高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳
高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳

题型一:利用导数研究函数的性质

利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.

【例1】已知函数f (x )=ln x +a (1-x ).

(1)讨论f (x )的单调性;

(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围.

解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .

若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增.

若a >0,则当x ∈? ??

??0,1a 时,f ′(x )>0; 当x ∈? ??

??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ??

??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;

当a >0时,f (x )在? ????0,1a 上单调递增,在? ??

??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;

当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ??

??1-1a =-ln a +a -1. 因此f ? ??

??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,

g (1)=0.

于是,当0<a <1时,g (a )<0;

当a >1时,g (a )>0.

因此,实数a 的取值范围是(0,1).

【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

【变式训练】 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).

(1)当a =2时,求函数f (x )的单调递增区间;

(2)若函数f (x )在(-1,1)上单调递增,求实数a 的取值范围.

解 (1)当a =2时,f (x )=(-x 2+2x )e x ,

所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x

=(-x 2+2)e x .

令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,

所以-x 2+2>0,解得-2

所以函数f (x )的单调递增区间是(-2,2).

(2)因为函数f (x )在(-1,1)上单调递增,

所以f ′(x )≥0对x ∈(-1,1)都成立,

因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x

=-x 2+(a -2)x +a ]e x ,

所以-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.

因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,

即a ≥x 2+2x x +1=(x +1)2-1x +1

=(x +1)-1x +1

对x ∈(-1,1)都成立. 令y =(x +1)-1x +1,则y ′=1+1(x +1)2

>0. 所以y =(x +1)-

1x +1在(-1,1)上单调递增, 所以y <(1+1)-11+1

=32.即a ≥32. 因此实数a 的取值范围为a ≥32.

题型二:利用导数研究函数零点或曲线交点问题

函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.

【例2】设函数f(x)=ln x +m x ,m ∈R .

(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;

(2)讨论函数g (x )=f ′(x )-x 3零点的个数.

解 (1)由题设,当m =e 时,f (x )=ln x +e x ,

定义域为(0,+∞),则f ′(x )=x -e x 2,由f ′(x )=0,得x =e.

∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减,

当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增,

∴当x =e 时,f (x )取得极小值f (e)=ln e +e e =2,

∴f (x )的极小值为2.

(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),

令g (x )=0,得m =-13x 3+x (x >0).

设φ(x )=-13x 3+x (x >0),

则φ′(x )=-x 2+1=-(x -1)(x +1),

当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;

当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.

∴x =1是φ(x )的唯一极值点,且是极大值点,

因此x =1也是φ(x )的最大值点.

∴φ(x )的最大值为φ(1)=23.

又φ(0)=0,结合y =φ(x )的图象(如图),

可知①当m >23时,函数g (x )无零点;

②当m =23时,函数g (x )有且只有一个零点;

③当0<m <23时,函数g (x )有两个零点;

④当m ≤0时,函数g (x )有且只有一个零点.

综上所述,当m >23时,函数g (x )无零点;

当m =23

或m ≤0时,函数g (x )有且只有一个零点;

当0<m <23时,函数g (x )有两个零点.

【类题通法】利用导数研究函数的零点常用两种方法:

(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;

(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.

【变式训练】函数f (x )=(ax 2+x )e x ,其中e 是自然对数的底数,a ∈R .

(1)当a >0时,解不等式f (x )≤0;

(2)当a =0时,求整数t 的所有值,使方程f (x )=x +2在t ,t +1]上有解.

解 (1)因为e x >0,(ax 2+x )e x ≤0.

∴ax 2+x ≤0.又因为a >0,

所以不等式化为x ? ??

??x +1a ≤0. 所以不等式f (x )≤0的解集为????

??-1a ,0. (2)当a =0时,方程即为x e x =x +2,

由于e x >0,所以x =0不是方程的解,

所以原方程等价于e x -2x -1=0.

令h (x )=e x -2x -1,

因为h ′(x )=e x +2x 2>0对于x ∈(-∞,0)∪(0,+∞)恒成立,

所以h (x )在(-∞,0)和(0,+∞)内是单调递增函数,

又h (1)=e -3<0,h (2)=e 2-2>0,h (-3)=e -3-13<0,

h (-2)=e -2>0,

所以方程f (x )=x +2有且只有两个实数根且分别在区间1,2]和-3,-2]上,所以整数t 的所有值为{-3,1}.

题型三:利用导数研究不等式问题

导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题.

【例3】设函数f (x )=e 2x -a ln x .

(1)讨论f (x )的导函数f ′(x )零点的个数;

(2)证明:当a >0时,f (x )≥2a +a ln 2a .

(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).

当a ≤0时,f ′(x )>0,f ′(x )没有零点.

当a >0时,设u (x )=e 2x ,v (x )=-a x ,

因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单

调递增.

又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),

故当a >0时,f ′(x )存在唯一零点.

(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.

故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,

所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)

由于2e2x 0-a x 0

=0, 所以f (x 0)=a 2x 0

+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .

【类题通法】1.讨论零点个数的答题模板

第一步:求函数的定义域;

第二步:分类讨论函数的单调性、极值;

第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.

2.证明不等式的答题模板

第一步:根据不等式合理构造函数;

第二步:求函数的最值;

第三步:根据最值证明不等式.

【变式训练】 已知函数f (x )=ax +ln x (a ∈R ).

(1)若a =2,求曲线y =f (x )在x =1处的切线方程;

(2)求f (x )的单调区间;

(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈0,1]使得f (x 1)

解 (1)由已知得f ′(x )=2+1x (x >0),所以f ′(1)=2+1=3,所以斜率k =3.又切点为(1,2),所以切线

方程为y -2=3(x -1),即3x -y -1=0,

故曲线y =f (x )在x =1处的切线方程为3x -y -1=0.

(2)f ′(x )=a +1x =ax +1x (x >0),

①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调增区间为(0,+∞).

②当a <0时,由f ′(x )=0,得x =-1a .

在区间? ????0,-1a 上,f ′(x )>0,在区间? ??

??-1a ,+∞上,f ′(x )<0,所以函数f (x )的单调递增区间为? ????0,-1a ,单调递减区间为? ??

??-1a ,+∞. (3)由已知得所求可转化为f (x )max

g (x )=(x -1)2+1,x ∈0,1],

所以g (x )max =2,

由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增,

值域为R ,故不符合题意.

当a <0时,f (x )在? ????0,-1a 上单调递增,在? ??

??-1a ,+∞上单调递减,故f (x )的极大值即为最大值,是f ? ????-1a =-1+ln ? ??

??-1a =-1-ln(-a ), 所以2>-1-ln(-a ),解得a <-1e 3.

高中数学导数知识点归纳

高中数学选修2----2 知识点 第一章导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数y f ( x) 在x x0处的瞬时变化率是 lim f ( x0x)f ( x ) , x0x 我们称它为函数y f ( x) 在x x0处的导数,记作 f ( x0 ) 或 y |x x, 即 f (x0 ) =lim f ( x0x) f (x0 ) x 0x 2.导数的几何意义:曲线的切线.通过图像 ,我们可以看出当点P n趋近于P时,直线PT与曲线相切。容易 知道,割线 PP n的斜率是k n f ( x n )f ( x ) ,当点 P n趋近于P时,函数y f ( x) 在x x0处的导 x n x0 数就是切线 PT 的斜率 k,即k f (x n ) f ( x0) lim f ( x0 ) x 0x n x0 3.导函数:当 x变化时, f ( x) 便是x的一个函数,我们称它为 f (x) 的导函数.y f ( x) 的导函数有 时也记作 y ,即 f ( x)lim f ( x x) f ( x) x 0x 二 .导数的计算 1)基本初等函数的导数公式: 2若 f ( x)x ,则 f (x)x 1 ; 3若 f ( x)sin x ,则 f(x)cos x 4若 f ( x)cos x ,则 f(x)sin x ; 5若6若f ( x) a x,则 f ( x) a x ln a f ( x)e x,则 f ( x) e x 7若 f ( x)log a x,则f ( x)1 x ln a 8若 f ( x)ln x ,则 f ( x)1 x 2)导数的运算法则 2.[ f (x)g( x)] f ( x)g( x) f ( x) g (x)

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

高中数学,函数图形考点及题型全归纳

第五节 函数的图象 ? 基础知识 1.利用描点法作函数图象 其基本步骤是列表、描点、连线. 首先:(1)确定函数的定义域; (2)化简函数解析式; (3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次,列表,描点,连线. 2.函数图象的变换 (1)平移变换 ①y =f (x )的图象――――――――→a >0,右移a 个单位 a <0,左移|a |个单位y =f (x -a )的图象; ②y =f (x )的图象――――――――→ b >0,上移b 个单位b <0,下移|b |个单位 y =f (x )+b 的图象. “左加右减,上加下减”,左加右减只针对x 本身,与x 的系数,无关,上加下减指的是在f (x )整体上加减. (2)对称变换 ①y =f (x )的图象―――――→关于x 轴对称 y =-f (x )的图象; ②y =f (x )的图象―――――→关于y 轴对称 y =f (-x )的图象; ③y =f (x )的图象――――――→关于原点对称 y =-f (-x )的图象; ④y =a x (a >0且a ≠1)的图象―――――――→关于直线y =x 对称 y =log a x (a >0且a ≠1)的图象. (3)伸缩变换 ①y =f (x )的图象―――――――――――――――――――→a >1,横坐标缩短为原来的1 a 纵坐标不变 01,纵坐标伸长为原来的a 倍,横坐标不变 0

高中数学各大题型详细方法总结

一三角函数 三角函数的题有两种考法,其中10%~20%的概率考解三角形,80%~90%的概率考三角函数本身。 1.解三角形 不管题目是什么,要明白,关于解三角形,只学了三个公式——正弦定理、余弦定理和面积公式。 所以,解三角形的题目,求面积的话肯定用面积公式。至于什么时候用正弦,什么时候用余弦,如果你不能迅速判断,都尝试一下也未尝不可。 2.三角函数 然后求解需要求的。套路一般是给一个比较复杂的式子,然后问这个函数的定义域、值域、周期、频率、单调性等问题。 解决方法就是,首先利用“和差倍半”对式子进行化简。化简成:

掌握以上公式,足够了。 关于题型,见下图: 二立体几何 立体几何的相关题目,稍微复杂一些,可能会卡住一些人。 这个题目一般有2~3问,一般会考查某条线的大小或者证明某个线/面与另外一个线/面平行或垂直,以及求二面角。 这类题目的解题方法有两种:空间向量法和传统法。这两种方法各有利弊。

向量法: 使用向量法的好处在于:没有任何思维含量,肯定能解出最终答案。缺点就是计算量大,且容易出错。 使用空间向量法,首先应该建立空间直角坐标系。建系结束后,根据已知条件可用向量确定每条直线。其形式为AB=(a,b,c),然后进行后续证明与求解。 箭头指的是利用前面的方法求解。如果有些同学会觉得比较乱,以下为无箭头标注的图。

传统法: 在学立体几何的时候,有很多性质定理和判定定理。但是针对高考立体几何大题而言,解题方法基本是唯一的,除了上图中6和8有两种解题方法以外,其他都是有唯一的方法。 所以,熟练掌握解题模型,拿到题目直接按照标准解法去求解便可。

最新高中数学导数知识点归纳总结

高中导数知识点归纳 1 一、基本概念 2 1. 导数的定义: 3 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也4 引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 5 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数6 )(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 7 ()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=) ()(lim )(00000 8 2 导数的几何意义:(求函数在某点处的切线方程) 9 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的10 斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为11 ).)((0'0x x x f y y -=- 12 3.基本常见函数的导数: 13 ①0;C '=(C 为常数) ②()1;n n x nx -'= 14 ③(sin )cos x x '=; ④(cos )sin x x '=-; 15 ⑤();x x e e '= ⑥()ln x x a a a '=; 16 ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 17 二、导数的运算 18 1.导数的四则运算: 19

重点高中数学导数知识点归纳总结

高中导数知识点归纳 一、基本概念 1. 导数的定义: 设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+=??)()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。 ()f x 在点0x 2 函数)(x f y =的切线的斜率, ②()1;n n x nx -'= ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 二、导数的运算 1.导数的四则运算: 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ()()()()f x g x f x g x '''±=±????

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:()()()()()() f x g x f x g x f x g x ''' ?=+ ?? ?? 常数与函数的积的导数等于常数乘以函数的导数:). ( )) ( (' 'x Cf x Cf=(C 为常数) 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: () () ()()()() () () 2 f x f x g x f x g x g x g x ' ??'' - =≠ ?? ?? 。 2.复合函数的导数 形如)] ( [x f y? = 三、导数的应用 1. ) (x f在此区间上为减函数。 恒有'f0 ) (= x,则)(x f为常函数。 2.函数的极点与极值:当函数)(x f在点 x处连续时, ①如果在 x附近的左侧)('x f>0,右侧)('x f<0,那么) (0x f是极大值; ②如果在 x附近的左侧)('x f<0,右侧)('x f>0,那么) (0x f是极小值. 3.函数的最值: 一般地,在区间] , [b a上连续的函数) (x f在] , [b a上必有最大值与最小值。函数) (x f在区间上的最值 ] , [b a值点处取得。 只可能在区间端点及极 求函数) (x f在区间上最值 ] , [b a的一般步骤:①求函数) (x f的导数,令导

【精品】高中数学必修1经典题型总结

1.集合基本运算,数轴应用 已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥ B .{|1}x x ≤ C .{|01}x x ≤≤ D .{|01}x x << 2.集合基本运算,二次函数应用 已知集合{} {}22|,032|2<≤-=≥--=x x B x x x A ,则=B A ( ) A .]1,2[-- B . )2,1[- C..]1,1[- D .)2,1[ 3.集合基本运算,绝对值运算,指数运算 设集合{}{} ]2,0[,2|,2|1||∈==<-=x y y B x x A x ,则=B A ( ) A.]2,0[ B. )3,1( C. )3,1[ D. )4,1( 4.集合基本性质,分类讨论法 已知集合A= {} 22,25,12a a a -+,且-3 ∈A ,求a 的值 5.集合基本性质,数组,子集数量公式n 2 .集合A={(x,y)|2x+y=5,x ∈N,y ∈N },则A 的非空真子集的个数为( ) A 4 B 5 C 6 D 7 6.集合基本性质,空集意识 已知集合A={x|2a-1≤x≤a+2},集合B={x|1≤x≤5},若A∩B=A,求实数a 的取值范围. 7.函数解析式,定义域,换元法,复合函数,单调性,根式和二次函数应用,数形结合法 已知x x x f 2)1(+=+,定义域为:x>0 (1)求f(x)的解析式,定义域及单调递增区间 (2)求(-1)f x 解析式,定义域及最小值

8.函数基本性质,整体思想,解方程组 设1()满足2()()2,f x f x f x x -=求)(x f 9.函数基本性质,一次函数,多层函数,对应系数法 若f [ f (x )]=2x +3,求一次函数f (x )的解析式 10.不等式计算,穿针引线法 (1-x)(21)0(1)x x x +≥- 求x 取值范围 11.函数值域,反表示法,判别式法,二次函数应用,换元法,不等式法 求函数2241x y x +=-的值域 求函数2122 x y x x +=++的值域 求函数x x y 41332-+-=的值域 93(0)4y x x x =+> 12.函数值域,分类讨论,分段函数,数形结合,数轴应用 若函数a x x x f +++=21)(的最小值为3,则实数a 的值为 (A )5或8 (B )1-或5 (C )1-或4- (D )4-或8 13.函数单调性,对数函数性质,复合函数单调性(同增异减) 函数212 ()log (4)f x x =-的单调递增区间为 A.(0,)+∞ B.(-∞,0) C.(2,)+∞ D.(-∞,2)- 下列函数中,在区间(0,)+∞上为增函数的是( ) .A y 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+

高中数学必修一函数题型方法总结

这份资料是全部内容已经完成的一部分, 写中。此资料是必修一函数部分的总结, 同学有所帮助。 路。部分题目仅仅是题目。 的题目,总结这一类题目的思路与方法。活学活用。 第一部分典型例题解析 一、函数部分 一、函数的值域:求函数值域的常用方法有 方法、判别式、换元、分离常数法、方程法)。 1、函数y=的值域是()。A、[0,+ B、[0,4) C[0,4] D(0,4) 解析:本题是指数函数与幂函数复合, 各自的取值范围。所以本题我们用直接分析法。 [) 40160 0160,4 x x x x ∴∴≥ ≤ Q>16-4<;要根号有意义,16-4 综上可知:16-4< 2、若函数() y f x =的值域是 1 ,3 2 ?? ?? ?? ,则函 1 ()() () F x f x f x =+的值域是()。 11051010 .,3.2,.,.3, 23223 A B C D ???????? ???????? ???????? 解析:本题是复合函数求值域,可变 11 (),()(),,3 2 f x t F x F t t t t ?? ===+∈?? ?? 。 方法一:定义求单调区间 21 212121 2112 212112 12 12 12 1212 12 12 11 (),()(),,3,, 2 111 ()()()()(1). 1 011 1 11(1)0 1 1111 1 (1)0 f x t F x g t t t t t t g t g t t t t t t t t t t t t t t t t t t t t t t t t t t t t t ?? ===+∈?? ?? ∴-=+-+=-- -∴? - ? - Q 令> >,∴>。当>时,求得< <,<。此时<,函数递减。 当<时,求得>>,>。 此时>,函数递增 [] 1 ,1,1,3.. 2 151010 (),(1)2,(3).()2,. 2233 x x g g g F x ?? ∴∈∈ ?? ?? ?? ∴===∴∈?? ?? 。 时函数递减.时函数递增 学了不等式的话,我们可以由基本不等式求单调 11 0,2, 1. 1 1 ,3 2 t t t t t t t ∴+≥=?= = = 此时 时,函数取得最小值。然后判断 时的函数值即可。 2 34 x y x = - 的值域是() 44 ,)(,) 33 -∞+∞ U B. 22 (,)(,) 33 -∞+∞ U C.R 24 ,)(,) 33 -∞+∞ U 分离常数法。希望同学自己探究分离常数的方法。 22882 .0,. 3439129123 22 ,, 33 x y x x x =+≠∴≠ --- ???? ∈-∞+∞ ? ? ???? Q U 24 .(34)2.. 3432 2 320. 3 22 ,, 33 x y y x x x x y y y ?∴-=?= -- ∴-≠?≠ ???? ∈-∞+∞ ? ? ???? U 2 1 22 x y x x + = ++ 的值域是()。 11 (,) 22 - B.(11 ,,) 22 ?? -∞-+∞ ?? ?? U C. 11 , 22 ?? -?? ?? ]1,1 - () 2 2 2 2 2 (21)210. 22110, , (21)210 11 =40.,. 22 ) yx y x y x x R y x y b a c y ?+-+-= ++=++≠ ∈ +-+-= ?? -≥∈-?? ?? 方程有意义。 在R上有根。 解得 讨论一元一次方程情况 1 1 (1) 1 y x x = ++ + ,参考例题2两个方法。 R的函数() y f x =的值域为[],a b,则函数

高中数学必修一常见题型归类

常见题型归类 第一章集合与函数概念 1.1集合 题型1集合与元素 题型2 集合的表示 题型3 空集与0 题型4 子集、真子集 题型5 集合运算 题型5.1 已知集合,求集合运算 题型5.2 已知集合运算,求集合 题型5.3已知集合运算,求参数 题型6 “二维”集合运算 题型6自定义的集合 1.2函数及其表示 题型1 映射概念 题型2 函数概念 题型3 同一函数 题型4 函数的表示 题型5 已知函数解析式求值 题型6 求解析式 题型7定义域 题型7.1 求函数的定义域 题型7.2 已知函数的定义域问题 题型8 值域 题型8.1 图像法求函数的值域 题型8.2 转化为二次函数,求函数的值域 题型8.3转化为反比例函数,求函数的值域 题型8.4 利用有界性,求函数的值域 题型8.5单调性法求函数的值域 题型8.6 判别式法求函数的值域

题型8.7 几何法求函数值域 题型9 已知函数值域,求系数 1.3函数的基本性质单调性 题型1 判断函数的单调区间 题型2已知函数的单调区间,求参数 题型3 已知函数的单调性,比较大小 题型4 已知函数的单调性,求范围 1.4函数的基本性质奇偶性 题型1 判断函数的奇偶性 题型2 已知函数的奇偶性,求解析式 题型3 已知函数的奇偶性,求参数 题型4 已知函数的奇偶性,求值或解集等 1.5函数的图像 题型1 函数图像 题型2 去绝对值作函数图像 题型3 利用图像变换作函数图像 题型4 已知函数解析式判断图像 题型5 研究函数性质作函数图像 题型6 函数图像的对称性 第二章基本初等函数 2.1指数函数 题型1 指数运算7 题型2指数函数概念 题型3指数函数型的定义域、值域 题型4 指数函数型恒过定点 题型5 单调性 题型6 奇偶性 题型7图像 题型8方程、不等式 2.2对数函数

高中数学导数知识点归纳总结

导 数 知识要点 1. 导数(导函数的简称)的定义:即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. Ps :二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f (x )的导数y '=f '(x )仍然是x 的函数,则y '=f '(x )的导数叫做函数y=f (x )的二阶导数。 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. ⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 3. 导数的几何意义: 就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数)

)0(2''' ≠-= ?? ? ??v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 例如:设x x x f 2sin 2)(+ =,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形. 6. 函数单调性: ⑴函数单调性的判定方法:设函数)(x f y =在某个区间可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法; 如果函数)(x f y =在区间I 恒有)('x f =0,则)(x f y =为常数. 注:①0)( x f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)( x f ,有一个点例外即x =0时f (x ) = 0,同样0)( x f 是f (x )递减的充分非必要条件. ②一般地,如果f (x )在某区间有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.

高考积分,导数知识点精华总结

定积分 一、知识点与方法: 1、定积分的概念 设函数()f x 在区间[,]a b 上连续,用分点011i i n a x x x x x b -=<<<<<<=……把区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上取任一点(1,2,,)i i n ξ=…作和式 1 ()n n i i I f x ξ== ?∑ (其中x ?为小区间长度) ,把n →∞即0x ?→时,和式n I 的极限叫做函数()f x 在区间[,]a b 上的定积分,记作:?b a dx x f )(,即?b a dx x f )(=1 lim ()n i n i f x ξ→∞ =?∑ 。 这里,a 与b 分别叫做积分下限与积分上限,区间[,]a b 叫做积分区间,函数()f x 叫做被积函数,x 叫做积分变量,()f x dx 叫做被积式。 (1)定积分的几何意义:当函数()f x 在区间[,]a b 上恒为正时,定积分()b a f x dx ?的几何意 义是以曲线()y f x =为曲边的曲边梯形的面积。 (2)定积分的性质 ① ??=b a b a dx x f k dx x kf )()((k 为常数);② ???± = ±b a b a b a dx x g dx x f dx x g x f )()()()(; ③???+ = b a c a b c dx x f dx x f dx x f )()()((其中a c b <<)。 2、微积分基本定理 如果()y f x =是区间[,]a b 上的连续函数,并且()()F x f x '=,那么: ()()|()()b b a a f x dx F x F b F a ==-? 3、定积分的简单应用 (1) 定积分在几何中的应用:求曲边梯形的面积由三条直线 ,()x a x b a b ==<,x 轴及一条曲线()(()0)y f x f x =≥围成的 曲边梯的面积? = b a dx x f S )(。 如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高考数学题型全归纳

2010-2016高考理科数学题型全归纳题型1、集合的基本概念 题型2、集合间的基本关系 题型3、集合的运算 题型4、四种命题及关系 题型5、充分条件、必要条件、充要条件的判断与证明 题型6、求解充分条件、必要条件、充要条件中的参数范围 题型7、判断命题的真假 题型8、含有一个量词的命题的否定 题型9、结合命题真假求参数的范围 题型10、映射与函数的概念 题型11、同一函数的判断 题型12、函数解析式的求法 题型13、函数定义域的求解 题型14、函数定义域的应用 题型15、函数值域的求解 题型16、函数的奇偶性 题型17、函数的单调性(区间) 题型18、函数的周期性 题型19、函数性质的综合 题型20、二次函数、一元二次方程、二次不等式的关系

题型21、二次方程ax2+bx+c=0(a≠0)的实根分布及条件题型22、二次函数"动轴定区间"、"定轴动区间"问题 题型23、指数运算及指数方程、指数不等式 题型24、指数函数的图像及性质 题型25、指数函数中的恒成立的问题 题型26、对数运算及对数方程、对数不等式 题型27、对数函数的图像与性质 题型28、对数函数中的恒成立问题 题型29、幂函数的定义及基本性质 题型30、幂函数性质的综合应用 题型31、判断函数的图像 题型32、函数图像的应用 题型33、求函数的零点或零点所在区间 题型34、利用函数的零点确定参数的取值范围 题型35、方程根的个数与函数零点的存在性问题 题型36、函数与数列的综合 题型37、函数与不等式的综合 题型38、函数中的创新题 题型39、导数的定义 题型40、求函数的导数 题型41、导数的几何意义 题型42、利用原函数与导函数的关系判断图像

高中数学函数知识点归纳及常考题型

《函数》知识要点和基本方法 1.映射定义:设非空集合A,B ,若对集合A 中任一元素a ,在集合B 中有唯一元素b 与之对应,则称从A 到B 的对应为映射。若集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 可建立n m 个映射。 2.函数定义:函数就是定义在非空数集A,B 上的映射f 。此时称数集A 为函数f(x)的定义域,集合C={f(x)|x ∈A}为值域,且C ?B 。 3.定义域、对应法则和值域构成了函数的三要素。 相同函数的判断方法:①定义域、值域;②对应法则。(两点必须同时具备) 4.求函数的定义域常涉及到的依据为:①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义;⑥正切函数角的终边不在y 轴上。 5.函数解析式的求法:①配凑法; ②换元法: ③待定系数法; ④赋值法;⑤消元法等。 6.函数值域的求法:①配方法;②分离常数法;③逆求法;④换元法;⑤判别式法;⑥单调性法等。 7.函数单调性及证明方法: 如果对于定义域内某个区间上的任意..两个自变量的值x 1,x 2,当x 1f(x 2)),那么就说f(x)在这个区间上是增函数(或减函数)。 第一步:设x 1、x 2是给定区间内的两个任意的值,且x 1

高中数学极坐标与参数方程高考题型全归纳题型部分

2019极坐标与参数方程高考题型全归纳 一.题型部分 (一) 极坐标与直角坐标的转化、参数方程与普通方程的转化,极坐标与参数 方程的转化 1. 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y ,则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ= 。 2. 参数方程: 直线参数方程:0 0cos () sin x x t t y y t θ θ =+?? =+?为参数 00(,) x y 为直线上的定点, t 为直线上任一点(,)x y 到定点00(,)x y 的数量; 圆锥曲线参数方程: 圆的参数方程:cos ()sin x a r y b r θθθ =+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆2 2221x y a b +=的参数方程是cos ()sin x a y b θ θθ =??=?为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ =?? =?为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=? =?为参数 (二)有关圆的题型 题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= ,算出d ,在与半径

比较。 题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法) 思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2 2 00B A C By Ax d +++= 第二步:判断直线与圆的位置关系 第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d = 题型三:直线与圆的弦长问题 弦长公式2 22 d r l -=,d 是圆心到直线的距离 延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义” (三)距离的最值: ---用“参数法” 1.曲线上的点到直线距离的最值问题 2.点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式 ③辅助角:利用三角函数辅助角公式进行化一 例如:在直角坐标系xOy 中,曲线1 C 的参数方程为()sin x y α αα?=?? =?? 为参数,以坐标原 点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为

高中数学导数知识点归纳

导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于 P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于 P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作y ',即0 ()() ()lim x f x x f x f x x ?→+?-'=? 例一: 若2012)1(/=f ,则x f x f x ?-?+→? )1()1(l i m 0 = ,x f x f x ?--?+→?) 1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 二.导数的计算 1)基本初等函数的导数公式: 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '=

高考数学题型全归纳:数学家高斯的故事(含答案)

数学家高斯的故事 高斯(Gauss,1777—1855)、著名的德国数学家。1777年4月30日出生在德国的布伦兹维克。父亲是一个砌砖工人,没有什么文化。 还在少年时代、高斯就显示出了他的数学才能。据说、一天晚上,父亲在计算工薪账目、高斯在旁边指出了其中的错误、令父亲大吃一惊。10岁那年、有一次老师让学生将1、2、3、…连续相加、一直加到100、即1+2+3+…+100。高斯没有像其他同学那样急着相加、而是仔细观察、思考、结果发现: 1+100=101、2+99=101、3+98=101、…、50+51=101一共有50个101、于是立刻得到: 1+2+3+…+98+99+100=50×101=5050 老师看着小高斯的答卷、惊讶得说不出话。其他学生过了很长时间才交卷、而且没有一个是算对的。从此、小高斯“神童”的美名不胫而走。村里一位伯爵知道后、慷慨出钱资助高斯、将他送入附近的最好的学校进行培养。 中学毕业后、高斯进入了德国的哥廷根大学学习。刚进入大学时、还没立志专攻数学。后来听了数学教授卡斯特纳的讲课之后、决定研究数学。卡斯特纳本人并没有多少数学业绩、但他培养高斯的成功、足以说明一名好教师的重要作用。 从哥廷根大学毕业后、高斯一直坚持研究数学。1807年成为该校的数学教授和天文台台长、并保留这个职位一直到他逝世。 高斯18岁时就发明了最小二乘法、19岁时发现了正17边形的尺规作图法、并给出可用尺规作出正多边形的条件、解决了这个欧几里得以来一直悬而未决的问题。为了这个发现、在他逝世后、哥廷根大学为他建立了一个底座为17边形棱柱的纪念像。

对代数学、高斯是严格证明代数基本定理的第一人。他的《算术研究》奠定了近代数论的基础、该书不仅在数论上是划时代之作、就是在数学史上也是不可多得的经典著作之一。高斯还研究了复数、提出所有复数都可以用平面上的点来表示、所以后人将“复平面”称为高斯平面、高斯还利用平面向量与复数之间的一一对应关系、阐述了复数的几何加法与乘法、为向量代数学奠定了基础。1828年高斯出版《关于曲面的一般研究》、全面系统地阐述了空间曲面的微分几何学。并提出了内蕴曲面理论。高斯的数学研究几乎遍及当时的所有数学领域、而且在不少方面的研究走在了时代的前列。他在数学历史上的影响可以和阿基米德、牛顿、欧拉并列。 高斯一生共有155篇论文。他治学严谨、把直观的概念作为入门的向导、然后试图在完整的逻辑体系上建立其数学的理论。他为人谨慎、他的许多数学思想与结果从不轻易发表、而且、他的论文很少详细写明思路。所以有的人说:“这个人、像狐狸似的、把沙土上留下的足迹、用尾巴全部扫掉。”

相关文档
最新文档