2015高考复习专题五 函数与导数 含近年高考试题

2015高考复习专题五 函数与导数 含近年高考试题
2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数

在解题中常用的有关结论(需要熟记):

(1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。

(3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。

(4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程

()0f x '=在区间I 上有实根且为非二重根。

(若()f x '为二次函数且I=R ,则有0?>)。

(6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或

()f x '0≤在I 上恒成立

(7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min

()()0f x g x ->

(10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >.

若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B ,

若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。

(12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大

于0,极小值小于0. (13)证题中常用的不等式:

① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x

e

x -≥-⑤

ln 1

(1)12

x x x x -<>+⑥ 22

ln 11(0)22x x x x <->

考点一:导数几何意义:

角度一 求切线方程

1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′????π4,f ′(x )是f (x )的导函数,则过曲线y =x 3

上一点P (a ,b )的切线方程为( )

A .3x -y -2=0

B .4x -3y +1=0

C .3x -y -2=0或3x -4y +1=0

D .3x -y -2=0或4x -3y +1=0

解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a =f ′????π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0.

角度二 求切点坐标

2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )

A .(0,1)

B .(1,-1)

C .(1,3)

D .(1,0)

解析:选C 由题意知y ′=3

x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).

角度三 求参数的值

3.已知f (x )=ln x ,g (x )=12x 2+mx +7

2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为

(1,f (1)),则m 等于( )

A .-1

B .-3

C .-4

D .-2

解析:选D ∵f ′(x )=1

x ,

∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,

∴切线l 的方程为y =x -1.

g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+7

2,m <0,

于是解得m =-2,故选D.

考点二:判断函数单调性,求函数的单调区间。

[典例1]已知函数f (x )=x 2-e x 试判断f (x )的单调性并给予证明. 解:f (x )=x 2-e x ,f (x )在R 上单调递减,

f ′(x )=2x -e x ,只要证明f ′(x )≤0恒成立即可. 设

g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x , 当x =ln 2时,g ′(x )=0, 当x ∈(-∞,ln 2)时,g ′(x )>0, 当x ∈(ln 2,+∞)时,g ′(x )<0.

∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0, ∴f ′(x )<0恒成立, ∴f (x )在R 上单调递减.

[典例2] (2012·北京高考改编)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .

(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. [解] (1)f ′(x )=2ax ,g ′(x )=3x 2+b , 由已知可得????

?

f (1)=a +1=c ,

g (1)=1+b =c ,

2a =3+b ,

解得a =b =3.

(2)令F (x )=f (x )+g (x )=x 3

+ax 2

+a 24x +1,F ′(x )=3x 2

+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a 6,

∵a >0,∴x 1

由F ′(x )>0得,x <-a 2或x >-a

6;

由F ′(x )<0得,-a 2

6

.

∴单调递增区间是????-∞,-a 2,????-a 6,+∞;单调递减区间为????-a 2,-a 6. [针对训练]

(2013·重庆高考)设f (x ) =a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;

(2)求函数f (x )的单调区间与极值.

解:(1)因为f (x )=a (x -5)2+6ln x ,故f ′(x )=2a (x -5)+6

x

.

令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )·(x -1),由点(0,6)在切线上可得6-16a =8a -6,

故a =12

.

(2)由(1)知,f (x )=1

2(x -5)2+6ln x (x >0),

f ′(x )=x -5+6x =(x -2)(x -3)

x .

令f ′(x )=0,解得x 1=2,x 2=3.

当03时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2

上为减函数.

由此可知f (x )在x =2处取得极大值f (2)=9

2+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.

考点三:已知函数的单调性求参数的范围

[典例] (2014·山西诊断)已知函数f (x )=ln x -a 2x 2+ax (a ∈R). (1)当a =1时,求函数f (x )的单调区间;

(2)若函数f (x )在区间(1,+∞)上是减函数,求实数a 的取值范围. [解] (1)当a =1时,f (x )=ln x -x 2+x ,其定义域是(0,+∞), f ′(x )=1

x -2x +1=-2x 2-x -1x

令f ′(x )=0,即-2x 2-x -1x =0,解得x =-1

2或x =1.

∵x >0,∴x =1.

当00;当x >1时,f ′(x )<0.

∴函数f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减. (2)显然函数f (x )=ln x -a 2x 2+ax 的定义域为(0,+∞), ∴f ′(x )=1x -2a 2

x +a =-2a 2x 2+ax +1x =-(2ax +1)(ax -1)x .

①当a =0时,f ′(x )=1

x

>0,

∴f (x )在区间(1,+∞)上为增函数,不合题意.

②当a >0时,f ′(x )≤0(x >0)等价于(2ax +1)〃(ax -1)≥0(x >0),即x ≥1

a ,

此时f (x )的单调递减区间为????1a ,+∞. 由?????

1a ≤1,

a >0,

得a ≥1. ③当a <0时,f ′(x )≤0(x >0)等价于(2ax +1)〃(ax -1)≥0(x >0),即x ≥-

1

2a

,此时f (x )的单调递减区间为???

?-12a ,+∞. 由?????

-12a ≤1,a <0,

得a ≤-1

2

.

综上,实数a 的取值范围是????-∞,-1

2∪[1,+∞). [针对训练]

(2014·荆州质检)设函数f (x )=13x 3-a

2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.

(1)求b ,c 的值;

(2)若a >0,求函数f (x )的单调区间;

(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围. 解:(1)f ′(x )=x 2-ax +b ,

由题意得????? f (0)=1,f ′(0)=0,即?????

c =1,b =0.

(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0, 当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0.

所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,

依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a

x max =-22, 当且仅当“x =2

x ”即x =-2时等号成立,

所以满足要求的a 的取值范围是(-∞,-22). 考点四:用导数解决函数的极值问题

[典例] (2013·福建高考节选)已知函数f (x )=x -1+a

e x (a ∈R ,e 为自然对数的底数).

(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.

[解] (1)由f (x )=x -1+a e x ,得f ′(x )=1-a

e x .

又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-a

e =0,解得a =e.

(2)f ′(x )=1-a

e

x ,

①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a . x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值, 且极小值为f (ln a )=ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;

当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值. [针对训练]

设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图像关于直线x =-1

2对称,且f ′(1)=0.

(1)求实数a ,b 的值;

(2)求函数f (x )的极值.

解:(1)因为f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b , 从而f ′(x )=6????x +a 62+b -a 2

6, 即y =f ′(x )关于直线x =-a

6对称.

从而由题设条件知-a 6=-1

2,即a =3.

又由于f ′(1)=0,即6+2a +b =0, 得b =-12.

(2)由(1)知f (x )=2x 3+3x 2-12x +1, 所以f ′(x )=6x 2+6x -12=6(x -1)(x +2), 令f ′(x )=0, 即6(x -1)(x +2)=0, 解得x =-2或x =1,

当x ∈(-∞,-2)时,f ′(x )>0, 即f (x )在(-∞,-2)上单调递增; 当x ∈(-2,1)时,f ′(x )<0, 即f (x )在(-2,1)上单调递减; 当x ∈(1,+∞)时,f ′(x )>0, 即f (x )在(1,+∞)上单调递增.

从而函数f (x )在x =-2处取得极大值f (-2)=21, 在x =1处取得极小值f (1)=-6. 考点五运用导数解决函数的最值问题 [典例] 已知函数f (x )=ln x -ax (a ∈R).

(1)求函数f (x )的单调区间;

(2)当a >0时,求函数f (x )在[1,2]上的最小值. [解] (1)f ′(x )=1

x -a (x >0),

①当a ≤0时,f ′(x )=1

x -a >0,

即函数f (x )的单调增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1

a ,

当0

a 时,f ′(x )=1-ax x >0;

当x >1

a 时,f ′(x )=1-ax x <0,

故函数f (x )的单调递增区间为???

?0,1

a ,

单调递减区间为???

?1

a ,+∞. (2)①当1

a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,∴f (x )的最小值是f (2)=ln 2-2a .

②当1a ≥2,即0

2

时,函数f (x )在区间[1,2]上是增函数,∴f (x )的最小值是f (1)=-a .

③当1<1a <2,即1

2

2

当0

设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-1

2相切,

(1)求实数a ,b 的值;

(2)求函数f (x )在????

1e ,e 上的最大值. 解:(1)f ′(x )=a

x

-2bx ,

∵函数f (x )在x =1处与直线y =-1

2相切,

∴????? f ′(1)=a -2b =0,f (1)=-b =-1

2,解得?????

a =1,

b =12. (2)f (x )=ln x -12x 2,f ′(x )=1

x -x =1-x 2x ,

∵当1e ≤x ≤e 时,令f ′(x )>0得1

e

≤x <1;

令f ′(x )<0,得1

2. 考点六:用导数解决函数极值、最值问题

[典例] (2013·北京丰台高三期末)已知函数f (x )=ax 2+bx +c

e x (a >0)的导函数y =

f ′(x )的两个零点为-3和0.

(1)求f (x )的单调区间;

(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. [解] (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x

(e x )2

=-ax 2+(2a -b )x +b -c e x

令g (x )=-ax 2+(2a -b )x +b -c ,

因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同. 又因为a >0,所以-30,即f ′(x )>0,

当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞).

(2)由(1)知,x =-3是f (x )的极小值点,所以有 ?????

9a -3b +c e -3

=-e 3

,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,

解得a =1,b =5,c =5, 所以f (x )=x 2+5x +5e x

.

因为f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,

故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者.

而f (-5)=5e

-5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5. [针对训练]

已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =2

3时,y =f (x )有极

值.

(1)求a ,b ,c 的值;

(2)求y =f (x )在[-3,1]上的最大值和最小值.

解:(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .当x =1时,切线l 的斜率为3,可得2a +b =0,① 当x =2

3时,y =f (x )有极值,则f ′????23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1, 所以f (1)=4.

所以1+a +b +c =4.所以c =5.

(2)由(1),可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解之,得x 1=-2,x 2=23.

当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:

x -3 (-3,-2)

-2 ?

???-2,23

2

3 ???

?23,1 1 f ′(x ) + + 0 - 0 + + f (x )

8

13

9527

4

所以y =f (x )在[-3,1]上的最大值为13,最小值为95

27.

考点七:利用导数研究恒成立问题及参数求解

[典例] (2013·全国卷Ⅰ)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.

(1)求a ,b ,c ,d 的值;

(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围. [解] (1)由已知得f (0)=2,g (0)=2, f ′(0)=4,g ′(0)=4.

而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.

(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1). 设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1. 令F ′(x )=0得x 1=-ln k ,x 2=-2.

(ⅰ)若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0,即F (x )在(-2,x 1)上单调递减,在(x 1,+∞)上单调递增,故F (x )在[-2,+∞)上的最小值为F (x 1).而F (x 1)=2x 1+2

-x 21-4x 1-2=-x 1(x 1+2)≥0.

故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.

(ⅱ)若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -

2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)上单调递

增,

而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.

(ⅲ)若k >e 2,则F (-2)=-2k e -

2+2=-2e -

2〃(k -e 2)<0.从而当x ≥-2时,f (x )≤kg (x )不可能恒成立.

综上,k 的取值范围是[1,e 2]. [针对训练]

设函数f (x )=1

2x 2+e x -x e x .

(1)求f (x )的单调区间;

(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(-∞,+∞), ∵f ′(x )=x +e x -(e x +x e x )=x (1-e x ), 若x =0,则f ′(x )=0;

若x <0,则1-e x >0,所以f ′(x )<0; 若x >0,则1-e x <0,所以f ′(x )<0. ∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞).

(2)由(1)知,f (x )在[-2,2]上单调递减. 故[f (x )]min =f (2)=2-e 2,

∴m <2-e 2时,不等式f (x )>m 恒成立. 故m 的取值范围为(-∞,2-e 2). 考点八、利用导数证明不等式问题

[典例] (2013·河南省三市调研)已知函数f (x )=ax -e x (a >0). (1)若a =1

2,求函数f (x )的单调区间;

(2)当1≤a ≤1+e 时,求证:f (x )≤x . [解] (1)当a =12时,f (x )=1

2x -e x .

f ′(x )=1

2-e x ,令f ′(x )=0,得x =-ln 2.

当x <-ln 2时,f ′(x )>0; 当x >-ln 2时,f ′(x )<0,

∴函数f (x )的单调递增区间为(-∞,-ln 2),单调递减区间为(-ln 2,+∞). (2)证明:法一:令F (x )=x -f (x )=e x -(a -1)x , (ⅰ)当a =1时,F (x )=e x >0, ∴f (x )≤x 成立.

(ⅱ)当1

∴当x ln(a -1)时,F ′(x )>0,

∴F (x )在(-∞,ln (a -1))上单调递减,在(ln(a -1),+∞)上单调递增. ∴F (x )≥F (ln(a -1))=e ln(a -1)

-(a -1)·ln(a -1)=(a -1)[1-ln(a -1)],

∵1

∴a -1>0,1-ln(a -1)≥1-ln [(1+e)-1]=0, ∴F (x )≥0,即f (x )≤x 成立. 综上,当1≤a ≤1+e 时,有f (x )≤x . 法二:令g (a )=x -f (x )=-xa +x +e x ,

只要证明g (a )≥0在1≤a ≤1+e 时恒成立即可. g (1)=-x +x +e x =e x >0,①

g (1+e)=-x ·(1+e)+x +e x =e x -e x , 设h (x )=e x -e x ,则h ′(x )=e x -e , 当x <1时,h ′(x )<0;当x >1时,h ′(x )>0,

∴h (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增, ∴h (x )≥h (1)=e 1-e·1=0, 即g (1+e)≥0.②

由①②知,g (a )≥0在1≤a ≤1+e 时恒成立. ∴当1≤a ≤1+e 时,有f (x )≤x . [针对训练]

(2014·东北三校联考)已知函数f (x )=12x 2-1

3ax 3(a >0),函数g (x )=f (x )+e x (x -1),函数g (x )的导函数为g ′(x ).

(1)求函数f (x )的极值; (2)若a =e ,

(ⅰ)求函数g (x )的单调区间;

(ⅱ)求证:x >0时,不等式g ′(x )≥1+ln x 恒成立. 解:(1)f ′(x )=x -ax 2=-ax ????x -1a , ∴当f ′(x )=0时,x =0或x =1

a ,又a >0,

∴当x ∈(-∞,0)时,f ′(x )<0;当x ∈????0,1

a 时, f ′(x )>0;当x ∈????1

a ,+∞时,f ′(x )<0, ∴f (x )的极小值为f (0)=0, f (x )的极大值为f ????1a =1

6a 2.

(2)∵a =e ,∴g (x )=12x 2-1

3e x 3+e x (x -1),

g ′(x )=x (e x -e x +1).

(ⅰ)记h (x )=e x -e x +1,则h ′(x )=e x -e , 当x ∈(-∞,1)时,h ′(x )<0,h (x )是减函数; x ∈(1,+∞)时,h ′(x )>0,h (x )是增函数, ∴h (x )≥h (1)=1>0, 则在(0,+∞)上,g ′(x )>0; 在(-∞,0)上,g ′(x )<0,

∴函数g (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0). (ⅱ)证明:x >0时,g ′(x )=x (e x -e x +1)≥1+ln x ?e x -e x +1≥1+ln x

x ,

由(ⅰ)知,h (x )=e x -e x +1≥1,

记φ(x )=1+ln x -x (x >0),则φ′(x )=1-x

x ,

在区间(0,1)上,φ′(x )>0,φ(x )是增函数; 在区间(1,+∞)上,φ′(x )<0,φ(x )是减函数, ∴φ(x )≤φ(1)=0,即1+ln x -x ≤0,1+ln x

x ≤1,

∴e x -e x +1≥1≥1+ln x

x

,即g ′(x )≥1+ln x 恒成立.

最新高职高考三角函数专题测试

<3 2 10、若 X [二,2 订 cosx = ,则x 等于 咼职咼考二角函数专题测试 选择题:(每小题5分,计75分) 1、已知角a 的终边通过点 P(-3,4),则sin a - cosa - tana = ( 23 17 1 17 A.- B. C.- D.- 15 15 15 15 2、sin 240 0的值是 1 1 3 A.- B.: 2 2 C . -_2" ° T 3、y-丄si n 2 x 的最小正周期是 2 兀 A.— B. n C.2 n D. 4 n 2 4、设 tana =2,且 sin :::0,则 cosa 的值等于 () B. 1 5 1 A. C. D. 5 5 5 5 5、函数y=c ;OS 2(2X )是 A .周期为 -的奇函数 B.周期为- 的偶函数 2 2 C.周期为 n 的奇函数 D.周期为 n 的偶函 数 1 、3 1 .3 A.— B. C. 一一 D.- — 2 2 2 2 71 n , 6、 命题甲:sin x=1,命题乙:x=,则甲是乙的 2 A.充分非必要条件 B.必要非充分条件 C.充分必要条件 D.既非充分,也非充要条件 7、下列函数在定义域是偶函数的是 A. y=cosx B. y=tanx C. lg x D .sinx JI &函数y = tan(3x ?—)的最小正周期为 2兀 A.3 n B. n C. ---- 3 9、函数y=cos3x- 3 sin3x 的最小正周期和最大值分别是 2 二 2 二 A. , 1 B. , 2 C.2n , 2 3 3 ( D.— 3 D.2 n , 1

专题5 导数的应用-含参函数的单调性讨论(答案)

〖专题5〗导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1]讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f <<<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1]讨论x a x x f ln )(+=的单调性,求其单调区间.

导数应用:含参函数的单调性讨论(二)

导数应用:含参函数的单调性讨论(二) 对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。 一、典型例题 例1、已知函数3 2 ()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性. 分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('时,/2 ()3(21)f x ax x =++的图像开口向上,36(1)a ?=- I) 当136(1)0,a a ≥?=-≤时,时,/ ()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <时,时,方程/ ()0f x =的两个根分别为 1211x x a a ---+= =且12,x x < 所以函数()f x 在1(, a --∞,1(,)a -+∞上单调递增, 在11( a a --+上单调递减; (3) 当0a <时,/2 ()3(21)f x ax x =++的图像开口向下,且36(1)0a ?=-> 方程/ ()0f x =的两个根分别为1211,,x x a a --= =且12,x x > 所以函数()f x 在1(, a --∞,1()a -+∞上单调递减, 在11( )a a -+--上单调递增。 综上所述,当0a <时,所以函数()f x 在11( ,a a --上单调递增, 在1(, a -+-∞,1(,)a -+∞上单调递减; 当0a =时,()f x 在1(,]2-∞-上单调递增,在1 [,)2 -+∞上单调递减; 当01a <<时,所以函数()f x 在(-∞,)+∞上单调递增, 在上单调递减; 当1a ≥时,函数()f x 在R 上递增; 小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。

高中数学含参导数问题

由参数引起的案—— 含参导数问题 一、已知两个函数k x x x f -+=168)(2 ,x x x x g 452)(2 3 ++=,按以下条件求k 的范围。 (1)对于任意的]3,3[-∈x ,都有)()(x g x f ≤成立。 (构造新函数,恒成立问题) (2)若存在成立。,使得)()(]3,3[000x g x f x ≤-∈ (与恒成立问题区别看待) (3)若对于任意的).()(]3,3[2121x g x f x x ≤-∈,都有、 (注意21,x x 可以不是同一个x ) (4)对于任意的)()(],3,3[]3,3[1001x f x g x x =-∈-∈使得,总存在。 (注意:哪个函数的值域含于哪个函数的值域取决于:谁的x 是任意取的,谁的x 是总存在的。) (5)若对于任意0x []3,3∈-,总存在相应的[]12,3,3x x ∈-,使得102()()()g x f x g x ≤≤成立; (与(4)相同) 二、已知函数()2 1ln (1)2 f x a x x a x =+-+, a R ∈ (1)函数f (x )在区间(2,﹢∞)上单调递增,则实数a 的取值范围是 ,

(2)函数f (x )在区间(2,3)上单调,则实数a 的取值范围是 . 三、设函数3()3f x x ax =- (a R ∈),若对于任意的[]1,1-∈x 都有()1f x ≤成立,求实数a 的取值范围. 四、含参数导数问题的三个基本讨论点 一、 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),从而引起讨论。 二、 求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根 是否落在定义域内,从而引起讨论。 三、 求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落 在定义域内,但不知这些实根的大小关系,从而引起讨论。 例1、设函数3221 ()23()3 f x x ax a x a a R =-+-+∈.求函数)(x f 的单调区间和极值; (可因式分解,比较两根大小,注意别丢两根相等情况) 解: 2 2 ()4-3()(3)f x x ax a x a x a '=-+=--- ……………………………5分 0a =时,()0f x '≤,(,)-∞∞是函数的单调减区间;无极值;……………6分 0a >时,在区间(,),(3,)a a -∞∞上,()0f x '<; 在区间(,3)a a 上,()0f x '>, 因此(,),(3,)a a -∞∞是函数的单调减区间,(,3)a a 是函数的单调增区间, 函数的极大值是(3)f a a =;函数的极小值是3 4()3 f a a a =- ;………………8分 0a <时,在区间(,3),(,)a a -∞∞上,()0f x '<; 在区间(3,)a a 上,()0f x '>, 因此(,3),(,)a a -∞∞是函数的单调减区间,(3,)a a 是函数的单调增区间 函数的极大值是3 4()3 f a a a =- ,函数的极小值是(3)f a a = ………………10分 例1变式.若2 '()(1)f x x a x a =-++,若(0,)x ∈+∞,讨论()f x 的单调性。(比较根大小,考虑定义域)

函数与导数专题试卷(含答案)

高三数学函数与导数专题试卷 说明:1.本卷分第Ⅰ卷(选择题),第Ⅱ卷(填空题与解答题),第ⅠⅡ卷的答案写在答题卷的答案纸上,学生只要交答题卷. 第Ⅰ卷 一.选择题(10小题,每小题5分,共50分) (4)()f x f x +=,当(0,2)x ∈时,()2f x x =+,则(7)f =( ) A . 3 B . 3- C . D . 1- 2.设A ={x ||x |≤3},B ={y |y =-x 2+t },若A ∩B =?,则实数t 的取值范围是( ) A .t <-3 B .t ≤-3 C .t >3 D .t ≥3 3.设0.3222,0.3,log (0.3)(1)x a b c x x ===+>,则,,a b c 的大小关系是 ( ) A .a b c << B .b a c << C .c b a << D .b c a << 4.函数x x f +=11)(的图像大致是( ) 5.已知直线ln y kx y x ==是的切线,则k 的值为( ) A. e B. e - C. 1e D. 1e - 6.已知条件p :x 2+x-2>0,条件q :a x >,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .1≥a B .1≤a C .1-≥a D.3-≤a 7.函数3()2f x x ax =+-在区间(1,)+∞上是增函数,则a 的取值范围是( ) A. [3,)+∞ B. [3,)-+∞ C. (3,)-+∞ D. (,3)-∞- 8. 已知函数f (x )=log 2(x 2-2x -3),则使f (x )为减函数的区间是( ) A .(-∞,-1) B .(-1,0) C .(1,2) D .(-3,-1)

2016高考三角函数专题测试题 及答案

高一数学必修4第一章三角函数单元测试班级姓名座号评分 一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合 题目要求的.(48分) 1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是() A.B=A∩C B.B∪C=C C.AC D.A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是() A. B.- C. D.- 3、已知的值为() A.-2 B.2 C. D.- 4、已知角的余弦线是单位长度的有向线段;那么角的终边() A.在轴上 B.在直线上 C.在轴上 D.在直线或上 5、若,则等于 ( ) A. B. C. D. 6、要得到的图象只需将y=3sin2x的图象()A.向左平移个单 位 B.向右平移个单位C.向左平移个单位D.向右平移个单位 7、如图,曲线对应的函数是() A.y=|sin x| B.y=sin|x| C.y=-sin|x| D.y=-|sin x| 8、化简的结果是 ( ) A. B. C. D. 9、为三角形ABC的一个内角,若,则这个三角形的形状为() A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数的图象() A.关于原点对称B.关于点(-,0)对称C.关于y轴对称D.关于直线x=对称 11、函数是 () A.上是增函数 B.上是减函数

C.上是减函数 D.上是减函数 12、函数的定义域是 () A. B. C. D. 二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知的取值范围是 . 14、为奇函数, . 15、函数的最小值是. 16、已知则 . 三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值 18、(8分)已知,求的值. 19、(8分)绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体 W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm? 20、(10分)已知α是第三角限的角,化简 21、(10分)求函数在时的值域(其中为常数)

导数与函数、方程、不等式综合含参问题处理方法归纳总结学生版

含参问题归纳总结 一、与函数零点(或者方程的根)有关的参数范围问题 函数的零点,即的根,亦即函数的图象与轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题),进而确定参数的取值范围. 题型1.有关()x f 型 1.已知函数f(x)= e x x ?a ,g(x)= 3(e x ?ax) e x ,若方程f(x)=g(x)有4个不同的 实数解,则实数a 的取值范围是 A . (?∞,e ) B . (e,3)∪(3,+∞) C . (?∞,0)∪(e,+∞) D . (e,+∞) 2.若函数f(x)={e x ,?x ≥0?x 2+2x +1,?x <0 (其中e 是自然对数的底数),且函数y = |f(x)|?mx 有两个不同的零点,则实数m 的取值范围是( ) A . (0,1) B . (0,e) C . (?∞,0)∪(1,+∞) D . (?∞,0)∪(e,+∞) 3.设函数f (x )是定义在R 上周期为2的函数,且对任意的实数x ,恒f (x )? f (?x )=0,当x ∈[?1,0]时,f (x )=x 2.若 g (x )=f (x )?log a x 在x ∈(0,+∞)上有且仅有三个零点,则a 的取值范围为( ) A . [3,5] B . [4,6] C . (3,5) D . (4,6) ()f x ()0f x =()f x x x

4.已知函数f(x)={xlnx?2x,x>0 x2+3 2 x,x≤0,若方程f(x)?mx+1=0恰有四个不 同的实数根,则实数m的取值范围是( ( A.(?1,?1 3)B.(?1,?1 2 )C.(?3 4 ,?1 2 )D.(?2,?1 2 ) 5.设f(x)=lnx+1 x ,若函数y=|f(x)|?ax2恰有3个零点,则实数a的取值范围为() A.(0,e2 3)B.(e2 3 ,e)C.(1 e ,1)D.(0,1 e )∪{e2 3 } 6.已知函数f(x)={x+1 x?1 ,x>1 2?e x,x≤1 ,若函数g(x)=f(x)?m(x?1)有两个零点,则实数m的取值范围是 7.若函数f(x)={ 2x+2?a,x≤0 x3?ax+2,x>0 有三个不同的零点,则实数a的取值范围 是_____.

运用导数解决含参问题

运用导数解决含参问题 运用导数解决含参函数问题的策略 以函数为载体,以导数为工具,考查函数性质及导数应用为目标,是最近几年函数与导数交汇试题的显著特点和命题趋向。运用导数确定含参数函数的参数取值范围是一类常见的探索性问题,主要是求存在性问题或恒成立问题中的参数的范围。 解决这类问题,主要是运用等价转化的数学思想,通过不断地转化,把不熟悉、不规范、 复杂的问题转化为熟悉、规范甚至模式化、简单的问题。 解决的主要途径:是将含参数不等式的存在性或恒成立问题根据其不等式的结构特 征,恰当地构造函数,等价转化为:含参函数的最值讨论。 一、含参函数中的存在性问题 利用题设条件能沟通所求参数之间的联系,建立方程或不等式(组)求解。这是求存在性范围问题最显然的一个方法。 例题讲解 例1:已知函数x x x f ln 2 1)(2+= ,若存在],1[0e x ∈使不等式 m x f ≤)(0,求实数m 的取值范围 二、含参函数中的恒成立问题 可先利用题设条件建立变量的关系式,将所求变量和另一已知变量分离,得到函数关系,从而使这种具有函数背景的范围问题迎 刃而解,再由已知变量的范围求出函数的值域,即为所求变量的范围。类型有:(1)双参数

中知道其中一个参数的范围;(2)双参数中的范围均未知。 一、选择题 1 .(2013年课标Ⅱ)已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .0x ?∈R,0()0 f x = B.函数()y f x =的图像是中心对称图形 C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减 D .若0x 是()f x 的极值点,则0'()0 f x = 2 .(2013年大纲)已知曲线()4 2 1-128=y x ax a a =+++在点,处切线的斜率为,() A .9 B .6 C .-9 D .-6 3 .(2013年湖北)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( ) A .(,0)-∞ B .1 (0,)2 C .(0,1) D .(0,)+∞ 4.若函数3 2 ()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是: ( )

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

高三文科数学三角函数专题测试题(后附答案)

高三文科数学三角函数专题测试题 1.在△ABC 中,已知a b =sin A cos B ,则B 的大小为( ) A .30° B .45° C .60° D .90° 2.在△ABC 中,已知A =75°,B =45°,b =4,则c =( ) A . 6 B .2 6 C .4 3 D .2 3.在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C . 3 D . 32 在△ABC 中, AC sin B =BC sin A ,∴AC =BC ·sin B sin A =32× 22 3 2 =2 3. 4.在△ABC 中,若∠A=30°,∠B =60°,则a∶b∶c=( ) A .1∶3∶2 B .1∶2∶4 C .2∶3∶4 D .1∶2∶2 5.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( ) A .A> B B .A

利用导数解决函数零点问题

利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 ④综上所述送1分. )(x f ' )(x f

(三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2 --=存在唯一 的极大值点0x ,且202 2)(--<

导数复习专题(含参问题汇总)

高二理数期中专题复习卷----导数专题(二) 【知识点5:含参数的单调性问题】 1.若3 2 ()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值围是( ) A .12a -<< B .2a >或1a <- C .2a ≥或1a ≤- D .12a a ><-或 2.已知函数3 2 ()1f x x ax x =-+--在(),-∞+∞上单调递减,则实数a 的取值围是( ) A.( ),33,?-∞-+∞ ? U B.3,3?- ? C.(),33,-∞-+∞ U D.(3,3 3.若函数2 ()2ln f x x x =-在定义域的一个子区间(1,1)k k -+上不是单调函数,则实数k 的取值围是 . 4.已知函数2 ()ln (2)f x x ax a x =-+-,讨论()f x 的单调性. 5.设函数1 ()(2)ln 2.f x a x ax x =-+ + (1)当0a =时,求()f x 的极值; (2)设1 ()()g x f x x =-在[)1,+∞上单调递增,求a 的取值围; (3)当0a ≠时,求()f x 的单调区间. 【知识点6:含参数的零点个数问题】 1.设a 为实数, 函数3 ()3f x x x a =-++ (1)求()f x 的极值; (2)若方程()0f x =有3个实数根,求a 的取值围; (3)若()0f x =恰有两个实数根,求a 的值. 2.已知函数32 11(),,32 a f x x x ax a x R -= +--∈其中0a >. (1)求函数()f x 的单调区间; (2)若函数()f x 在区间(2,0)-恰有两个零点,求a 的取值围. 3.已知函数()1x a f x x e =-+ (,a R e ∈为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴, 求a 的值. (2)求函数()f x 的极值; (3)当1a =时,,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.

函数与导数专题复习

函数与导数专题复习 类型一 导数的定义 运算及几何意义 例1:已知函数)(x f 的导函数为)('x f ,且满足x xf x f ln )1(2)(' +=,则=)1('f ( ) A .-e B.-1 C.1 D.e 解:x f x f 1)1(2)(''+=,1)1(1)1(2)1('''-=∴+=f f f 【评析与探究】求值常用方程思想,利用求导寻求)('x f 的方程是求解本题的关键。 变式训练1 曲线33+-=x x y 在点(1,3)处的切线方程为 类型二 利用导数求解函数的单调性 例2:d cx bx x x f +++= 233 1)(何时有两个极值,何时无极值?)(x f 恒增的条件是什么? 解:,2)(2'c bx x x f ++=当0442>-=?c b 时, 即c b >2时,0)('=x f 有两个异根2,1x x ,由)('x f y =的图像知,在2,1x x 的左右两侧)('x f 异号,故2,1x x 是极值点,此时)(x f 有两个极值。 当c b =2时,0)('=x f 有实数根0x ,由)('x f y =的图像知,在0x 左右两侧)(' x f 同号,故0x 不是)(x f 的极值点 当c b <2时,0)(' =x f 无根,当然无极值点 综上所述,当时c b ≤2,)(x f 恒增。 【评析与探究】①此题恒增条件c b ≤2易掉“=”号,②c b =2 时,根0x 不是极值点也易错。 变式训练2 已知函数b x x g ax x x f +=+=232)(,)(,它们的图像在1=x 处有相同的切线 ⑴求函数)(x f 和)(x g 的解析式;

高考数学专题复习:三角函数与解三角形测试题及详解

高考数学专题复习:三角函数与解三角形 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。) 1.(2011·宁夏银川一中检测)y =(sin x +cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 [答案] D [解析] y =(sin x +cos x )2-1=2sin x cos x =sin2x ,所以函数y =(sin x +cos x )2-1是最小正周期为π的奇函数. 2.(2011·宁夏银川月考、山东聊城一中期末)把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π 6个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解 析式为y =sin x ,则( ) A .ω=2,φ=π 6 B .ω=2,φ=-π3 C .ω=12,φ=π 6 D .ω=12,φ=π 12 [答案] B [分析] 函数y =sin(ωx +φ)经过上述变换得到函数y =sin x ,把函数y =sin x 的图象经过上述变换的逆变换即可得到函数y =sin(ωx +φ)的图象. [解析] 把y =sin x 图象上所有点的横坐标缩小到原来的1 2倍得到的函数解析式是y = sin2x ,再把这个函数图象向右平移π 6个单位,得到的函数图象的解析式是y =sin2????x -π6=sin ????2x -π3,与已知函数比较得ω=2,φ=-π 3 . [点评] 本题考查三角函数图象的变换,试题设计成逆向考查的方式更能考查出考生的分析解决问题的灵活性,本题也可以根据比较系数的方法求解,根据已知的变换方法,经过两次变换后函数y =sin(ωx +φ)被变换成y =sin ????ωx 2+ωπ6+φ比较系数也可以得到问题的答案. 3.(2011·辽宁沈阳二中阶段检测)若函数f (x )=sin ωx +cos ωx (ω>0)的最小正周期为1,则它的图像的一个对称中心为( ) A.??? ?-π 8,0 B.???? π8,0

导数应用_含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈?Y Y Y Y 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 例2.讨论x ax x f ln )(+=的单调性

小结: 导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间的符号。一般先讨论0)('=x f 无解情况,再讨论解 0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 围扩 大而出现有根,但根实际上不在定义域的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。 变式练习2. 讨论x ax x f ln 2 1)(2 += 的单调性 小结: 一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。 对于二次型函数(如1)(2 +=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。 例3. 求1)(232--+=x ax x a x f 的单调区间

(完整版)用导数求函数的单调区间含参问题

用导数求函数的单调区间——含参问题 一、问题的提出 应用导数研究函数的性质:单调性、极值、最值等,最关键的是求函数的单调区间,这是每年高考的重点,这也是学生学习和复习的一个难点。其中,学生用导数求单调区间最困难的是对参数分类讨论。尽管学生有分类讨论的意识,但是找不到分类讨论的标准,不能全面、准确分类 二、课堂简介 请学生求解一下问题,写出每一题求单调区间的分类讨论的特点。 例1、 求函数R a a x x x f ∈-= ),()(的单调区间。 解:定义域为),0[+∞ ,23)('x a x x f -=令,0)('=x f 得,3 a x = (1) 0≤a ,0)('≥x f 恒成立,)(x f 在),0[+∞上单调递增; (2) 0>a ,令0)('>x f 得∴> 3a x )(x f 在)3,0[a 上单调递减,在),3 [+∞a 上单调递增。 所以,当0≤a 时,)(x f 在),0[+∞上单调递增;当0>a 时,)(x f 在)3 ,0[a 上单调递减,在),3 [+∞a 上单调递增。 分类讨论特点:一次型,根3 a 和区间端点0比较 例2、 求函数R a x a ax x x f ∈+-+-=,1)1(2131)(23的单调区间。 解:定义域R ),1)](1([1)('2---=-+-=x a x a ax x x f 令,0)('=x f 得1,121=-=x a x (1) 211>>-a a 即,令0)('>x f 得∴<->11x a x 或)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调递增。 (2) 21 1==-a a 即,0)('≥x f 恒成立,所以)(x f 在R 上单调递增。 (3) 211<<-a a 即,令0)('>x f 得∴>-<11x a x 或)(x f 在)1,(--∞a 上单调递增,)1,1(-a 上单调递减,),1(+∞上单调递增。 所以,当2>a 时,)(x f 在)1,(-∞上单调递增,)1,1(-a 上单调递减,),1(+∞-a 上单调

《三角函数高考》专题

《三角函数高考真题》专题 2019年( )月( )日 班级 姓名 1.【2019年高考全国Ⅰ卷文数】函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷文数】tan255°= A .?2 B .? C .2 D .3.【2019年高考全国Ⅰ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知 a sin A ? b sin B =4 c sin C ,cos A =?14 ,则 b c = A .6 B .5 C .4 D .3 4.【2019年高考全国Ⅱ卷文数】若x 1=4π,x 2=4 3π 是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B . 3 2 C .1 D .12 5.【2019年高考全国Ⅱ卷文数】已知a ∈(0, π 2 ),2sin2α=cos2α+1,则sin α= A .15 B C D 6.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为

A .2 B .3 C .4 D .5 7.【2019年高考天津卷文数】已知函数()sin()(0,0,||π)f x A x A ω?ω?=+>><是 奇函数,且()f x 的最小正周期为π,将()y f x =的图象上所有点的横坐标伸长到 原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若π4g ?? = ??? 3π8f ??= ??? A .?2 B . C D .2 8.【2019年高考全国Ⅰ卷文数】函数3π ()s i n(2)3cos 2 f x x x =+ -的最小值为___________. 9.【2019年高考全国Ⅱ卷文数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知 b sin A +a cos B =0,则B =___________. 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在 线段AC 上,若45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅲ卷文数】ABC △的内角A 、B 、C 的对边分别为a 、b 、c .已 知sin sin 2 A C a b A +=. (1)求B ; (2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.

例说导数含参问题的处理策略

例说导数含参问题的处理策略详解 (完美终结篇) 张成 壹叁捌叁捌伍叁捌贰肆贰 一、 和单调性有关的含参问题 1. 求单调区间:本质是解含参不等式 例1:求2 ()()x a f x x -= 的单调区间 【解】2 ()() ()x a a x f x x -+'= 12x a x a ==- 当0a =时,()10f x '=>,故只有增区间:(,0),(0,)-∞+∞不能并哦 当0a >时,由2 ()() ()0x a x x f a x -+'= >即()(x a)0x a -+>得,x a x a <->, 由()(x a)0x a -+<得a x a -<< 当0a <时,由()0f x '>得,x a x a <>- 由()0f x '<得a x a <<- 综上所述:当0a =时函数增区间为(,0),(0,)-∞+∞ 当0a >时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 当0a <时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 例2:求函数f (x )=x 2e ax 的单调区间. 【解】 函数f (x )的导数f ′(x )=2x e ax +ax 2e ax =(2x +ax 2)e ax . 1220x x a ==- (1)当a =0时,由f ′(x )<0得 x <0;由f ′(x )>0,得x >0 所以当a =0时,函数f (x )在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数. 当a ≠0时,1220 x x a ==- (2)当a >0时,由2x +ax 2>0,得x <-2a 或x >0;由2x +ax 2<0,得-2 a <x <0. 所以当a >0时,函数f (x )在(-∞,-2a )和(0,+∞)上为增函数,在区间(-2 a ,0)上为减函数. (3)当a <0时,由2x +ax 2>0,得0<x <-2a ;由2x +ax 2<0,得x <0或x >-2 a , 所以当a <0时,函数f (x )在区间(-∞,0)和(-2a ,+∞)上为减函数,在区间(0,-2 a )上为增函数 总结:两个根大小不定时要讨论 2. 逆向问题:已知函数在某区间上单调性,求参数取值范围 (1) 解析式含参时:本质是恒成立问题: ()0f x '≥(()0f x '≤)恒成立 思路1:转化为求非含参一段函数的最值(范围) 思路2:数形结合 注意事项:端点能否取等号要注意

导数讨论含参单调性习题(含详细讲解问题详解)

1.设函数. (1)当时,函数与在处的切线互相垂直,求的值; (2)若函数在定义域不单调,求的取值围; (3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由. 2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性; (2)当时,证明:; (3)当时,判断函数零点的个数,并说明理由. 3.已知函数(其中,). (1)当时,若在其定义域为单调函数,求的取值围; (2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数. (1)讨论函数的单调性; (2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数. (1)求的值; (2)若在及所在的取值围上恒成立,求的取值围;

6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><. (1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,数a 的取值围; (2)若21,a e ??∈-∞- ??? ,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值. 7.已知函数()ln x m f x e x +=-. (1)如1x =是函数()f x 的极值点,数m 的值并讨论的单调性()f x ; (2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,数m 的取值围(注:已知常数a 满足ln 1a a =). 8.已知函数()()2 ln 12 x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()3 3 x f x ≤; (2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()12ln ,13x F x e x x f x a x -=++=-+. (1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ?≥≥,数a 的取值围. 10.已知函数()2x f x e ax =+- (1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且 [][]2112()()x f x a x f x a +<+都有成立,求a 的取值围。

相关文档
最新文档