a .15.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()ln (2)f x x ax a x =-+-.(1)讨论()f x 的单调性;(2)若函数()y f x =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明:()00f x '<.16.(2022春·广东佛山·高二佛山市顺德区郑裕彤中学校考期中)已知函数()2sin cos 2f x x x x =++,R a ∈.(1)当0a =时,求函数()f x 在x π=处的切线方程;(2)当12a =-时,求函数()f x 在[],x ππ∈-上的最值.∵21336362f f πππ⎛⎫⎛⎫-==-+ ⎪ ⎝⎭⎝⎭,∴()2max 16362f x π=-+.∵()()214f f πππ-==--,()01f =,∴()2min14f x π=--.17.(2022春·广东佛山·高二佛山一中校考期中)已知函数21()ln 2f x x ax a =-+,(1)当1a =时,求()f x 的最值;(2)若ln 2()2f x £恒成立,求a 的取值范围.(1)若e a =,证明:当1x >时,()0f x >;(2)讨论()f x 零点的个数(1)设函数()()g x f x '=,若()y g x =在区间0,2π⎡⎤⎢⎣⎦上是增函数,求a 的取值范围;(2)当2a =-时,证明函数()f x 在区间()0,π上无零点.(1)若1x =函数的极值点,求a 的值;(2)若1a ≥,求证:当[]1,e x ∈时,()0f x '≥,其中e 为自然对数的底数.21.(2022春·广东清远·高二统考期中)已知函数()e 1x f x =-.(1)求证:()f x 在()1,+∞上单调递减(2)若对于任意()0,x ∈+∞,都有()2e x af x a≥+恒成立,求正实数a 的取值范围.22.(2022春·广东佛山·高二校考期中)已知函数()()ln f x x a R x=+∈.(1)判断函数()f x 在区间)2,e -⎡+∞⎣上的零点个数;(2)若函数()f x 在1x =处的切线平行于直线20x y -=,且在[]()1,271828e e =.上存在一点0x ,使得()0001x mf x x +<成立,求实数m .23.(2022春·广东广州·高二广州市第七中学校考期中)已知函数2()e (,)2xf x a x b a b R =--∈.(1)若函数()f x 在0x =处的切线方程为1y x =-,求实数a ,b 的值;(2)若函数()f x 在1x x =和2x x =两处取得极值,求实数a 的取值范围.(1)解:()e '=-x f x a x ,因为函数()f x 在0x =处的切线方程为1y x =-,所以(0)1f '=,即1a =,(1)当1a =时,求证:()0f x ≥;(2)若()f x 有两个零点,求a 的取值范围.观察图象知,当且仅当01a <<时,直线y 所以a 的取值范围是01a <<.25.(2022春·广东深圳·高二校考期中)已知函数()2ln 2f x x mx x =-+,m ∈R .(1)当2m =时,求函数()f x 的单调区间;(2)若2m =-,正实数a 、b 满足()()0f a f b ab ++=,求证:a b +≥,2e 1()e ()2x g x ax a a R -=-++∈.(1)求函数e ()()e x x f x ϕ-=+的最小值;(2)设函数()()()F x f x g x =+的两个不同极值点分别为12,x x ()12x x <,求实数a 的取值范围.27.(2022春·广东深圳·高二深圳市龙岗区龙城高级中学校考期中)设函数()()()ln 12f x x a x x =+-+.(1)若0a =,求()f x 的单调区间;(2)若()f x 在区间(2,)+∞单调递增,求整数a 的最大值.(1)判断函数()f x 是否存在极值,并说明理由;(2)设函数()()ln F x f x m x =-,若存在两个不相等的正数1x ,2x ,使得()()1122F x x F x x +=+,证明:212x x m <.为常数且0a ≠)在1x =处取得极值.(1)当12a =时,求()f x 的单调区间;(2)若()f x 在(]0,e 上的最大值为1,求a 的值.(1)讨论()f x 的单调性.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.。
高二数学函数与导数试题答案及解析

高二数学函数与导数试题答案及解析1. f(x)=x5+ax3+bx-8且f(-2)=0,则f(2)等于()A.-16B.-18C.-10D.10【答案】A【解析】略2.;若..【答案】4【解析】略3.函数,的最大值是()A.B.-1C.0D.1【答案】D【解析】,所以当时;当时,所以函数在上单调递增,在上单调递减.所以.故D正确.【考点】用导数求最值.4.已知曲线f(x)=ln x在点(x0,f(x))处的切线经过点(0,-1),则x的值为()A.B.1C.e D.10【答案】B【解析】【考点】函数导数的几何意义5.函数的定义域为.【答案】【解析】函数的定义域为即函数的定义域为【考点】函数的定义域6.(本小题满分14分)北京市周边某工厂生产甲、乙两种产品.一天中,生产一吨甲产品、一吨乙产品所需要的煤、水以及产值如表所示:在会议期间,为了减少空气污染和废水排放.北京市对该厂每天用煤和用水有所限制,每天用煤最多吨,用水最多吨.问该厂如何安排生产,才能是日产值最大?最大的产值是多少?【答案】该厂每天生产甲种产品5吨,乙种产品7吨,才能使该厂日产值最大,最大的产值是134万元.【解析】设每天生产甲种产品x吨,乙种产品y吨,建立目标函数和约束条件,利用线性规划,即可求出结果.试题解析:解:设每天生产甲种产品吨,乙种产品吨. 1分依题意可得线性约束条件4分目标函数为, 5分作出线性约束条件所表示的平面区域如图所示8分将变形为当直线在纵轴上的截距达到最大值时, 9分即直线经过点M时,也达到最大值. 10分由得点的坐标为 12分所以当时, 13分因此,该厂每天生产甲种产品5吨,乙种产品7吨,才能使该厂日产值最大,最大的产值是134万元. 14分【考点】简单的线性规划.7.(本题满分12分)已知函数(为实数).(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)设函数(其中为常数),若函数在区间上不存在极值,且存在满足,求的取值范围;(Ⅲ)已知,求证:.【答案】(Ⅰ);(Ⅱ)或;(Ⅲ)详见解析.【解析】(1)先求导,利用导数的几何意义,再求进行求解;(2)求导,求极值点,根据函数在区间上不存在极值,得到的取值范围,根据条件存在满足,所以,所以求函数的最大值,因为含参,所以讨论对称轴于定义域的关系,求二次函数的最值,得到关于的不等式,再进行求解;(3)先判定函数的单调性,并求其最大值,得到,再进行换元,令,则,即,再代入裂项向消法求和,证明不等式.试题解析:(Ⅰ)当时,,,则,函数的图象在点的切线方程为:,即(Ⅱ),由由于函数在区间上不存在极值,所以或由于存在满足,所以对于函数,对称轴①当或,即或时,,由,结合或可得:或②当,即时,,由,结合可知:不存在;③当,即时,;由,结合可知:综上可知:或(Ⅲ)当时,,当时,,单调递增;当时,,单调递减,∴在处取得最大值即,∴,令,则,即,∴.故.【考点】1.导数的几何意义;2.函数的单调性;3.函数的极值;4.放缩法.8.设,那么()A.B.C.D.【答案】C【解析】根据指数函数的性质,可知,根据指数函数的单调性,可知,根据幂函数的单调性,可知,从而有,故C是正确的.【考点】利用指数函数的性质、幂函数的性质比较大小.9.(本小题满分10分)已知函数在处取得极值.(Ⅰ)求实数的值;(Ⅱ)过点作曲线的切线,求此切线方程.【答案】(Ⅰ)(Ⅱ)【解析】第一问根据题中所给的条件,函数在处取得极值,得到函数在处的导数为零,从而得出实数的值,再带入验证,满足条件,第二问根据第一问的结果,从而确定出函数的解析式,根据过某点的曲线的切线方程的求解方法,首先设出切点的坐标,应用导数的几何意义,确定出切线的斜率,从而应用点斜式方程,写出切线方程,将带入切线方程,从而解得切点的横坐标的值,带入求得切线方程.试题解析:(Ⅰ) 1分,即解得, 4分此时在两边(附近)符号相反,所以处函数取得极值,同理,在处函数取得极值. 5分(Ⅱ)设切点坐标为.则切线方程为 7分化简,得,即, 9分所求的切线方程为:.10分【考点】函数的极值,导数的应用,切线的方程.10.设函数,.(1)判断函数在上的单调性;(2)证明:对任意正数a,存在正数x,使不等式成立.【答案】(1)上是增函数;(2)证明详见解析.【解析】本题主要考查了函数单调性的判断方法、导数在最大值、最小值问题中的应用、利用导数判断函数的单调性常用的方法,考查了学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用导数的办法,通过导数大于或小于0判断函数的单调性;第二问,先将化为,从而原不等式化为,即,令,利用导数研究它的单调性和最值,最后得到存在正数,使原不等式成立.试题解析:(1),令,则,当时,,∴是上的增函数,∴,故,即函数是上的增函数.(2),当时,令,则故,∴,原不等式化为,即,令,则,由得:,解得,当时,;当时,.故当时,取最小值,令,则.故,即.因此,存在正数,使原不等式成立.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.11.(本题满分14分)已知函数有最小值.(1)求实数的取值范围;(2)设为定义在上的奇函数,且时,,求的解析式.【答案】(1);(2).【解析】(1)分类讨论将表达式中的绝对值号去掉成为有两个一次函数的分段函数,从而问题可转化于在每个分段上存在最小值,即可求解;(2)利用奇函数的性质可知,当时,,再由结合已知条件即可求解.试题解析:(1),要使函数有最小值,需,即时,有最小值;(2)∵是上的奇函数,∴,设,则,∴,即.【考点】1.分段函数;2.奇函数的性质;3.分类讨论的数学思想.12.若直线与曲线有两个不同的交点,则实数的取值范围是()A.B.C.D.【答案】B【解析】数形结合法如上图.直线:是过定点P(-2,4)的动直线,曲线是以原点为圆心,2为半径的上半圆.当直线在PA位置时,即与圆相切时,由圆心到直线距离等于半径得,;当在PB位置时,.由图像知,当直线在PA与PB之间时,有两个交点,所以.故选B.【考点】直线与圆的相交问题.【方法点睛】直线与圆的位置关系常有两种方法研究:一、利用圆心到直线的距离与半径的关系判断交点个数,或由交点个数求参数范围;二、将直线代入圆的方程,利用判别式研究交点个数,或由交点个数求参数范围.但当直线与半圆或四分之一圆等相交问题,常借助图像属性结合去研究交点问题.例如本题,因研究的圆是半圆,所以数形结合方法比较好.13.已知,符号表示不超过的最大整数,若函数有且仅有个零点,则的取值范围是A.B.C.D.【答案】C【解析】,构造函数,在同一坐标系内作出函数与函数的图象,由图象可知,当时,与的图象有三个公共点,故选C.【考点】1.函数与方程;2.数形结合思想;3.新定义函数问题.【方法点睛】本题主要考查学生接受新知识的能力以及数学中的数学结合思想、函数与方程思想等思想方法,属难题.解决此类问题的关键是将函数的零点问题通过等价转化,将问题转化为两个函数交点的个数问题,再正确画出两个函数的图象,由数形结合进行求解.14.函数的极小值为.【答案】【解析】, 令得;令得.所以函数在上单调递减;在上单调递增.所以在处函数取的极小值为.【考点】用导数求极值.15.若定义在上的函数满足,其导函数满足,则下列结论中一定正确的有①,②,③,④.【答案】①③【解析】令,,,恒成立.在上单调递增. ,,,即恒成立;,即.恒成立.故正确的有①③.【考点】用导数研究函数的性质.16.已知,,,则的大小关系是()A.B.C.D.【答案】B【解析】,,又,,故选B.【考点】1、对数式的运算;2、对数式的比较大小.【方法点睛】纵观历年数学高考试题,几乎每套题都有指数式和对数式大小比较的客观题目,结合近年来的数学高考试题,总结归纳指数式和对数式比较大小的六种解题方法.(1)单调函数法同底的指数式和对数式比较大小,就是利用指数函数和对数函数的单调性来比较;(2)中间桥梁法底不同的指数式和对数式比较大小,如果不能直接利用指数函数和对数函数的单调性来比较,可利用特殊数值(如0 或1)作为中间桥梁,进而可比较出大小;(3)特值代入法对于在给定的区间上比较指数式和对数式的大小的问题,可在这个区间上取满足条件的特殊值,代入后通过计算简化或避免复杂的变形与讨论,使问题简捷获解;(4)估值计算法估值计算是指通过估值、合理猜想等手段,准确、迅速地选出答案;(5)数形结合法画出指数函数和对数函数的图象,利用直观的图象往往能得到更简捷的解法.特征构造法对于含有几何背景的指数式和对数式的大小问题,可根据题目特点,构造函数或利用其他几何特征进行解题.17.已知函数,那么f (1)等于10C.1D.0A.2B.log3【答案】A【解析】【考点】函数求值18.若直线与曲线恰有一个公共点,则实数k的取值范围是______________.【答案】或【解析】曲线,即(x≥0),表示一个半圆(单位圆位于x轴及x轴右侧的部分).如图,A(0,1)、B(1,0)、C(0,-1),当直线y=x+k经过点A时,1=0+k,求得k=1;当直线y=x+k经过点B、点C时,0=1+k,求得k=-1;当直线y=x+k和半圆相切时,由圆心到直线的距离等于半径,可得,求得,或(舍去),故要求的实数k的范围为(-1,1]∪{-2},【考点】直线与圆的位置关系19.已知函数其中为参数.(1)记函数,讨论函数的单调性;(2)若曲线与轴正半轴有交点且交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有.【答案】(1)当时,函数在定义域上单调递增.当时,在上单调递增,在单调递减,在上单调递增;(2)证明见解析.【解析】第(1)小题设计为分类讨论函数的单调性.首先化简g(x),然后对g(x)求导化简得,注意到,所以就找到的临界点,然后对和进行分类讨论求解;第(2)小题设计为证明题,实质转化为求函数的最值.先求,然后构造函数,通过求导求函数H(x)的极值,从而得函数H(x)的最小值,命题得证.试题解析:(1)证明:函数的定义域是.,,当时,则,所以,所以函数在定义域上单调递增.当时,令,则可知函数在上单调递增,在单调递减,在上单调递增.(2)令则或若曲线与轴正半轴有交点,则且交点坐标为又则所以曲线在点处的切线方程为,即令函数在区间上单调递增,在区间上单调递减,所以当时,有最小值,所以,则【考点】导数,导数的几何意义,函数的单调性,函数的极值,函数的最值.【方法点睛】本题以三次为背景,第(1)小题设计为分类讨论函数的单调性,其中讨论的标准就是导函数的正负性,需要一定的运算能力.第(2)小题设计为证明题,其实就是函数的恒成立问题,可以转化为函数的最值问题,求函数的最值,需转化为求函数的极值,需转化为求函数的单调性,解题思路清晰,需要有一定的运算能力.20.已知动点与平面上两定点连线的斜率的积为定值-2.(1)试求动点的轨迹方程;(2)设直线与曲线交于两点,求.【答案】(1)();(2).【解析】(1)设,表示两直线的斜率,利用斜率乘积为,建立方程化简即可得到点的轨迹方程;(2)将直线代入曲线,整理得,可求出方程的根,进而利用弦长公式可求.试题解析:(1)设点,则依题意有整理得由于,求得的曲线的方程为();(2)由消去得:,设,则【考点】直线与圆锥曲线的综合问题;圆锥曲线的轨迹问题.【方法点晴】本题主要考查了轨迹方程的求解及直线与圆锥曲线的弦长的计算,属于中档试题,本题解答中,第1问中,以斜率为载体,考查了曲线方程的求解,关键在于利用斜率公式,根据题设条件建立关于的关系式,化简整理得曲线的轨迹方程;第2问题中,熟记弦长公式,利用弦长公式求解直线与圆锥曲线的弦长,准确、仔细计算是解答的关键.21.若函数在处取得极值.(1)求的值;(2)求函数的单调区间及极值.【答案】(1)(2)单调递增区间是,单调递减区间是,极小值为,极大值为.【解析】(1)求出原函数的导函数,由函数在x=1时的导数为0列式求得a的值;(2)把(1)中求出的a值代入,求其导函数,得到导函数的零点,由导函数的零点对定义域分段,利用导函数在不同区间段内的符号求单调期间,进一步求得极值点,代入原函数求得极值.试题解析:(1),由,得.(2),.由,得或.当时;②当时或.当变化时,的变化情况如下表:-+-因此,的单调递增区间是,单调递减区间是.函数的极小值为,极大值为.【考点】利用导数求过曲线上某点处的切线方程;利用导数研究函数的单调性22.(2015•山东一模)已知函数f(x)=aln(x+1)﹣ax﹣x2.(Ⅰ)若x=1为函数f(x)的极值点,求a的值;(Ⅱ)讨论f(x)在定义域上的单调性;(Ⅲ)证明:对任意正整数n,ln(n+1)<2+.【答案】(Ⅰ)f(x)在x=1处取极大值.满足题意.(Ⅱ)见解析;(Ⅲ)见解析【解析】(Ⅰ)由,f′(1)=0,知,由此能求出a.(Ⅱ)由,令f′(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞),讨论两个根及﹣1的大小关系,即可判定函数的单调性;(Ⅲ)当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,由此能够证明ln(n+1)<2+.解:(1)因为,令f'(1)=0,即,解得a=﹣4,经检验:此时,x∈(0,1),f'(x)>0,f(x)递增;x∈(1,+∞),f'(x)<0,f(x)递减,∴f(x)在x=1处取极大值.满足题意.(2),令f'(x)=0,得x=0,或,又f(x)的定义域为(﹣1,+∞)①当,即a≥0时,若x∈(﹣1,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;②当,即﹣2<a<0时,若x∈(﹣1,,则f'(x)<0,f(x)递减;若,0),则f'(x)>0,f(x)递增;若x∈(0,+∞),则f'(x)<0,f(x)递减;③当,即a=﹣2时,f'(x)≤0,f(x)在(﹣1,+∞)内递减,④当,即a<﹣2时,若x∈(﹣1,0),则f'(x)<0,f(x)递减;若x∈(0,,则f'(x)>0,f(x)递增;若,+∞),则f'(x)<0,f(x)递减;(3)由(2)知当a=1时,f(x)在[0,+∞)上递减,∴f(x)≤f(0),即ln(x+1)≤x+x2,∵,∴,i=1,2,3,…,n,∴,∴.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究函数的极值.23.某校内有一块以为圆心,(为常数,单位为米)为半径的半圆形(如图)荒地,该校总务处计划对其开发利用,其中弓形区域(阴影部分)用于种植学校观赏植物,区域用于种植花卉出售,其余区域用于种植草皮出售,已知种植学校观赏植物的成本是每平方米20元,种植花卉的利润是每平方米80元,种植草皮的利润是每平方米30元.(1)设(单位:弧度),用表示弓形的面积;(2)如果该校总务处邀请你规划这块土地,如何设计的大小才能使总利润最大?并求出该最大值.(参考公式:扇形面积公式,表示扇形的弧长)【答案】(1) ;(2),.【解析】(1)由,利用扇形及三角形面积公式即得;(2)先由题意将利润表示成关于的函数关系式,再利用导数判断函数单调性求得最大值即可.试题解析:(1)因为,,所以.(2)设总利润为元,种植草皮利润为元,种植花卉利润为元,种植学校观赏植物成本为元,,,,∴,设,,,,,在上为减函数;,,在上为增函数;当时,取到最小值,此时总利润最大:.答:所以当园林公司把扇形的圆心角设计成时,总利润取最大值.【考点】1、数学建模能力;2、利用导数研究函数的单调性及最值.24.设点是函数图象上的任意一点,点,则的最小值为()A.B.C.D.【答案】A【解析】函数变形为表示圆的下半部分,点在直线上,圆心到直线的距离,圆的半径为2,则的最小值为【考点】1.直线和圆的位置关系;2.数形结合法25.已知a为实数,f(x)=(x2﹣4)(x﹣a).(1)求导数f′(x);(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值;(3)若f(x)在(﹣∞,﹣2)和(2,+∞)上都是递增的,求a的取值范围.【答案】(1)3x2﹣2ax﹣4.(2)最大值为,最小值为.(3)[﹣2,2].【解析】(1)按导数的求导法则求解(2)由f′(﹣1)=0代入可得f(x),先求导数,研究函数的极值点,通过比较极值点与端点的大小从而确定出最值(3)(法一)由题意可得f′(2)≥0,f′(﹣2)≥0联立可得a的范围(法二)求出f′(x),再求单调区增间(﹣∞,x1)和[x2,+∞),依题意有(﹣∞,﹣2)⊆(﹣∞,x1)[2,+∞]⊆[x2,+∞)解:(1)由原式得f(x)=x3﹣ax2﹣4x+4a,∴f'(x)=3x2﹣2ax﹣4.(2)由f'(﹣1)=0得,此时有.由f'(x)=0得或x=﹣1,又,所以f(x)在[﹣2,2]上的最大值为,最小值为.(3)解法一:f'(x)=3x2﹣2ax﹣4的图象为开口向上且过点(0,﹣4)的抛物线,由条件得f'(﹣2)≥0,f'(2)≥0,∴﹣2≤a≤2.所以a的取值范围为[﹣2,2].解法二:令f'(x)=0即3x2﹣2ax﹣4=0,由求根公式得:所以f'(x)=3x2﹣2ax﹣4.在(﹣∞,x1]和[x2,+∞)上非负.由题意可知,当x≤﹣2或x≥2时,f'(x)≥0,从而x1≥﹣2,x2≤2,即解不等式组得﹣2≤a≤2.∴a的取值范围是[﹣2,2].【考点】利用导数求闭区间上函数的最值;导数的运算;利用导数研究函数的单调性.26.已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.【答案】(1);(2)直线的方程为,切点坐标为.【解析】(1)第一步,先求函数的导数,第二步,再求,根据导数的几何意义,,最后代入直线方程,就是所求的切线方程;(2)设切点,首先求在切点处的切线方程,即求和,然后因为切线过点,所以将原点代入切线方程,转化为关于的方程,求出切点,最后再整理切线方程. 试题解析:(1)在点处的切线的斜率,切线的方程为;(2)设切点为,则直线的斜率为,直线的方程为:.又直线过点,,整理,得,,,的斜率,直线的方程为,切点坐标为.【考点】本题主要考查导数的几何意义,直线方程的点斜式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
02函数与导数大题 答案1. 已知函数322()4361,f x x tx t x t x R t R =+-+-∈∈,其中,(1)当t =1时,求曲线()(0,(0))y f x f =在点处的切线方程; (2)当t≠0时,求函数()f x 的单调区间;(3)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点。
2. 设函数)1ln(2)1()(2x x x f +-+=(1)若关于x 的不等式0)(≥-m x f 在]1,0[-e 有实数解,求实数m 的取值范围; (2)设1)()(g 2--=x x f x ,若关于x 的方程p x =)(g 至少有一个解,求p 的最小值. (3)证明不等式:nn 131211)1ln(++++<+ )(*N n ∈ 3. 已知函数)0(1ln)(2>+-=a x ax xx f (1)若)(x f 是单调函数,求a 的取值范围。
(2)若)(x f 有两个极值点21,x x ,证明:2ln 23)()(21->+x f x f 。
…12分4. 设函数22()f x a x =(0a >),()ln g x b x =.(1) 将函数()y f x =图象向右平移一个单位即可得到函数()y x ϕ=的图象,试写出()y x ϕ=的解析式及值域;(2) 关于x 的不等式2(1)()x f x ->的解集中的整数恰有3个,求实数a 的取值范围; (3) 对于函数()f x 与()g x 定义域上的任意实数x ,若存在常数,k m ,使得()f x kx m ≥+和()g x kx m ≤+都成立,则称直线y kx m =+为函数()f x 与()g x 的“分界线”.设2a =,b e =,试探究()f x 与()g x 是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.1解析:(1)简单考查导数的几何意义,导数运算以及直线方程;(2)考查导数在研究函数的单调性方面的运用,分类讨论;(3)考查分类讨论,函数与方程以及函数零点的性质,是中档偏上题。
(1)当t =1时,322()436,(0)0,()1266,(0)6,f x x x x f f x x x f ''=+-==+-=-()(0,(0))6.y f x f y x ==-所以曲线在点处的切线方程为(2)22()1266,()0.2tf x x tx t f x x t x ''=+-==-=令,解得或 因为t≠0,以下分两种情况讨论: ①若0,x ()()tt t f x f x '<<-则当变化时,,的变化情况如下表:所以,()f x 的单调递增区间是(,)2-∞,(-t ,∞);()f x 的单调递减区间是(,)2t t -。
②若0,x ()()tt t f x f x '>-<则当变化时,的变化情况如下表:所以,()f x 的单调递增区间是(-∞,t ),(,)2+∞;()f x 的单调递减区间是(,)2t t -。
综上可得:当t<0时,()f x 的单调递增区间是(,)2t -∞,(-t ,∞);()f x 的单调递减区间是(,)2t t -当t>0时, ()f x 的单调递增区间是(-∞,t ),(,)2t +∞;()f x 的单调递减区间是(,)2t t -。
(3)由(2)可知,当t >0时,()f x 在(0,)2t 内的单调递减,在(,)2t +∞内单调递增,以下分两种情况讨论:①当12()2tt f x ≥≥即时,在(0,1)内单调递减, 2(0)10,(1)643644230.f t f t t =->=-++≤-⨯-⨯+< 所以对任意[2,],()t f x ∈+∞在区间(0,1)内均存在零点。
②当01022t t <<<<即时,()f x 在(0,)2t 内的单调递减,在(,1)2t内单调递增,若(]0,1t ∈,则337710244t f t t t ⎛⎫=-+-≤-< ⎪⎝⎭ (可以证明()3714g t t t =-+-在区间⎛ ⎝⎭递增,在区间⎫⎪⎪⎝⎭上递减,且0g <⎝⎭,所以()02t f g t ⎛⎫=< ⎪⎝⎭对(]0,1t ∈恒成立),()21643643230f t t t t t =-++≥-++=-+>(也可以利用二次函数的性质,得出()()21643h t f t t ==-++在区间(]0,1上的最小值为()110h =>,所以()()10f h t =>对(]0,1t ∈恒成立)所以()f x 在区间,12t ⎛⎫⎪⎝⎭存在零点; 若()1,2t ∈,则3377110244t f t t t ⎛⎫=-+-<-+< ⎪⎝⎭,()010f t =->所以()f x 在区间0,2t ⎛⎫⎪⎝⎭内存在零点综上所述,对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点。
2. 解:(1)依题意得,在区间]1,0[-e 上,m x f m ≥ax )(()12212)1(2)(++=+-+='x x x x x x f ,而函数)(x f 的定义域为),1(∞+-∴)(x f 在)0,1(-上为减函数,在),0(∞+上为增函数,则)(x f 在]1,0[-e 上为增函数2)1()(2max -=-=∴e e f x f即实数m 的取值范围为22-≤e m ………………………………4分 (2)1)()(g 2--=x x f x )]1ln(x [2)1ln(22x x x +-=+-=,xxx x g +=+-='12)111(2)( 显然,函数)(g x 在)0,1(-上为减函数,在),0(∞+上为增函数 则函数)(g x 的最小值为0)0(g =所以,要使方程p x =)(g 至少有一个解,则0≥p ,即p 的最小值为0 …………8分 (3)由(2)可知:g()2[ln(1)]0x x x =-+≥在),1(∞+-上恒成立 所以x x ≤+)1ln(,当且仅当x =0时等号成立令*1()x n N n =∈,则)1,0(∈x 代入上面不等式得:n n 1)11ln(<+ 即n n n 11ln <+,即nn n 1ln )1ln(<-+ 所以,11ln 2ln <-,212ln 3ln <-,313ln 4ln <-,…,nn n 1ln )1ln(<-+将以上n 个等式相加即可得到:nn 131211)1ln(++++<+ ……………12分3解:(Ⅰ)f (x )=-ln x -ax 2+x (x >0) ,f '(x )=- 1x -2ax +1=-2ax 2-x +1x.…2分令Δ=1-8a .当a ≥ 18时,Δ≤0,f '(x )≤0,f (x )在(0,+∞)单调递减. …4分当0<a < 18时,Δ>0,方程2ax 2-x +1=0有两个不相等的正根x 1,x 2,不妨设x 1<x 2,则当x ∈(0,x 1)∪(x 2,+∞)时,f '(x )<0,当x ∈(x 1,x 2)时,f '(x )>0, 这时f (x )不是单调函数.综上,a 的取值范围是[ 18,+∞). …6分(Ⅱ)由(Ⅰ)知,当且仅当a ∈(0, 18)时,f (x )有极小值点x 1和极大值点x 2,且x 1+x 2=12a ,x 1x 2=12a.f (x 1)+f (x 2)=-ln x 1-ax 21+x 1-ln x 2-ax 22+x 2=-(ln x 1+ln x 2)- 1 2(x 1-1)- 12(x 2-1)+(x 1+x 2)=-ln(x 1x 2)+ 1 2(x 1+x 2)+1=ln(2a )+14a +1. …9分令g (a )=ln(2a )+14a +1,a ∈(0, 18],则当a ∈(0, 1 8)时,g '(a )= 1 a -14a 2=4a -14a 2<0,g (a )在(0, 18)单调递减, 所以g (a )>g ( 18)=3-2ln 2,即f (x 1)+f (x 2)>3-2ln 2.4分析: (1)简单考查函数图像的平移及值域的不变性; (2)该题考查把不等式2(1)()x f x ->的解集中的整数恰有3个转化为解集的两个端点所在区间问题,从而把问题转化为研究二次方程的根的分布问题;又由于转化后的不等式可以分解因式因此可以化为更简单的问题求解; (3)该题一般的思考应该是分两次研究两个恒成立问题,含有两个参数,增加问题的难度,如果能转化为求公共切线问题,就可以使问题得到简化,因此可以想到这两条曲线是否存在公共点,即探讨两曲线的交点,再研究过交点的公共切线;该题考查函数性质、数形结合、解不等式、导数及其运用、分类讨论、转化化归能力、分析问题解决问题能力,其中(1)是简单题, (2)是中档题, (3)是难题。
4解:(1)22()(1)x a x ϕ=-,值域为[0,)+∞ …………2分 (2)解法一:不等式2(1)()x f x ->的解集中的整数恰有3个,等价于22(1)210a x x --+>恰有三个整数解,故210a -<,令22()(1)21h x a x x =--+,由(0)10h =>且2(1)0(0)h a a =-<>, 所以函数22()(1)21h x a x x =--+的一个零点在区间(0,1),则另一个零点一定在区间[3,2)--, …………4分故(2)0,(3)0,h h ->⎧⎨-≤⎩解之得4332a ≤<. …………6分解法二:22(1)210a x x --+>恰有三个整数解,故210a -<,即1a >,[][]22(1)21(1)1(1)10a x x a x a x --+=--+->,所以1111x a a <<-+,又因为1011a<<+, …………4分 所以1321a -≤<--,解之得4332a ≤<. ……6分(3)设21()()()ln 2F x f x g x x e x =-=-,则2'()e x e F x x x x -=-==.所以当0x <<'()0F x >;当x >'()0F x <.因此x =()F x 取得最小值0,则()f x 与()g x 的图象在x =)2e. ………8分设()f x 与()g x 存在 “分界线”,方程为(2ey k x -=,即2ey kx =+-由()2e f x kx ≥+-x ∈R 恒成立,则2220x kx e --+≥在x ∈R 恒成立 .所以22244(2)4844(0k e k e k ∆=-=-=≤成立,因此k =………8分下面证明()(0)2eg x x ≤->恒成立.设()ln 2e G x e x =-,则()e G x x '=-=.所以当0x <<'()0G x >;当x >'()0G x <.因此x =()G x 取得最大值0,即()()02eg x x ≤->成立.故所求“分界线”存在,其方程为:2ey =-. …………12分。