高中数学函数与导数常考题型归纳
高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳题型一 : 利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般观察两类题型:(1)谈论函数的单调性、极值、最值,(2) 利用单调性、极值、最值求参数的取值范围.【例 1】已知函数 f ( x) =ln x+ a(1 -x).(1)谈论 f ( x) 的单调性;(2)当 f x有最大值,且最大值大于a-2时,求实数a的取值范围.( )21解(1) f ( x) 的定义域为 (0 ,+∞ ) , f ′( x) =x- a.若 a≤0,则 f ′ ( x) >0,因此 f ( x) 在 (0 ,+∞ ) 上单调递加 .1若 a>0,则当 x∈ 0,a时, f ′( x) >0;当x∈1,+∞ 时, f ′x<,a()011因此 f ( x) 在 0,a上单调递加,在a,+∞ 上单调递减 .综上,知当 a≤0时, f ( x) 在(0 ,+∞ ) 上单调递加;当 a>0 时, f ( x) 在 0,1上单调递加,在1,+∞ 上单调递减 .a a(2)由 (1) 知,当 a≤0时, f ( x) 在(0 ,+∞ ) 上无最大值;1111当 a>0 时, f ( x) 在 x=a处获取最大值,最大值为 f a=ln a+ a 1-a=- ln a+ a- 1.因此f1>a-2等价于lna+ a-<a2 1 0.令g( a) =ln a+a-1,则 g( a) 在(0 ,+∞ ) 上单调递加,g(1) =0.于是,当 0<a<1 时, g( a) <0;当a>1 时, g( a) > 0.因此,实数 a 的取值范围是 (0 , 1).【类题通法】 (1) 研究函数的性质平时转变成对函数单调性的谈论,谈论单调性要先求函数定义域,再谈论导数在定义域内的符号来判断函数的单调性.(2) 由函数的性质求参数的取值范围,平时依照函数的性质获取参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则能够直接解不等式得参数的取值范围;若不等式是一个不能够直接解出的超越型不等式时,如求解 ln a +a -1<0,则需要构造函数来解 .【变式训练】 已知 a ∈ R ,函数 f ( x) = ( - x 2+ax)e x ( x ∈ R , e 为自然对数的底数 ).(1) 当 a =2 时,求函数 f ( x) 的单调递加区间;(2) 若函数 f ( x) 在 ( - 1,1) 上单调递加,求实数 a 的取值范围 .解 (1) 当 a = 2 时, f ( x) =( -x 2+2x)e x ,因此 f ′(x) = ( - 2x +2)e x +( - x 2+2x)e x= ( - x 2+2)e x .令 f ′(x)>0 ,即 ( -x 2+2)e x >0,由于 e x >0,因此- x 2+ 2>0,解得- 2<x< 2.因此函数 f ( x) 的单调递加区间是 ( - 2, 2).(2) 由于函数 f ( x) 在( -1, 1) 上单调递加,因此 f ′(x) ≥0对 x ∈( - 1,1) 都成立,由于 f ′(x) = ( - 2x +a)e x +( - x 2+ax)e x=- x 2+( a -2) x +a]e x ,因此- x 2+ ( a -2) x + a]e x ≥0 对 x ∈( - 1, 1) 都成立 .由于 e x >0,因此- x 2+( a - 2) x +a ≥0对 x ∈( - 1, 1) 都成立,x 2+2x(x +1)2- 1即 a ≥ x +1 =x +11= ( x +1) -x +1对 x ∈( - 1,1) 都成立 .11令 y =( x + 1) -x +1,则 y ′= 1+(x +1)2>0.1因此 y =( x +1) - x + 1在( -1,1) 上单调递加,因此 y<(1 +1) -1 3 3 1+1 = . 即 a ≥ .223因此实数 a 的取值范围为 a ≥2.题型二 : 利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题实质上同属一个问题,它们之间可相互转变,这类问题的观察平时有两类: (1) 谈论函数零点或方程根的个数; (2) 由函数零点或方程的根求参数的取值范围 .m【例 2】设函数 f(x) = ln x +x,m∈R.(1)当 m=e(e 为自然对数的底数 ) 时,求 f ( x) 的极小值;x(2) 谈论函数 g( x) =f ′(x) -3零点的个数 .e解(1) 由题设,当 m=e 时, f ( x) =ln x+x,x- e定义域为 (0 ,+∞ ) ,则 f ′(x) =x2,由f′(x)=0,得x=e.∴当 x∈(0 , e) , f ′ ( x) < 0, f ( x) 在 (0 ,e) 上单调递减,当 x∈(e,+∞ ) , f ′( x) >0,f ( x) 在(e ,+∞ ) 上单调递加,e∴当 x=e 时, f ( x) 获取极小值 f (e) =ln e +e=2,∴f ( x) 的极小值为 2.x 1 m x(2) 由题设 g( x) = f ′(x) -3=x-x2-3( x>0) ,1令g( x) =0,得 m=- x3+ x( x>0).31 3设φ( x) =-3x +x( x>0) ,则φ′(x) =- x2+ 1=- ( x-1)( x+1) ,当x∈(0 , 1) 时,φ′( x) >0,φ ( x) 在(0 , 1) 上单调递加;当x∈(1 ,+∞ ) 时,φ′( x) <0,φ ( x) 在(1 ,+∞ ) 上单调递减 .∴x= 1 是φ ( x) 的唯一极值点,且是极大值点,因此 x=1 也是φ ( x) 的最大值点 .2∴ φ( x) 的最大值为φ(1) =3.又φ(0) = 0,结合 y=φ( x) 的图象 ( 如图 ) ,2可知①当 m>3时,函数 g( x) 无零点;2②当 m=3时,函数 g( x) 有且只有一个零点;2③当 0<m<3时,函数 g( x) 有两个零点;④当 m≤0时,函数 g( x) 有且只有一个零点 .2综上所述,当 m>3时,函数 g( x) 无零点;2当 m=3或 m≤0时,函数 g( x) 有且只有一个零点;2当 0<m<3时,函数 g( x) 有两个零点 .【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转变成方程根的问题,利用方程的同解变形转变成两个函数图象的交点问题,利用数形结合来解决 .【变式训练】函数 f ( x) =( ax2+ x)e x,其中 e 是自然对数的底数, a∈R.(1)当 a>0 时,解不等式 f ( x) ≤0;(2)当 a=0 时,求整数 t 的所有值,使方程 f ( x) = x+ 2 在 t ,t +1] 上有解 .解(1) 由于 e x>0, ( ax2+x)e x≤ 0.∴ax2+ x≤0. 又由于 a>0,1因此不等式化为x x+a≤ 0.1因此不等式 f ( x) ≤0的解集为-a,0 .(2)当 a=0 时,方程即为 xe x=x+2,由于 e x>0,因此 x=0 不是方程的解,2x因此原方程等价于 e -x- 1=0.x2令h( x) =e -x-1,x2由于 h′(x) = e +x2>0 对于 x∈( -∞, 0) ∪(0 ,+∞ ) 恒成立,因此 h x 在 -∞, 0) 和 (0,+∞ )内是单调递加函数,( ) (又 h= - ,h2h - =-3-1,(1) e 3<0(2) =e -2>0, (3)e3<0h -2) =- 2,( e >0因此方程 f x ) =x + 有且只有两个实数根且分别在区间, 和- ,- 2]上,因此整数 t 的所有值( 21 2] 3为 { - 3, 1}.题型三 : 利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式观察,以中高档题为主,突出转变思想、函数思想的观察,常有的命题角度: (1) 证明简单的不等式; (2) 由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题 .【例 3】设函数 f ( x) = e 2x -aln x.(1) 谈论 f ( x) 的导函数 f ′(x) 零点的个数;2 (2) 证明:当 a >0 时, f ( x) ≥2a +aln .axa(1) 解 f( x) 的定义域为 (0 ,+∞ ) , f ′( x) = 2e 2-x ( x >0).当 a ≤0时, f ′x > ,f ′ x 没有零点.( )( )2xa当 a >0 时,设 u( x) =e , v( x) =- x ,由于 u x = 2x 在 (0 ,+∞ 上单调递加, v x =- a 在 (0,+∞ ) 上单调递加,因此f ′(x 在 (0,+( ) e ) ( ) x)∞) 上单调递加 .a1又 f ′(a) >0,当 b 满足 0<b < 4且 b <4时, f ′( b) < 0( 谈论 a ≥1或 a <1 来检验 ) ,故当 a >0 时, f ′( x) 存在唯一零点 .(2)证明 由 (1) ,可设 f ′(x 在 (0 ,+∞ 上的唯一零点为 x 0,当 x ∈(0 , x 0 时, f ′ x < ;) ) ) ( ) 0当 x ∈(x 0 ,+∞ ) 时, f ′( x) >0.故 f ( x) 在(0 , x 0 ) 上单调递减,在 ( x 0,+∞ ) 上单调递加,因此当 x = x 0 时, f ( x) 获取最小值,最小值为 f ( x 0 )a由于 2e2x 0- x 0=0,因此 f ( x 0 ) = a+ 2ax 0+aln 2 2a ≥2a + aln .x 0a22故当 a >0 时, f ( x) ≥2a + aln a .【类题通法】 1. 谈论零点个数的答题模板第一步:求函数的定义域;第二步:分类谈论函数的单调性、极值;第三步:依照零点存在性定理,结合函数图象确定各分类情况的零点个数.2. 证明不等式的答题模板第一步:依照不等式合理构造函数;第二步:求函数的最值;第三步:依照最值证明不等式 .【变式训练】 已知函数 f ( x) =ax +ln x( a ∈R).(1) 若 a =2,求曲线 y =f ( x) 在 x =1 处的切线方程;(2) 求 f ( x) 的单调区间;(3) 设 g( x) =x 2-2x +2,若对任意 x 1∈ (0 ,+∞ ) ,均存在 x 2∈0,1] 使得 f ( x 1)< g( x 2) ,求 a 的取值范围 .1解(1) 由已知得 f ′(x) = 2+ x ( x>0) ,因此 f ′(1) =2+1=3,因此斜率 k = 3. 又切点为 (1 , 2) ,所以切线方程为 y - 2= 3( x - 1) ,即 3x - y - 1= 0,故曲线 y = f ( x) 在 x =1 处的切线方程为 3x -y -1=0.1 ax +1(2) f ′(x) = a + x = x ( x>0) ,①当 a ≥0时,由于 x>0,故 ax +1>0, f ′ ( x)>0 ,因此 f ( x) 的单调增区间为 (0 ,+∞ ).1②当 a<0 时,由 f ′(x) =0,得 x =- a .11在区间 0,- a 上, f ′( x )>0 ,在区间 -a ,+∞ 上, f ′( x)<0 ,因此函数 f ( x) 的单调递加区间为0,- 1 ,单调递减区间为 1.a - ,+∞ a(3) 由已知得所求可转变成 f ( x) max <g( x) max ,g( x) =( x -1) 2+1,x ∈0, 1] ,因此 g( x) max=2,由(2) 知,当 a≥0时, f ( x) 在(0 ,+∞ ) 上单调递加,值域为 R,故不吻合题意 .a时, f x在 0,-1上单调递加,在1x的极大值即为最大值,当<0-,+∞ 上单调递减,故 f( )a a( )11是f -a=- 1+ln -a=- 1-ln( -a) ,1因此 2>-1-ln( -a) ,解得 a<-e3.。
高中数学:函数与导数新高考新结构

函数与导数函数与导数问题是高考数学的必考内容。
从近几年的高考情况来看,在大题中考查内容主要有主要利用导数研究函数的单调性、极值与最值、不等式及函数零点等内容。
此类问题体现了分类讨论、转化与化归的数学思想,难度较大。
题型一:利用导数研究函数的单调性题型二:利用导数研究函数的极值题型三:利用导数研究函数的最值题型四:利用导数解决恒成立与能成立题型五:利用导数求解函数的零点题型六:利用导数证明不等式题型七:利用导数研究双变量问题题型八:利用导数研究极值点偏移问题题型九:隐零点问题综合应用题型十:导数与数列综合问题题型一:利用导数研究函数的单调性1(2024·河南郑州·高三校联考阶段练习)已知函数f(x)=x22+ax-(ax+1)ln x在x=1处的切线方程为y=bx+52(a,b∈R).(1)求a,b的值;(2)证明:f x 在1,+∞上单调递增.1、求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.2、求函数单调区间的步骤(1)确定函数f x 的定义域;(2)求f x (通分合并、因式分解);(3)解不等式f x >0,解集在定义域内的部分为单调递增区间;(4)解不等式f x <0,解集在定义域内的部分为单调递减区间.3、含参函数单调性讨论依据:(1)导函数有无零点讨论(或零点有无意义);(2)导函数的零点在不在定义域或区间内;(3)导函数多个零点时大小的讨论。
1(2024·安徽六安·高三统考期末)已知函数f x =x3+ax-6a∈R.(1)若函数f x 的图象在x=2处的切线与x轴平行,求函数f x 的图象在x=-3处的切线方程;(2)讨论函数f x 的单调性.2(2024·辽宁·校联考一模)已知f x =sin2x+2cos x.(1)求f x 在x=0处的切线方程;(2)求f x 的单调递减区间.题型二:利用导数研究函数的极值1(2024·湖南长沙·高三长沙一中校考开学考试)已知直线y=kx与函数f(x)=x ln x-x2+x的图象相切.(1)求k的值;(2)求函数f x 的极大值.1、利用导数求函数极值的方法步骤(1)求导数f (x);(2)求方程f (x)=0的所有实数根;(3)观察在每个根x0附近,从左到右导函数f (x)的符号如何变化.①如果f (x)的符号由正变负,则f (x0)是极大值;②如果由负变正,则f (x0)是极小值;③如果在f (x)=0的根x=x0的左右侧f (x)的符号不变,则不是极值点.根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.2(2024·广东汕头·统考一模)已知函数f x =ax-1x-a+1ln x a∈R.(1)当a=-1时,求曲线y=f x 在点e,f e处的切线方程;(2)若f x 既存在极大值,又存在极小值,求实数a的取值范围.3(2022·河南·高三专题练习)已知函数f(x)=e x-ax312,其中常数a∈R.(1)若f x 在0,+∞上是增函数,求实数a的取值范围;(2)若a=4,设g(x)=f(x)+x33-x2-x+1,求证:函数g x 在-1,+∞上有两个极值点.题型三:利用导数研究函数的最值1(2024·江苏泰州·高三统考阶段练习)已知函数f x =x4+ax3,x∈R.(1)若函数在点1,f1处的切线过原点,求实数a的值;(2)若a=-4,求函数f x 在区间-1,4上的最大值.函数f(x)在区间[a,b]上连续,在(a,b)内可导,则求函数f(x)最值的步骤为:(1)求函数f(x)在区间(a,b)上的极值;(2)将函数f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值;(3)实际问题中,“驻点”如果只有一个,这便是“最值”点。
高中数学导数题型分类非常全

导数1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-'()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a = 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+ '''2()u u v uv v v-= 3.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数 1(1)ln x y x = (2)2sin(3)4y x π=- (3)2(1)x y e x =- (4)3235y x x =-- (5)231x x y x -=+ (6)2211()y x x x x =++ 2.已知物体的运动方程为223s t t=+(t 是时间,s 是位移),则物体在时刻2t =时的速度为 。
【题型三】导数与切线方程(导数的几何意义的应用)3.曲线32y x x =+-在点(2,8)A 处的切线方程是 。
4.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。
5.若32y x x =+-在P 处的切线平行于直线71y x =+,则点P 的坐标是 。
专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。
高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
高中数学导数知识点归纳总结

范围是( )
A.
3 2e
,1
B.
3 2e
,
3 4
【解析】方法一:分离函数---数形结合法
C.
3 2e
,
3 4
D.
3 2e
,1
-7-
巧辨“任意性问题”与“存在性问题” 一.方法综述
注意:当 x=x0 时,函数有极值 f/(x0)=0。但是,f/(x0)=0 不能得到当 x=x0 时,函数有极值;
判断极值,还需结合函数的单调性说明。
题型一、求极值与最值
题型二、导数的极值与最值的应用
题型四、导数图象与原函数图象关系
导函数
原函数
f '(x) 的符号
f (x) 单调性
f '(x) 与 x 轴的交点且交点两侧异号
(2)分离参数:将含参不等式转化为转化为 f (x) a; f (x) a ,进而研究直线 y a与y f (x) 图像位
置关系,寻找临界状态,求参数的范围。
(3)分离函数:通过变形将不等式转化为形如( f (x) 或 g(x); f (x) 或 g(x) 的形式,参数通常
在直线形式的函数里),进而研究两个函数图像的位置关系,寻找临界状态,求解参数的范围。 (4)特殊点法:根据图形从特殊点的值入手求参数范围。 【典例分析】
(3)下结论
① f '(x) 0 f (x) 该区间内为增函数; ② f '(x) 0 f (x) 该区间内为减函数;
题型二、利用导数求单调区间
求函数 y f (x) 单调区间的步骤为: (1)分析 y f (x) 的定义域; (2)求导数 y f (x) (3)解不等式 f (x) 0 ,解集在定义域内的部分为增区间 (4)解不等式 f (x) 0 ,解集在定义域内的部分为减区间
高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。
高中数学题型归纳大全函数与导数题型归纳三.零点、隐零点问题

高中数学题型归纳大全函数与导数3题型归纳三.零点、隐零点问题考点1.讨论零点个数1.已知函数f(x)=a2x 2−(a +1)x +lnx .(1)当a =1时,求y =f (x )在(e ,f (e ))处切线方程; (2)讨论f (x )的单调区间;(3)试判断a >1时f (x )=0的实根个数说明理由.考点2.证明存在零点2.已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.3.已知设函数f (x )=ln (x +2)﹣(x +1)e ax . (1)若a =0,求f (x )极值;(2)证明:当a >﹣1,a ≠0时,函数f (x )在(﹣1,+∞)上存在零点.考点3.已知零点个数求参4.已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.5.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.考点4.设而不求,虚设零点6.已知函数f(x)=e x﹣ln(x+m).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.7.设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.8.已知函数f(x)=e x﹣a﹣ln(x+a)(a>0).(1)证明:函数f′(x)在(0,+∞)上存在唯一的零点.(2)若函数f(x)在区间(0,+∞)上的最小值为1,求a的值.9.已知函数f(x)=lnx−x+1x−1.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.题型归纳三.零点、隐零点问题考点1.讨论零点个数1.已知函数f(x)=a2x2−(a+1)x+lnx.(1)当a=1时,求y=f(x)在(e,f(e))处切线方程;(2)讨论f(x)的单调区间;(3)试判断a >1时f (x )=0的实根个数说明理由.【分析】(1)求得f (x )的导数,可得切线的斜率和切点,可得所求切线方程; (2)求得f (x )的导数,讨论a =0,a >1,a =1,0<a <1,a <0,解不等式可得f (x )的单调区间;(3)由a >1可得f (x )的极值,判断符号,画出图象,可得实根的个数. 【解答】解:(1)函数f(x)=a2x 2−(a +1)x +lnx 的导数为f ′(x )=ax ﹣(a +1)+1x =(x−1)(ax−1)x, 当a =1时,y =f (x )在(e ,f (e ))处切线斜率为(e−1)2e,切点为(e ,12e 2﹣2e +1),可得切线方程为y ﹣(12e 2﹣2e +1)=(e−1)2e (x ﹣e ), 即为y =(e−1)2e x −12e 2;(2)f ′(x )=ax ﹣(a +1)+1x =(x−1)(ax−1)x,x >0,①当a =0时,f ′(x )=1−xx,可得f (x )的增区间为(0,1), 减区间为(1,+∞);②当a =1时,f ′(x )=(x−1)2x≥0,可得f (x )的增区间为(0,+∞); ③当a >1时,0<1a<1,可得f (x )的增区间为(0,1a),(1,+∞),减区间为(1a,1);④当0<a <1,1a>1,可得f (x )的增区间为(0,1),(1a,+∞),减区间为(1,1a);⑤当a <0时,f (x )的增区间为(0,1),减区间为(1,+∞); (3)a >1时f (x )=0的实根个数为1,a >1时,0<1a<1,可得f (x )的增区间为(0,1a),(1,+∞),减区间为(1a,1),可得f (x )的极小值为f (1)=﹣1−a 2<0,极大值为f (1a)=﹣1−12a−lna <0, 且x →+∞,f (x )→+∞, 可得f (x )=0的实根为1个.考点2.证明存在零点2.已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.【分析】(1)f (x )的定义域为(﹣1,+∞),求出原函数的导函数,进一步求导,得到f ″(x )在(﹣1,π2)上为减函数,结合f ″(0)=1,f ″(π2)=﹣1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数f ″(x )在(﹣1,π2)上存在唯一得零点x 0,结合单调性可得,f ′(x )在(﹣1,x 0)上单调递增,在(x 0,π2)上单调递减,可得f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(﹣1,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,x 0)时,f ′(x )>0,f (x )单调递增;由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)<0,可得函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知,当x ∈(x 0,x 1)时,f (x )单调递增;当x ∈(x 1,π2)时,f (x )单调递减.当x ∈(π2,π)时,f (x )单调递减,再由f (π2)>0,f (π)<0.然后列x ,f ′(x )与f (x )的变化情况表得答案.【解答】证明:(1)f (x )的定义域为(﹣1,+∞), f ′(x )=cos x −11+x ,f ″(x )=﹣sin x +1(1+x)2, 令g (x )=﹣sin x +1(1+x)2,则g ′(x )=﹣cos x −2(1+x)3<0在(﹣1,π2)恒成立,∴f ″(x )在(﹣1,π2)上为减函数, 又∵f ″(0)=1,f ″(π2)=﹣1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数f ″(x )在(﹣1,π2)上存在唯一的零点x 0,结合单调性可得,f ′(x )在(﹣1,x 0)上单调递增,在(x 0,π2)上单调递减,可得f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(﹣1,0)时,f ′(x )单调递增,f ′(x )<f ′(0)=0,f (x )单调递减;当x ∈(0,x 0)时,f ′(x )单调递增,f ′(x )>f ′(0)=0,f (x )单调递增; 由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)=−11+π2<0, 由零点存在定理可知,函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f ′(x )单调递减,f ′(x )>f ′(x 1)=0,f (x )单调递增; 当x ∈(x 1,π2)时,f ′(x )单调递减,f ′(x )<f ′(x 1)=0,f (x )单调递减. 当x ∈(π2,π)时,cos x <0,−11+x <0,于是f ′(x )=cos x −11+x <0,f (x )单调递减,其中f (π2)=1﹣ln (1+π2)>1﹣ln (1+3.22)=1﹣ln 2.6>1﹣lne =0,f (π)=﹣ln (1+π)<﹣ln 3<0. 于是可得下表:x(﹣1,0)(0,x 1)x 1(x 1,π2)π2(π2,π)πf ′(x ) ﹣ 0 +﹣﹣﹣ ﹣f (x )单调递减单调递增大于0 单调递减 大于0 单调递减 小于0 结合单调性可知,函数f (x )在(﹣1,π2]上有且只有一个零点0, 由函数零点存在性定理可知,f (x )在(π2,π)上有且只有一个零点x 2,当x ∈[π,+∞)时,sin x ≤1<ln (1+x ),则f (x )=sin x ﹣ln (1+x )<0恒成立, 因此函数f (x )在[π,+∞)上无零点. 综上,f (x )有且仅有2个零点.3.已知设函数f (x )=ln (x +2)﹣(x +1)e ax .(1)若a=0,求f(x)极值;(2)证明:当a>﹣1,a≠0时,函数f(x)在(﹣1,+∞)上存在零点.【分析】(1)将a=0代入函数,求函数的导数,利用函数的单调性可判断函数的极值,可求的f(x)极值;(2)当a>﹣1,a≠0时,求函数的导数,分类讨a的范围,利用函数的单调性结合极值的大小,可证明函数f(x)在(﹣1,+∞)上存在零点.【解答】解:(1)函数f(x)=ln(x+2)﹣(x+1)e ax.当a=0时,f(x)=ln(x+2)﹣(x+1),定义域为(﹣2,+∞),由f′(x)=−x+1x+2=0,得x=﹣1.当x变化时,f′(x),f(x)的变化情况如下表:x(﹣2,﹣1)﹣1 (﹣1,+∞)f′(x)+ 0 ﹣f(x)↗极大值↘故当x=﹣1时,f(x)取得极大值0,无极小值.(2)证明:f′(x)=1x+2−e ax[1+a(x+1)],x>﹣2.①当a>0时,因为x>﹣1,所以f″(x)=−1(x+2)2−ae ax[a(x+1)+2]<0,f'(x)在(﹣1,+∞)单调递减.因为f'(﹣1)=1﹣e﹣a>0,f′(0)=−12−a<0,所以存在x1∈(﹣1,0),使f'(x1)=0,当﹣1<x<x1时,f'(x)>0,当x>x1时,f'(x)<0,所以f(x)在(﹣1,x1)单调递增,在(x1,+∞)单调递减.所以f(x1)>f(﹣1)=0,而f(0)=ln2﹣1<0,所以f(x)在(﹣1,+∞)存在零点.②当﹣1<a<0时,由(1)可知e x≥x+1,x>﹣2.所以e﹣ax≥﹣ax+1>﹣a(x+1).所以f (x )=ln (x +2)﹣(x +1)e ax =e ax [e ﹣axln (x +2)﹣(x +1)]>﹣e ax (x +1)[aln (x +2)+1)].于是f(e −1a )>e −1(e −1a +1)[−aln(e −1a +2)−1)]>e −1(e −1a +1)[−aln(e −1a )−1)]=0. 因为f (0)=ln 2﹣1<0,所以所以f (x )在(e −1a ,+∞)存在零点. 综上,当a >﹣1,a ≠0时,函数f (x )在(﹣1,+∞)上存在零点.考点3.已知零点个数求参4.已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x )单调性; (2)由(1)可知:当a >0时才有两个零点,根据函数的单调性求得f (x )最小值,由f (x )min <0,g (a )=alna +a ﹣1,a >0,求导,由g (a )min =g (e ﹣2)=e ﹣2lne ﹣2+e﹣2﹣1=−1e 2−1,g (1)=0,即可求得a 的取值范围. (1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f (x )单调性; (2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a 的取值范围.【解答】解:(1)由f (x )=ae 2x +(a ﹣2)e x ﹣x ,求导f ′(x )=2ae 2x +(a ﹣2)e x ﹣1, 当a =0时,f ′(x )=﹣2e x ﹣1<0, ∴当x ∈R ,f (x )单调递减,当a >0时,f ′(x )=(2e x +1)(ae x ﹣1)=2a (e x +12)(e x −1a ), 令f ′(x )=0,解得:x =ln 1a ,当f ′(x )>0,解得:x >ln 1a , 当f ′(x )<0,解得:x <ln 1a ,∴x ∈(﹣∞,ln 1a)时,f (x )单调递减,x ∈(ln 1a,+∞)单调递增;当a <0时,f ′(x )=2a (e x +12)(e x −1a )<0,恒成立, ∴当x ∈R ,f (x )单调递减,综上可知:当a ≤0时,f (x )在R 单调减函数,当a>0时,f(x)在(﹣∞,ln 1a )是减函数,在(ln1a,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln 1a )是减函数,在(ln1a,+∞)是增函数,∴f(x)min=f(ln 1a )=a×(1a)+(a﹣2)×1a−ln1a<0,∴1−1a−ln1a<0,即ln1a+1a−1>0,设t=1a,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=1t+1,由g(1)=0,∴t=1a>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+12)(ex−1a),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+12)(ex−1a)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1−1a−ln1a,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1−1a−ln1a>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1−1a−ln1a<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(3a−1),则f(n0)=e n0(a e n0+a﹣2)﹣n0>e n0−n0>2n0−n0>0,由ln(3a−1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).5.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【分析】(1)通过两次求导,利用导数研究函数的单调性极值与最值即可证明,(2)方法一、分离参数可得a=e xx2在(0,+∞)只有一个根,即函数y=a与G(x)=e xx2的图象在(0,+∞)只有一个交点.结合图象即可求得a.方法二、:①当a≤0时,f(x)=e x﹣ax2>0,f(x)在(0,+∞)没有零点..②当a>0时,设函数h(x)=1﹣ax2e﹣x.f(x)在(0,+∞)只有一个零点⇔h(x)在(0,+∞)只有一个零点.利用h′(x)=ax(x﹣2)e﹣x,可得h(x))在(0,2)递减,在(2,+∞)递增,结合函数h(x)图象即可求得a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g ′(x )=0,得x =ln 2.当x ∈(0,ln 2)时,g ′(x )<0,当x ∈(ln 2,+∞)时,g ′(x )>0, ∴g (x )≥g (ln 2)=e ln 2﹣2•ln 2=2﹣2ln 2>0, ∴f (x )在[0,+∞)单调递增,∴f (x )≥f (0)=1,解:(2)方法一、,f (x )在(0,+∞)只有一个零点⇔方程e x ﹣ax 2=0在(0,+∞)只有一个根, ⇔a =e xx 2在(0,+∞)只有一个根, 即函数y =a 与G (x )=e xx 2的图象在(0,+∞)只有一个交点. G ′(x)=e x (x−2)x 3,当x ∈(0,2)时,G ′(x )<0,当∈(2,+∞)时,G ′(x )>0, ∴G (x )在(0,2)递减,在(2,+∞)递增, 当→0时,G (x )→+∞,当→+∞时,G (x )→+∞,∴f (x )在(0,+∞)只有一个零点时,a =G (2)=e 24.方法二:①当a ≤0时,f (x )=e x ﹣ax 2>0,f (x )在(0,+∞)没有零点.. ②当a >0时,设函数h (x )=1﹣ax 2e ﹣x .f (x )在(0,+∞)只有一个零点⇔h (x )在(0,+∞)只有一个零点.h ′(x )=ax (x ﹣2)e ﹣x ,当x ∈(0,2)时,h ′(x )<0,当x ∈(2,+∞)时,h ′(x )>0,∴h (x )在(0,2)递减,在(2,+∞)递增,∴ℎ(x)min =ℎ(2)=1−4ae 2,(x ≥0). 当h (2)<0时,即a >e 24,由于h (0)=1,当x >0时,e x >x 2,可得h (4a )=1−16a 3e 4a =1−16a 3(e 2a )2>1−16a 3(2a)4=1−1a >0.h (x )在(0,+∞)有2个零点 当h (2)>0时,即a <e 24,h (x )在(0,+∞)没有零点,当h (2)=0时,即a =e 24,h (x )在(0,+∞)只有一个零点,综上,f (x )在(0,+∞)只有一个零点时,a =e 24.考点4.设而不求,虚设零点6.已知函数f (x )=e x ﹣ln (x +m ).(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x0,则当x=x0时函数取得最小值,借助于x0是导函数的零点证出f(x0)>0,从而结论得证.【解答】(Ⅰ)解:∵f′(x)=e x−1x+m,x=0是f(x)的极值点,∴f′(0)=1−1m=0,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵f′(x)=e x−1x+1=ex(x+1)−1x+1.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数f′(x)=e x−1x+2在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x0∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0,从而当x=x0时,f(x)取得最小值.由f′(x0)=0,得e x0=1x0+2,ln(x0+2)=﹣x0.故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.7.设函数f(x)=e x﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.【分析】(Ⅰ)求函数的单调区间,可先求出函数的导数,由于函数中含有字母a,故应按a的取值范围进行分类讨论研究函数的单调性,给出单调区间;(II)由题设条件结合(I),将不等式,(x﹣k)f′(x)+x+1>0在x>0时成立转化为k<x+1 e x−1+x(x>0)成立,由此问题转化为求g(x)=x+1e x−1+x在x>0上的最小值问题,求导,确定出函数的最小值,即可得出k的最大值;【解答】解:(I)函数f(x)=e x﹣ax﹣2的定义域是R,f′(x)=e x﹣a,若a≤0,则f′(x)=e x﹣a≥0,所以函数f(x)=e x﹣ax﹣2在(﹣∞,+∞)上单调递增.若a>0,则当x∈(﹣∞,lna)时,f′(x)=e x﹣a<0;当x∈(lna,+∞)时,f′(x)=e x﹣a>0;所以,f(x)在(﹣∞,lna)单调递减,在(lna,+∞)上单调递增.(II)方法一:由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1故当x>0时,(x﹣k)f′(x)+x+1>0等价于k<x+1e x−1+x(x>0)①令g(x)=x+1e x−1+x,则g′(x)=−xex−1(e x−1)2+1=ex(e x−x−2)(e x−1)2由(I)知,当a=1时,函数h(x)=e x﹣x﹣2在(0,+∞)上单调递增,而h(1)<0,h(2)>0,所以h(x)=e x﹣x﹣2在(0,+∞)上存在唯一的零点,故g′(x)在(0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2)当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0;所以g(x)在(0,+∞)上的最小值为g(α).又由g′(α)=0,可得eα=α+2所以g(α)=α+1∈(2,3)由于①式等价于k<g(α),故整数k的最大值为2.方法二:由a=1,知(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1,设g(x)=(x﹣k)(e x﹣1)+x+1,则g′(x)=(x﹣k+1)e x,若k⩽1,则当x>0 时,g′(x)>0,此时g(x)上单调递增,而g(0)=1,故当x>0 时,g(x)>1,则有g(x)>0,即(x﹣k)f′(x)+x+1>0;若k>1,则当x∈(0,k﹣1)时,g′(x)<0,当x∈(k﹣1,+∞)时,g′(x)>0,所以g(x)在(0,+∞)内的最小值为g(k﹣1)=k﹣e k﹣1+1,令h(k)=k﹣e k﹣1+1,由(Ⅰ)知,函数e x﹣x﹣2 在(0,+∞)内单调递增,则h(k)在(1,+∞)内单调递减,而h(2)>0,h(3)<0,所以当1<k⩽2 时,h(k)>0,即g(k﹣1)>0,则当x>0 时,g(x)>0,即(x﹣k)f′(x)+x+1>0,当k⩾3 时,g(x)>0 在(0,+∞)内恒不成立.综上,整数k的最大值为2.8.已知函数f(x)=e x﹣a﹣ln(x+a)(a>0).(1)证明:函数f′(x)在(0,+∞)上存在唯一的零点.(2)若函数f(x)在区间(0,+∞)上的最小值为1,求a的值.【分析】(1)求出原函数的导函数f′(x)=e x−a−1x+a,可得f′(x)在(0,+∞)上单调递增,再利用导数证明f′(0)<0,f′(a+1)=e−12a+1>0,可得函数f′(x)在(0,+∞)上存在唯一的零点;(2)由(1)可知,存在唯一的零点x0∈(0,+∞),使得f′(x0)=e x0−a−1x0+a=0,即e x0−a=1x0+a,结合(1)求出f(x)的最小值,得1x0+a−ln(x0+a)=1,显然x0+a=1是方程的解,结合y=1x−lnx是单调递减函数,可知方程1x0+a−ln(x0+a)=1有且仅有唯一解x0+a=1,把x0=1﹣a代入e x0−a=1x0+a即可求得a的值.【解答】(1)证明:∵f(x)=e x﹣a﹣ln(x+a)(a>0),∴f′(x)=e x−a−1x+a,∵e x﹣a在区间(0,+∞)上单调递增,1x+a在区间(0,+∞)上单调递减,∴f′(x)=e x−a−1x+a在(0,+∞)上单调递增,又f′(0)=e−a−1a=a−eaae a,令g(a)=a﹣e a(a>0),g′(a)=1﹣e a<0.则g(a)在(0,+∞)上单调递减,g(a)<g(0)=﹣1,故f′(0)<0.令m =a +1,则f ′(m )=f ′(a +1)=e −12a+1>0. ∴函数f ′(x )在(0,+∞)上存在唯一的零点;(2)解:由(1)可知,存在唯一的零点x 0∈(0,+∞),使得f ′(x 0)=e x 0−a −1x 0+a =0,即e x 0−a =1x 0+a .而函数f ′(x )=e x−a −1x+a 在(0,+∞)上单调递增,∴当x ∈(0,x 0)时,f ′(x )<0,f (x )单调递减,当x ∈(x 0,+∞)时,f ′(x )>0,f (x )单调递增.∴f(x)min =f(x 0)=e x 0−a −ln(x 0+a)=1x 0+a −ln(x 0+a).∴1x 0+a−ln(x 0+a)=1,显然x 0+a =1是方程的解.又∵y =1x −lnx 是单调递减函数,方程1x 0+a−ln(x 0+a)=1有且仅有唯一解x 0+a =1,把x 0=1﹣a 代入e x 0−a =1x 0+a ,得e 1﹣2a=1,即a =12.∴所求a 的值为12.9.已知函数f (x )=lnx −x+1x−1. (1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线.【分析】(1)讨论f (x )的单调性,求函数导数,在定义域内根据函数零点大致区间求零点个数,(2)运用曲线的切线方程定义可证明.【解答】解析:(1)函数f (x )=lnx −x+1x−1.定义域为:(0,1)∪(1,+∞); f ′(x )=1x +2(x−1)2>0,(x >0且x ≠1),∴f (x )在(0,1)和(1,+∞)上单调递增, ①在(0,1)区间取值有1e2,1e 代入函数,由函数零点的定义得, ∵f (1e)<0,f (1e)>0,f (1e)•f (1e)<0, ∴f (x )在(0,1)有且仅有一个零点,②在(1,+∞)区间,区间取值有e,e2代入函数,由函数零点的定义得,又∵f(e)<0,f(e2)>0,f(e)•f(e2)<0,∴f(x)在(1,+∞)上有且仅有一个零点,故f(x)在定义域内有且仅有两个零点;(2)x0是f(x)的一个零点,则有lnx0=x0+1 x0−1,曲线y=lnx,则有y′=1 x;由直线的点斜式可得曲线的切线方程,曲线y=lnx在点A(x0,lnx0)处的切线方程为:y﹣lnx0=1x0(x﹣x0),即:y=1x0x﹣1+lnx0,将lnx0=x0+1x0−1代入,即有:y=1x0x+2x0−1,而曲线y=e x的切线中,在点(ln 1x0,1x0)处的切线方程为:y−1x0=1x(x﹣ln1x0)=1x0x+1x0lnx0,将lnx0=x0+1x0−1代入化简,即:y=1x0x+2x0−1,故曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.故得证.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学函数与导数常考题型整理归纳题型一:利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a,+∞上单调递减.综上,知当a≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a+a ⎝⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0.因此,实数a 的取值范围是(0,1).【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a+a-1<0,则需要构造函数来解.【变式训练】已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求实数a的取值范围.解(1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x< 2.所以函数f(x)的单调递增区间是(-2,2).(2)因为函数f(x)在(-1,1)上单调递增,所以f′(x)≥0对x∈(-1,1)都成立,因为f′(x)=(-2x+a)e x+(-x2+ax)e x=-x2+(a-2)x+a]e x,所以-x2+(a-2)x+a]e x≥0对x∈(-1,1)都成立.因为e x>0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,即a≥x2+2xx+1=(x+1)2-1x+1=(x+1)-1x+1对x∈(-1,1)都成立.令y=(x+1)-1x+1,则y′=1+1(x+1)2>0.所以y=(x+1)-1x+1在(-1,1)上单调递增,所以y<(1+1)-11+1=32.即a≥32.因此实数a的取值范围为a≥3 2 .题型二:利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.【例2】设函数f(x)=ln x+mx,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f′(x)-x3零点的个数.解(1)由题设,当m=e时,f(x)=ln x+ex ,定义域为(0,+∞),则f′(x)=x-ex2,由f′(x)=0,得x=e.∴当x∈(0,e),f′(x)<0,f(x)在(0,e)上单调递减,当x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上单调递增,∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2,∴f(x)的极小值为2.(2)由题设g(x)=f′(x)-x3=1x-mx2-x3(x>0),令g(x)=0,得m=-13x3+x(x>0).设φ(x)=-13x3+x(x>0),则φ′(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点.∴φ(x)的最大值为φ(1)=2 3 .又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>23时,函数g(x)无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题; (2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.【变式训练】函数f (x )=(ax 2+x )e x ,其中e 是自然对数的底数,a ∈R . (1)当a >0时,解不等式f (x )≤0;(2)当a =0时,求整数t 的所有值,使方程f (x )=x +2在t ,t +1]上有解. 解 (1)因为e x >0,(ax 2+x )e x ≤0. ∴ax 2+x ≤0.又因为a >0,所以不等式化为x ⎝⎛⎭⎪⎫x +1a ≤0.所以不等式f (x )≤0的解集为⎣⎢⎡⎦⎥⎤-1a ,0. (2)当a =0时,方程即为x e x =x +2, 由于e x>0,所以x =0不是方程的解, 所以原方程等价于e x-2x-1=0.令h (x )=e x-2x-1,因为h ′(x )=e x+2x2>0对于x ∈(-∞,0)∪(0,+∞)恒成立,所以h (x )在(-∞,0)和(0,+∞)内是单调递增函数,又h(1)=e-3<0,h(2)=e2-2>0,h(-3)=e-3-13<0,h(-2)=e-2>0,所以方程f(x)=x+2有且只有两个实数根且分别在区间1,2]和-3,-2]上,所以整数t 的所有值为{-3,1}.题型三:利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题.【例3】设函数f(x)=e2x-a ln x.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a .(1)解f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).当a≤0时,f′(x)>0,f′(x)没有零点.当a>0时,设u(x)=e2x,v(x)=-a x ,因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-ax在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b满足0<b<a4且b<14时,f′(b)<0(讨论a≥1或a<1来检验),故当a>0时,f′(x)存在唯一零点.(2)证明由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0)由于2e2x0-ax0=0,所以f(x0)=a2x0+2ax0+a ln2a≥2a+a ln2a.故当a >0时,f (x )≥2a +a ln 2a.【类题通法】1.讨论零点个数的答题模板 第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数. 2.证明不等式的答题模板第一步:根据不等式合理构造函数; 第二步:求函数的最值; 第三步:根据最值证明不等式.【变式训练】 已知函数f (x )=ax +ln x (a ∈R ). (1)若a =2,求曲线y =f (x )在x =1处的切线方程; (2)求f (x )的单调区间;(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈0,1]使得f (x 1)<g (x 2),求a 的取值范围.解 (1)由已知得f ′(x )=2+1x(x >0),所以f ′(1)=2+1=3,所以斜率k =3.又切点为(1,2),所以切线方程为y -2=3(x -1),即3x -y -1=0, 故曲线y =f (x )在x =1处的切线方程为3x -y -1=0. (2)f ′(x )=a +1x =ax +1x(x >0),①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调增区间为(0,+∞). ②当a <0时,由f ′(x )=0,得x =-1a.在区间⎝ ⎛⎭⎪⎫0,-1a 上,f ′(x )>0,在区间⎝ ⎛⎭⎪⎫-1a ,+∞上,f ′(x )<0,所以函数f (x )的单调递增区间为⎝⎛⎭⎪⎫0,-1a ,单调递减区间为⎝⎛⎭⎪⎫-1a,+∞.(3)由已知得所求可转化为f (x )max <g (x )max ,g (x )=(x -1)2+1,x ∈0,1],所以g (x )max =2,由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意.当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,故f (x )的极大值即为最大值,是f ⎝⎛⎭⎪⎫-1a =-1+ln ⎝⎛⎭⎪⎫-1a =-1-ln(-a ),所以2>-1-ln(-a ),解得a <-1e3.。