2015高考复习专题五 函数与导数 含近年高考试题
2015届高考数学总复习(基础过关+能力训练):函数与导数 函数的图象(含答案)

第二章 函数与导数第5课时函数的图象1. 函数f(x)=2x +1x -1图象的对称中心的坐标是________。
答案:(1、2)解析:f(x)=2+3x -1.2. 函数f(x)=(2-a 2)x +a 的图象在区间[0、1]上恒在x 轴上方、则实数a 的取值范围是________。
答案:(0、2)解析:由题意、只需⎩⎪⎨⎪⎧f (0)>0,f (1)>0,即可。
3. 设函数y =f(x)是定义在R 上、则函数y =f(x -1)与y =f(1-x)的图象关于直线________对称。
答案:x =1解析:由y =f(1-x)=f[-(x -1)]、知y =f(1-x)的图象是由y =f(-x)的图象向右平移1个单位而得、而函数y =f(x -1)的图象是由y =f(x)的图象向右平移1个单位而得、函数y =f(-x)与y =f(x)的图象关于直线x =0对称、所以函数y =f(x -1)与y =f(1-x)的图象关于直线x =1对称。
4. 函数f(x)=|x 2-ax +a|(a>0)的单调递增区间是________。
答案:⎣⎡⎦⎤-a 2,0和⎣⎡⎭⎫a2,+∞ 5. 不等式lg(-x)<x +1的解集是________。
答案:(-1、0)6. 任取x 1、x 2∈(a 、b)、且x 1≠x 2、若f ⎝⎛⎭⎫x 1+x 22>12[f(x 1)+f(x 2)]、则称f(x)是(a 、b)上的凸函数。
在下列图象中、是凸函数图象的是________。
(填序号)答案:④7. 已知函数y =f(x)的周期为2、当x ∈[-1、1]时 f(x)=x 2、那么函数y =f(x)的图象与函数y =|lgx|的图象的交点共有________个。
答案:10解析:根据f(x)的性质及f(x)在[-1、1]上的解析式可作图如下:可验证当x =10时、y =|lg10|=1;当0<x<10时、|lgx|<1;x>10时、|lgx|>1. 因此结合图象及数据特点y =f(x)与y =|lgx|的图象交点共有10个。
2015年高考试题函数与导数部分

20.(2015上海)(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分
如图, , , 三地有直道相通, 千米, 千米, 千米.现甲、乙两警员同时从 地出发匀速前往 地,经过 小时,他们之间的距离为 (单位:千米).甲的路线是 ,速度为 千米/小时,乙的路线是 ,速度为 千米/小时.乙到达 地后原地等待.设 时乙到达 地.
19.(2015广东)(本小题满分14分)
设a>1,函数 。
(1)求 的单调区间;
(2)证明: 在( ,+∞)上仅有一个零点;
(3)若曲线 在点P处的切线与 轴平行,且在点 处的切线与直线OP平行(O是坐标原点),证明:
3.(2015广东)下列函数中,既不是奇函数,也不是偶函数的是
A. B. C. D.
A.-1是Байду номын сангаас的零点B.1是 的极值点C.3是 的极值D.点 在曲线 上
15(2015山西).设曲线 在点(0,1)处的切线与曲线 上点p处的切线垂直,则p的坐标为
7.(2015上海)方程 的解为.
10.(2015上海)设 为 , 的反函数,则 的最大值为.
18.(2015上海)设 是直线 ( )与圆 在第一象限的交点,则极限 ( )
(A) (B)
(C) (D)
20.(2015天津)(本小题满分14分)
已知函数 ,其中 .
(I)讨论 的单调性;
(II)设曲线 与 轴正半轴的交点为P,曲线在点P处的切线方程为 ,求证:对于任意的正实数 ,都有 ;
(III)若关于 的方程 有两个正实根 ,求证: .
12.(2015全国1)设函数 ,其中 ,若存在唯一的整数 ,使得 ,则 的取值范围是( )
(2021年整理)2015专题五:函数与导数(含近年高考试题)

(完整)2015专题五:函数与导数(含近年高考试题)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015专题五:函数与导数(含近年高考试题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015专题五:函数与导数(含近年高考试题)的全部内容。
2015专题五:函数与导数在解题中常用的有关结论(需要熟记):考点一:导数几何意义:角度一求切线方程1.(2014·洛阳统考)已知函数f(x)=3x+cos 2x+sin 2x,a=f′错误!,f′(x)是f(x)的导函数,则过曲线y=x3上一点P(a,b)的切线方程为( )A.3x-y-2=0B.4x-3y+1=0C.3x-y-2=0或3x-4y+1=0D.3x-y-2=0或4x-3y+1=0解析:选A 由f(x)=3x+cos 2x+sin 2x得f′(x)=3-2sin 2x+2cos 2x,则a =f′错误!=3-2sin错误!+2cos错误!=1。
由y=x3得y′=3x2,过曲线y=x3上一点P(a,b)的切线的斜率k=3a2=3×12=3。
又b=a3,则b=1,所以切点P的坐标为(1,1),故过曲线y =x3上的点P的切线方程为y-1=3(x-1),即3x-y-2=0.角度二求切点坐标2.(2013·辽宁五校第二次联考)曲线y=3ln x+x+2在点P0处的切线方程为4x-y-1=0,则点P0的坐标是( )A.(0,1)B.(1,-1)C.(1,3)D.(1,0)解析:选C 由题意知y′=错误!+1=4,解得x=1,此时4×1-y-1=0,解得y=3,∴点P0的坐标是(1,3).角度三求参数的值3.已知f(x)=ln x,g(x)=错误!x2+mx+错误!(m<0),直线l与函数f(x),g(x)的图像都相切,且与f(x)图像的切点为(1,f(1)),则m等于( )A.-1 B.-3C.-4 D.-2解析:选D ∵f′(x)=错误!,∴直线l的斜率为k=f′(1)=1,又f(1)=0,∴切线l的方程为y=x-1.g′(x)=x+m,设直线l与g(x)的图像的切点为(x,y0),则有x0+m=1,y0=x0-1,y0=12x2+mx0+错误!,m〈0,于是解得m=-2,故选D。
2015-2018年高考全国卷文科数学--函数与导数大题汇编

2015年~2018年高考全国卷数学(文科)—函数与导数汇编1.(2015年全国乙卷第21题)已知函数()ln (1)f x x a x =+-﹒(1)讨论函数()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围﹒2.(2015年全国甲卷第21题)设函数2()ln x f x ea x =-﹒ (1)讨论()f x 的导函数()f x '零点的个数;(2)证明:当0a >时,2()2lnf x a a a ≥+﹒3.(2016年全国丙卷第21题)设函数()ln 1f x x x =-+﹒(1)讨论函数()f x 的单调性;(2)证明:当(1,)x ∈+∞时,11ln x x x-<<; (3)设1c >,证明:当(0,1)x ∈时,1(1)x c x c +->﹒4.(2016年全国乙卷第20题)已知函数()(1)ln (1)f x x x a x =+--﹒(1)当4a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)若当(1,)x ∈+∞时,()0f x >,求a 的取值范围﹒5.(2016年全国甲卷第21题)已知函数2()(2)(1)x f x x e a x =-+-﹒(1)讨论函数()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围﹒6. (2017年全国丙卷第21题)已知函数2()ln (21)f x x ax a x =+++﹒(1)讨论函数()f x 的单调性;(2)当0a <时,证明:3()24f x a≤--﹒7.(2017年全国乙卷第21题)设函数2()(1)xf x x e =-﹒(1)讨论函数()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围﹒8. (2017年全国甲卷第21题)已知函数2()()x x f x e e a a x =--﹒(1)讨论函数()f x 的单调性;(2)若()0f x ≥,求a 的取值范围﹒9.(2018年全国丙卷第21题)已知函数21()x ax x f x e+-=﹒ (1)求曲线在()y f x =在点(0,1)-处的切线方程;(2)证明:当1a ≥时,()0f x e +≥﹒10.(2018年全国乙卷第21题)已知函数()ln 1x f x ae x =--﹒(1)设2x =是()f x 的极值点,求a 及()f x 的单调区间;(2)证明:当1a e ≥时,()0f x ≥﹒11.(2018年全国甲卷第21题)已知函数321()(1)3f x x a x x =-++﹒ (1)若3a =时,求函数()f x 的单调区间;(2)证明:()f x 只有一个零点﹒。
全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。
考点:函数的奇偶性。
2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。
若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。
又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。
由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。
3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。
2015高考理科数学函数、导数及其应用总复习题(附答案)

2015高考理科数学函数、导数及其应用总复习题(附答案)A组基础演练•能力提升]一、选择题1.(2013年高考江西卷)函数y=xln(1-x)的定义域为()A.(0,1)B.0,1)C.(0,1]D.0,1]解析:根据题意得1-x>0x≥0,解得0≤x答案:B2.已知函数f(x)=2x,x>0,x+1,x≤0.若f(a)+f(1)=0,则实数a的值为()A.-3B.-1C.1D.3解析:当a>0时,由f(a)+f(1)=0得2a+2=0,故此时不存在实数a 满足条件;当a≤0时,由f(a)+f(1)=0得a+1+2=0,解得a=-3,满足条件,故选A.答案:A3.(2014年浙江五校联考)若函数f(x)=+,则f(x)的定义域为()A.-12,0B.-12,0C.-12,+∞D.0,+∞解析:根据题意知log12(2x+1)>0,即0答案:A4.下列函数中,与函数y=13x定义域相同的函数为()A.y=1sinxB.y=lnxxC.y=xexD.y=sin解析:利用正弦函数、指数函数、对数函数及分式型函数定义域的确定方法求解.函数y=13x的定义域为{x|x≠0},选项A中由sinx≠0⇒x≠kπ,k∈Z,故A 不对;选项B中x>0,故B不对;选项C中x∈R,故C不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x|x≠0},故选D.答案:D5.已知函数fx-1x=x2+1x2,则f(3)=()A.8B.9C.11D.10解析:∵fx-1x=x-1x2+2,∴f(3)=9+2=11.答案:C6.具有性质:f1x=-f(x)的函数,我们称为满足“倒负”交换的函数,下列函数:①f(x)=x-1x;②f(x)=x+1x;③f(x)=x,01.满足“倒负”变换的函数是()A.①②B.①③C.②③D.只有①解析:①f1x=1x-x=-f(x)满足.②f1x=1x+x=f(x)不满足.③0x=1时,f1x=0=-f(x),x>1时,f1x=1x=-f(x)满足.答案:B二、填空题7.(2013年高考安徽卷)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x≤0时,f(x)=________.解析:设-1≤x≤0,∴0≤x+1≤1,∴f(x)=12f(x+1)=12(x+1)1-(x+1)]=-12x(x+1).答案:-12x(x+1)8.若函数f(x)=2x2+2ax-a-1的定义域为R,则a的取值范围为________.解析:函数f(x)的定义域为R,所以2x2+2ax-a-1≥0对x∈R恒成立,即2x2+2ax-a≥1,x2+2ax-a≥0,恒成立,因此有Δ=(2a)2+4a≤0,解得-1≤a≤0.答案:-1,0]9.已知函数f(x)=x2+1,x≥0,1,xf(2x)的x的取值范围是________.解析:画出f(x)=x2+1,x≥0,1,x如图.由图象可知,若f(1-x2)>f(2x),则1-x2>0,1-x2>2x,即-1得x∈(-1,2-1)答案:(-1,2-1)三、解答题10.(1)已知f2x+1=lgx,求f(x);(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(3)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求函数f(x)的解析式.解析:(1)令t=2x+1,则x=2t-1,∴f(t)=lg2t-1,即f(x)=lg2x-1.(2)设f(x)=ax+b,则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+5a+b=2x+17,则有a=2,b+5a=17,∴a=2,b=7,故f(x)=2x+7.(3)x∈(-1,1)时,有2f(x)-f(-x)=lg(x+1).①令x=-x得,2f(-x)-f(x)=lg(-x+1).②由①②消去f(-x),得f(x)=23lg(x+1)+13lg(1-x),x∈(-1,1).11.已知函数f(x)=2x-1,g(x)=x2,,-求fg(x)]和gf(x)]的解析式.解析:当x≥0时,g(x)=x2,fg(x)]=2x2-1,当x∴fg(x)]=2x2-,-∵当2x-1≥0,即x≥12时,gf(x)]=(2x-1)2,当2x-1∴gf(x)]=-,,-1,.(能力提升)甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(分)的关系.试写出y=f(x)的函数解析式.解析:当x∈0,30]时,设y=k1x+b1,由已知得b1=030k1+b1=2,解得k1=115,b1=0∴y=115x.当x∈(30,40)时,y=2;当x∈40,60]时,设y=k2x+b2,由已知得40k2+b2=260k2+b2=4,解得k2=110b2=-2,∴y=110x -2.综上,f(x)=115x,x∈0,30]2,x∈,-2,x∈40,60] B组因材施教•备选练习]1.已知f(x)=log3x,x>0,ax+b,x≤0,且f(0)=2,f(-1)=3,则f(f(-3))=()A.-2B.2C.3D.-3解析:f(0)=a0+b=1+b=2,解得b=1;f(-1)=a-1+b=a-1+1=3,解得a=12.故f(-3)=12-3+1=9,f(f(-3))=f(9)=log39=2,故选B.答案:B2.现向一个半径为R的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h随时间t变化的函数关系的是()解析:从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.答案:C3.(1)已知函数f(x)的定义域为(0,1),求f(x2)的定义域;(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域;(3)已知函数f(x+1)的定义域为-2,3],求f(2x2-2)的定义域.解析:(1)∵f(x)的定义域为(0,1),∴要使f(x2)有意义,需使0即-1∴函数f(x2)的定义域为{x|-1(2)∵f(2x +1)的定义域为(0,1),即其中的自变量x的取值范围是0令t=2x+1,∴1∴函数f(x)的定义域为{x|1(3)∵函数f(x+1)的定义域为-2,3],∴-2≤x≤3.令t=x+1,∴-1≤t≤4.∴f(t)的定义域为{t|-1≤t≤4},即f(x)的定义域为{x|-1≤x≤4},要使f(2x2-2)有意义,需使-1≤2x2-2≤4,∴-3≤x≤-22或22≤x≤3,∴函数f(2x2-2)的定义域为x-3≤x≤-22或22≤x≤3.。
2015年全国各地高考数学试题及解答分类大全(导数及其应用)(2..

2015年全国各地高考数学试题及解答分类大全(导数及其应用)一、选择题:1.(2015安徽文)函数32f x ax bx cx d的图像如图所示,则下列结论成立的是()(A)a>0,b<0,c>0,d>0 (B)a>0,b<0,c<0,d>0(C)a<0,b<0,c<0,d>0 (D)a>0,b>0,c>0,d<02.(2015福建理)若定义在R上的函数f x满足01f,其导函数f x满足1f x k,则下列结论中一定错误的是()A.11fk kB.111fk kC.1111fk kD.111kfk k【答案】C考点:函数与导数.3.(2015福建文)“对任意(0,)2x,sin cos k x x x ”是“1k ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】 B考点:导数的应用.4.(2015全国新课标Ⅰ卷理)设函数()f x =(21)x e x ax a ,其中a 1,若存在唯一的整数x 0,使得0()f x 0,则a 的取值范围是()A.[-,1) B. [-,) C. [,)D. [,1)【答案】D 【解析】试题分析:设()g x =(21)x e x ,yax a ,由题知存在唯一的整数0x ,使得0()g x 在直线yaxa 的下方.因为()(21)xg x e x ,所以当12x时,()g x <0,当12x 时,()g x >0,所以当12x时,max [()]g x =12-2e ,当0x时,(0)g =-1,(1)30g e,直线y axa 恒过(1,0)斜率且a ,故(0)1ag ,且1(1)3g ea a ,解得32e≤a <1,故选D.考点:导数的综合应用5.(2015全国新课标Ⅱ卷理)设函数'()f x 是奇函数()()f x xR 的导函数,(1)0f ,当0x 时,'()()0xf x f x ,则使得()0f x 成立的x 的取值范围是()A .(,1)(0,1)B .(1,0)(1,)C .(,1)(1,0)D .(0,1)(1,)【答案】A 【解析】试题分析:记函数()()f xg x x,则''2()()()xf x f x g x x,因为当0x 时,'()()0xf x f x ,故当0x时,'()0g x ,所以()g x 在(0,)单调递减;又因为函数()()f x x R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)单调递减,且(1)(1)0g g .当01x 时,()0g x ,则()0f x ;当1x 时,()0g x ,则()0f x ,综上所述,使得()0f x 成立的x 的取值范围是(,1)(0,1),故选A .考点:导数的应用、函数的图象与性质.6.(2015陕西理)对二次函数2()f x axbx c (a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是()A .-1是()f x 的零点 B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()yf x 上【答案】A考点:1、函数的零点; 2、利用导数研究函数的极值.二、填空题:1.(2015安徽理)设30x ax b,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 .(写出所有正确条件的编号)①3,3a b ;②3,2ab;③3,2ab;④0,2ab;⑤1,2ab.与最值;函数零点问题考查时,要经常性使用零点存在性定理.2. (2015湖南理)20(1)x dx.【答案】0.【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.3、(2015全国新课标Ⅰ卷文)已知函数31f x axx 的图像在点1,1f 的处的切线过点2,7,则a .4. (2015全国新课标Ⅱ卷文)已知曲线ln y xx 在点1,1处的切线与曲线221y axa x 相切,则a= .【答案】8 【解析】试题分析:由11y x可得曲线ln y xx 在点1,1处的切线斜率为2,故切线方程为21y x ,与221y axa x 联立得220axax ,显然0a ,所以由2808aa a .考点:导数的几何意义.5、(2015陕西文)函数xy xe 在其极值点处的切线方程为____________.【答案】1ye考点:导数的几何意义.6.(2015陕西理)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.【答案】1.2【解析】试题分析:建立空间直角坐标系,如图所示:原始的最大流量是11010222162,设抛物线的方程为22xpy (0p ),因为该抛物线过点5,2,所以2225p ,解得254p ,所以2252x y ,即2225y x ,所以当前最大流量是5323535522224022255255257575753xdxxx,故原始的最大流量与当前最大流量的比值是16 1.2403,所以答案应填: 1.2.考点:1、定积分;2、抛物线的方程;3、定积分的几何意义.7.(2015陕西理)设曲线xy e 在点(0,1)处的切线与曲线1(0)yx x上点p 处的切线垂直,则p的坐标为.【答案】1,1【解析】试题分析:因为xy e ,所以xye ,所以曲线xye 在点0,1处的切线的斜率011x k ye,设的坐标为00,x y (00x ),则01y x ,因为1yx,所以21yx,所以曲线1yx在点处的切线的斜率0221x x k yx,因为121k k ,所以2011x,即201x ,解得01x ,因为00x ,所以01x ,所以01y ,即的坐标是1,1,所以答案应填:1,1.考点:1、导数的几何意义;2、两条直线的位置关系.8、(2015四川文)已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x ,n =1212()()g x g x x x ,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m>0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n .其中真命题有___________________(写出所有真命题的序号).【答案】①④【解析】对于①,因为 f '(x)=2x ln 2>0恒成立,故①正确对于②,取a =-8,即g'(x)=2x -8,当x 1,x 2<4时n <0,②错误对于③,令 f '(x)=g'(x),即2x ln2=2x +a 记h(x)=2x ln2-2x ,则h'(x)=2x (ln2)2-2【考点定位】本题主要考查函数的性质、函数的单调性、导数的运算等基础知识,考查函数与方程的思想和数形结合的思想,考查分析问题和解决能提的能力.【名师点睛】本题首先要正确认识m ,n 的几何意义,它们分别是两个函数图象的某条弦的斜率,因此,借助导数研究两个函数的切线变化规律是本题的常规方法,解析中要注意“任意不相等的实数x 1,x 2”与切线斜率的关系与差别,以及“都有”与“存在”的区别,避免过失性失误.属于较难题. 9. (2015天津文)已知函数ln ,0,f x ax x x,其中a 为实数,f x 为f x 的导函数,若13f ,则a 的值为.【答案】3 【解析】试题分析:因为1ln f xa x ,所以13f a .考点:导数的运算法则.10.(2015天津理)曲线2y x与直线y x 所围成的封闭图形的面积为.【答案】16【解析】试题分析:两曲线的交点坐标为(0,0),(1,1),所以它们所围成的封闭图形的面积11223111236Sx xdxxx.考点:定积分几何意义.三、解答题:1.(2015安徽文)已知函数)0,0()()(2ra r xax x f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性;(Ⅱ)若400ra ,求)(x f 在),0(内的极值.2.(2015安徽理)设函数2()f x xax b .(Ⅰ)讨论函数(sin )f x 在(,)22内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x xa xb ,求函数0(sin )(sin )f x f x 在[]22,上的最大值D ;(Ⅲ)在(Ⅱ)中,取0a b ,求24azb满足D 1时的最大值.3.(2015北京文)设函数2ln 2xf xk x ,0k .(Ⅰ)求f x 的单调区间和极值;(Ⅱ)证明:若f x 存在零点,则f x 在区间1,e 上仅有一个零点.【答案】(1)单调递减区间是(0,)k ,单调递增区间是(,)k ;极小值(1ln )()2k k f k ;(2)证明详见解析.所以,()f x 的单调递减区间是(0,)k ,单调递增区间是(,)k ;()f x 在x k 处取得极小值(1ln )()2k k f k .(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)上的最小值为(1ln )()2k k f k .因为()f x 存在零点,所以(1ln )02k k ,从而ke .当k e 时,()f x 在区间(1,)e 上单调递减,且()0f e ,所以x e 是()f x 在区间(1,]e 上的唯一零点.当ke 时,()f x 在区间(0,)e 上单调递减,且1(1)02f ,()02e kf e ,所以()f x 在区间(1,]e 上仅有一个零点. 综上可知,若()f x 存在零点,则()f x 在区间(1,]e 上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.4.(2015北京理)已知函数1ln1xf x x.(Ⅰ)求曲线y f x 在点00f ,处的切线方程;(Ⅱ)求证:当01x,时,323xf xx;(Ⅲ)设实数k 使得33xf x k x对01x,恒成立,求k 的最大值.【答案】(Ⅰ)20x y ,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为 2. 试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011xf x x f x f f xx,曲线yf x 在点00f ,处的切线方程为20xy;(Ⅱ)当01x ,时,323xf xx,即不等式3()2()03x f x x,对(0,1)x 成立,设331()ln2()ln(1)ln(1)2()133xxxF x xx x xx,则422()1xF x x,当01x ,时,()0F x ,故()F x 在(0,1)上为增函数,则()(0)0F x F ,因此对(0,1)x ,3()2()3xf x x成立;(Ⅲ)使33xf x k x成立,01x ,,等价于31()ln()013xx F x k xx,01x,;422222()(1)11kxkF x k x xx ,当[0,2]k 时,()0F x ,函数在(0,1)上位增函数,()(0)0F x F ,符合题意;当2k时,令42()0,(0,1)k F x x k,x 0(0,)x 0x 0(,1)x ()F x -+()F x 极小值()(0)F x F ,显然不成立,综上所述可知:k 的最大值为 2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.5.(2015福建文)已知函数2(1)()ln 2x f x x.(Ⅰ)求函数f x 的单调递增区间;(Ⅱ)证明:当1x 时,1f xx ;(Ⅲ)确定实数k 的所有可能取值,使得存在1x ,当0(1,)xx 时,恒有1f xk x .【答案】(Ⅰ)150,2;(Ⅱ)详见解析;(Ⅲ),1.【解析】(Ⅰ)求导函数21xx f xx,解不等式'()0f x 并与定义域求交集,得函数f x 的单调递增区间;(Ⅱ)构造函数F 1x f x x ,1,x .欲证明1f x x ,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k 时,不存在01x 满足题意;当1k时,对于1x ,有11f x x k x ,则1f xk x ,从而不存在01x 满足题意;当1k 时,构造函数G1x f x k x ,0,x,利用导数研究函数()G x 的形状,只要存在1x ,当0(1,)xx 时()0G x 即可.试题解析:(I )2111xx f xx xx ,0,x.由0f x 得2010x xx 解得1502x.故f x的单调递增区间是150,2.(II )令F 1x f xx ,0,x .则有21F x xx.当1,x 时,F 0x,所以F x 在1,上单调递减,故当1x 时,F F 10x,即当1x 时,1f x x .(III )由(II )知,当1k时,不存在01x 满足题意.当1k 时,对于1x ,有11f x x k x ,则1f xk x ,从而不存在01x 满足题意.当1k时,令G 1xf x k x ,0,x,则有2111G 1xk x xx kxx.由G0x 得,2110xk x .解得2111402kk x ,2211412k k x .当21,xx 时,G 0x ,故G x 在21,x 内单调递增.从而当21,xx 时,G G 10x,即1f xk x ,综上,k 的取值范围是,1.考点:导数的综合应用.6.(2015福建理)已知函数f()ln(1)x x ,(),(k ),g x kx R(Ⅰ)证明:当0x x x 时,f();(Ⅱ)证明:当1k 时,存在00x ,使得对0(0),xx 任意,恒有f()()x g x ;(Ⅲ)确定k 的所以可能取值,使得存在0t ,对任意的(0),x,t 恒有2|f()()|x g x x .【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)=1k .【解析】试题分析:(Ⅰ)构造函数()f()ln(1),(0,),F x x x x x x只需求值域的右端点并和0比较即可;(Ⅱ)构造函数G()f()()ln(1),(0,),x x g x x kx x即()0G x ,求导得1()1+G x kx(1k)1+kx x,利用导数研究函数()G x 的形状和最值,证明当1k时,存在00x ,使得()0G x 即可;(Ⅲ)由(Ⅰ)知,当1k 时,对于(0,),x+()f()g x x x ,故()f()g x x ,则不等式2|f()()|x g x x 变形为2k ln(1)x x x ,构造函数2M()k ln(1),[0)x xx x x ,+,只需说明()0M x ,易发现函数()M x 在22(k 2)8(k 1)0)4k x (,递增,而(0)0M ,故不存在;当1k 时,由(Ⅱ)知,存在00x ,使得对任意的任意的0(0),xx ,恒有f()()x g x ,此时不等式变形为2ln(1)k x xx ,构造2N()ln(1)k ,[0)x x x x x,+,易发现函数()N x 在2(+2(k +2)8(1k)0)4k x )(,递增,而(0)0N ,不满足题意;当=1k 时,代入证明即可.试题解析:解法一:(1)令()f()ln(1),(0,),F x x xx x x则有1()11+1+x F x xx当(0,),x ()0F x ,所以()F x 在(0,)上单调递减;故当0x 时,()(0)0,F x F 即当0x时,x x f().(2)令G()f()()ln(1),(0,),x x g x x kx x则有1(1k)()1+1+kx G x kx x当0kG ()0x ,所以G()x 在[0,)上单调递增, G()(0)0x G 故对任意正实数0x 均满足题意.当01k 时,令()0,x G 得11=10k x kk.取01=1x k,对任意0(0,),x x 恒有G ()0x ,所以G()x 在0[0,x )上单调递增, G()(0)0x G ,即f()()x g x .综上,当1k 时,总存在00x ,使得对任意的0(0),x x ,恒有f()()x g x .(3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,故()f()g x x ,|f()()|()()k ln(1)x g x g x f x x x ,令2M()k ln(1),[0)x xx x x,+,则有21-2+(k-2)1M ()k2=,11x x k x x xx故当22(k 2)8(k 1)0)4k x (,时,M ()0x ,M()x 在22(k 2)8(k 1)[0)4k,上单调递增,故M()M(0)0x ,即2|f()()|x g x x ,所以满足题意的t 不存在.当1k 时,由(2)知存在00x ,使得对任意的任意的0(0),xx ,恒有f()()x g x .此时|f()()|f()()ln(1)k x g x x g x x x ,令2N()ln(1)k ,[0)x x x x x ,+,则有2'1-2-(k+2)1()2=,11x x k N x k x xx故当2(+2(k +2)8(1k)0)4k x )(,时,N ()0x ,M()x 在2(2)(k 2)8(1k)[0)4k ,上单调递增,故N()(0)0x N ,即2f()()x g x x ,记0x 与2(2)(k 2)8(1k)4k 中较小的为1x ,则当21(0)|f()()|xx x g x x ,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 当+|f()()|()()ln(1)x g x g x f x x x ,令2H()ln(1),[0)x x x x x,+,则有21-2H ()12=,11xxx x xx当0x 时,H ()0x ,所以H()x 在[0+,)上单调递减,故H()(0)0x H ,故当0x 时,恒有2|f()()|x g x x ,此时,任意实数t 满足题意.综上,=1k .解法二:(1)(2)同解法一.(3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,,故|f()()|()()k ln(1)k (k 1)x g x g x f x x x xxx ,令2(k 1),01x x xk 解得,从而得到当1k 时,(0,1)xk 对于恒有2|f()()|x g x x ,所以满足题意的t 不存在.当1k时,取11k+1=12k kk ,从而由(2)知存在00x ,使得0(0),xx 任意,恒有1f()()x k xkx g x .此时11|f()()|f()()(k)2k x g x x g x k xx ,令21k 1k ,022x x x解得,此时2f()()x g x x ,记0x 与1-k2中较小的为1x ,则当21(0)|f()()|x x x g x x ,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 当+|f()()|()()ln(1)x g x g x f x x x ,令2M()ln(1),[0)x x x x x ,+,则有212M ()12,11xxx xxx当0x 时,M ()0x ,所以M()x 在[0+,)上单调递减,故M()M(0)0x ,故当0x 时,恒有2|f()()|x g x x ,此时,任意实数t 满足题意综上,=1k .考点:导数的综合应用.7.(2015广东理)设1a ,函数a ex x f x)1()(2。
2015届高考数学总复习(基础过关+能力训练):函数与导数 导数的概念与运算(含答案)

第二章 函数与导数第11课时 导数的概念与运算1. 已知函数f(x)=1+1x ,则f(x)在区间[1,2],⎣⎡⎦⎤12,1上的平均变化率分别为________. 答案:-12,-2 解析:f (2)-f (1)2-1=-12;f (1)-f ⎝⎛⎭⎫121-12=-2. 2. 某汽车启动阶段的路程函数为s(t)=2t 3-5t 2(s 的单位为m ,t 的单位为s),则t =2s 时,汽车的瞬时速度为________.答案:4m/s 解析:注意带单位.利用导数可求.3. 若f(x)=x 2-2x -4lnx ,则f′(x)>0的解集是________.答案:(2,+∞)解析:x>0,f ′(x)=2x -2-4x>0,解得x>2. 4. 已知f(x)=x 2+2xf′(1),则f′(-1)=________.答案:-6解析:f′(x)=2x +2f′(1),f ′(1)=2+2f ′(1),∴ f ′(1)=-2,∴ f(x)=x 2-4x ,f ′(-1)=-6.5. 曲线f(x)=e x1-x在x =2处的切线斜率为________. 答案:0解析:f′(x)=e x (1-x )-e x (-1)(1-x )2=e x (2-x )(1-x )2,所以切线斜率为f′(2)=0. 6. 曲线y =x 与y =8x在它们交点处的两条切线与y 轴所围成的三角形的面积为________.答案:6解析:两曲线交点为(4,2),利用函数求导知,它们在交点处的切线方程分别为x -4y +4=0与x +2y -8=0,所以两条切线与y 轴所围成的三角形的面积为6.7. 设P 是函数y =x(x +1)图象上异于原点的动点,且该图象在点P 处的切线的倾斜角为θ,则θ的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫π3,π2 解析:tan θ=y′=12⎝⎛⎭⎫3x +1x ≥3,当且仅当x =13时,取等号,所以θ∈⎣⎢⎡⎭⎪⎫π3,π2. 8. 若直线y =kx -3与曲线y =2lnx 相切,则实数k =________.答案:2 e解析:对y =2lnx 求导得y′=2x, ∴ ⎩⎪⎨⎪⎧2lnx =kx -3,k =2x ⎩⎪⎨⎪⎧k =2e ,x =e -12,即实数k =2 e.9. 求下列函数的导数.(1) y =(x +1)(x +2)(x +3);(2) y =2x +ln2x ;(3) y =sinx sinx +cosx -12; (4) y =(2x +1)ln(2x +1).解:(1) y′=3x 2+12x +11;(2) y′=2x ln2+1x; (3) y′=1(sinx +cosx )2; (理)(4) y′=2[ln(2x +1)+1].10. 已知曲线y =x 2+1x(x>0). (1) 求曲线在x =2处的切线方程;(2) 求曲线上的点到直线3x -4y -11=0的距离的最小值.解:(1) 3x -4y +4=0;(2) 设曲线在点(x 0,y 0)处的切线与直线3x -4y -11=0平行,因为y′=1-1x 2,令1-1x 20=34,解得x 0=2,所以切点为⎝⎛⎭⎫2,52,所以距离的最小值为点⎝⎛⎭⎫2,52到直线3x -4y -11=0的距离,即为3.11. 设曲线y =(ax -1)e x 在点A(x 0,y 1)处的切线为l 1,曲线y =(1-x)e -x 在点B(x 0,y 2)处的切线为l 2.若存在x 0∈⎣⎡⎦⎤0,32,使得l 1⊥l 2,求实数a 的取值范围. 解:由y =(ax -1)e x ,得y′=ae x +(ax -1)e x =(ax +a -1)e x.由y =1-x e x ,得y′=-e x -(1-x )e x (e x )2=x -2e x . 由题意(ax 0+a -1)·ex 0·x 0-2ex 0=-1,即(ax 0+a -1)(x 0-2)=-1在⎣⎡⎦⎤0,32上有解.方程可化为ax 0+a -1=-1x 0-2.设f(x 0)=ax 0+a -1,g(x 0)=-1x 0-2,作图可知1≤a ≤32. 另法:方程可化为a =x 0-3x 20-x 0-2.求函数t(x 0)=x 0-3x 20-x 0-2在x 0∈⎣⎡⎦⎤0,32上的值域即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015专题五:函数与导数在解题中常用的有关结论(需要熟记):考点一:导数几何意义:角度一 求切线方程1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′⎝⎛⎭⎫π4,f ′(x )是f (x )的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( )A .3x -y -2=0B .4x -3y +1=0C .3x -y -2=0或3x -4y +1=0D .3x -y -2=0或4x -3y +1=0解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a =f ′⎝⎛⎭⎫π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0.角度二 求切点坐标2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( )A .(0,1)B .(1,-1)C .(1,3)D .(1,0)解析:选C 由题意知y ′=3x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3).角度三 求参数的值3.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2,故选D.考点二:判断函数单调性,求函数的单调区间。
[典例1]已知函数f (x )=x 2-e x 试判断f (x )的单调性并给予证明. 解:f (x )=x 2-e x ,f (x )在R 上单调递减,f ′(x )=2x -e x ,只要证明f ′(x )≤0恒成立即可. 设g (x )=f ′(x )=2x -e x ,则g ′(x )=2-e x , 当x =ln 2时,g ′(x )=0, 当x ∈(-∞,ln 2)时,g ′(x )>0, 当x ∈(ln 2,+∞)时,g ′(x )<0.∴f ′(x )max =g (x )max =g (ln 2)=2ln 2-2<0, ∴f ′(x )<0恒成立, ∴f (x )在R 上单调递减.[典例2] (2012·北京高考改编)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. [解] (1)f ′(x )=2ax ,g ′(x )=3x 2+b , 由已知可得⎩⎪⎨⎪⎧f (1)=a +1=c ,g (1)=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a 6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴单调递增区间是⎝⎛⎭⎫-∞,-a 2,⎝⎛⎭⎫-a 6,+∞;单调递减区间为⎝⎛⎭⎫-a 2,-a 6. [针对训练](2013·重庆高考)设f (x ) =a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值.解:(1)因为f (x )=a (x -5)2+6ln x ,故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )·(x -1),由点(0,6)在切线上可得6-16a =8a -6,故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x 1=2,x 2=3.当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.考点三:已知函数的单调性求参数的范围[典例] (2014·山西诊断)已知函数f (x )=ln x -a 2x 2+ax (a ∈R). (1)当a =1时,求函数f (x )的单调区间;(2)若函数f (x )在区间(1,+∞)上是减函数,求实数a 的取值范围. [解] (1)当a =1时,f (x )=ln x -x 2+x ,其定义域是(0,+∞), f ′(x )=1x -2x +1=-2x 2-x -1x,令f ′(x )=0,即-2x 2-x -1x =0,解得x =-12或x =1.∵x >0,∴x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴函数f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减. (2)显然函数f (x )=ln x -a 2x 2+ax 的定义域为(0,+∞), ∴f ′(x )=1x -2a 2x +a =-2a 2x 2+ax +1x =-(2ax +1)(ax -1)x .①当a =0时,f ′(x )=1x>0,∴f (x )在区间(1,+∞)上为增函数,不合题意.②当a >0时,f ′(x )≤0(x >0)等价于(2ax +1)·(ax -1)≥0(x >0),即x ≥1a ,此时f (x )的单调递减区间为⎣⎡⎭⎫1a ,+∞. 由⎩⎪⎨⎪⎧1a ≤1,a >0,得a ≥1. ③当a <0时,f ′(x )≤0(x >0)等价于(2ax +1)·(ax -1)≥0(x >0),即x ≥-12a,此时f (x )的单调递减区间为⎣⎡⎭⎫-12a ,+∞. 由⎩⎪⎨⎪⎧-12a ≤1,a <0,得a ≤-12.综上,实数a 的取值范围是⎝⎛⎦⎤-∞,-12∪[1,+∞). [针对训练](2014·荆州质检)设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围. 解:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0, 当x ∈(0,a )时,f ′(x )<0, 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <⎝⎛⎭⎫x +2x max =-22, 当且仅当“x =2x ”即x =-2时等号成立,所以满足要求的a 的取值范围是(-∞,-22). 考点四:用导数解决函数的极值问题[典例] (2013·福建高考节选)已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.[解] (1)由f (x )=x -1+a e x ,得f ′(x )=1-ae x .又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴, 得f ′(1)=0,即1-ae =0,解得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x =a ,即x =ln a . x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值, 且极小值为f (ln a )=ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值. [针对训练]设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图像关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值;(2)求函数f (x )的极值.解:(1)因为f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b , 从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26, 即y =f ′(x )关于直线x =-a6对称.从而由题设条件知-a 6=-12,即a =3.又由于f ′(1)=0,即6+2a +b =0, 得b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1, 所以f ′(x )=6x 2+6x -12=6(x -1)(x +2), 令f ′(x )=0, 即6(x -1)(x +2)=0, 解得x =-2或x =1,当x ∈(-∞,-2)时,f ′(x )>0, 即f (x )在(-∞,-2)上单调递增; 当x ∈(-2,1)时,f ′(x )<0, 即f (x )在(-2,1)上单调递减; 当x ∈(1,+∞)时,f ′(x )>0, 即f (x )在(1,+∞)上单调递增.从而函数f (x )在x =-2处取得极大值f (-2)=21, 在x =1处取得极小值f (1)=-6. 考点五 运用导数解决函数的最值问题 [典例] 已知函数f (x )=ln x -ax (a ∈R).(1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. [解] (1)f ′(x )=1x -a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞). ②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,∴f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,∴f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎝⎛⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,∴当12<a <ln 2时,最小值是f (1)=-a ; 当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a . [针对训练]设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切,(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值. 解:(1)f ′(x )=ax-2bx ,∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎪⎨⎪⎧ f ′(1)=a -2b =0,f (1)=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12. (2)f (x )=ln x -12x 2,f ′(x )=1x -x =1-x 2x ,∵当1e ≤x ≤e 时,令f ′(x )>0得1e≤x <1;令f ′(x )<0,得1<x ≤e ,∴f (x )在⎣⎡⎦⎤1e ,1上单调递增,在[1,e]上单调递减,∴f (x )max =f (1)=-12. 考点六:用导数解决函数极值、最值问题[典例] (2013·北京丰台高三期末)已知函数f (x )=ax 2+bx +ce x (a >0)的导函数y =f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. [解] (1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x,令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以y =f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同. 又因为a >0,所以-3<x <0时,g (x )>0,即f ′(x )>0,当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞).(2)由(1)知,x =-3是f (x )的极小值点,所以有 ⎩⎪⎨⎪⎧9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5, 所以f (x )=x 2+5x +5e x.因为f (x )的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞), 所以f (0)=5为函数f (x )的极大值,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者.而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5. [针对训练]已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.解:(1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .当x =1时,切线l 的斜率为3,可得2a +b =0,① 当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1, 所以f (1)=4.所以1+a +b +c =4.所以c =5.(2)由(1),可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解之,得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:所以y =f (x )在[-3,1]上的最大值为13,最小值为9527.考点七:利用导数研究恒成立问题及参数求解[典例] (2013·全国卷Ⅰ)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围. [解] (1)由已知得f (0)=2,g (0)=2, f ′(0)=4,g ′(0)=4.而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ),故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.(2)由(1)知,f (x )=x 2+4x +2,g (x )=2e x (x +1). 设函数F (x )=kg (x )-f (x )=2k e x (x +1)-x 2-4x -2, 则F ′(x )=2k e x (x +2)-2x -4=2(x +2)(k e x -1). 由题设可得F (0)≥0,即k ≥1. 令F ′(x )=0得x 1=-ln k ,x 2=-2.(ⅰ)若1≤k <e 2,则-2<x 1≤0.从而当x ∈(-2,x 1)时,F ′(x )<0;当x ∈(x 1,+∞)时,F ′(x )>0,即F (x )在(-2,x 1)上单调递减,在(x 1,+∞)上单调递增,故F (x )在[-2,+∞)上的最小值为F (x 1).而F (x 1)=2x 1+2-x 21-4x 1-2=-x 1(x 1+2)≥0. 故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.(ⅱ)若k =e 2,则F ′(x )=2e 2(x +2)(e x -e -2).从而当x >-2时,F ′(x )>0,即F (x )在(-2,+∞)上单调递增,而F (-2)=0,故当x ≥-2时,F (x )≥0,即f (x )≤kg (x )恒成立.(ⅲ)若k >e 2,则F (-2)=-2k e -2+2=-2e -2·(k -e 2)<0.从而当x ≥-2时,f (x )≤kg (x )不可能恒成立. 综上,k 的取值范围是[1,e 2]. [针对训练]设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围. 解:(1)函数f (x )的定义域为(-∞,+∞), ∵f ′(x )=x +e x -(e x +x e x )=x (1-e x ), 若x =0,则f ′(x )=0;若x <0,则1-e x >0,所以f ′(x )<0; 若x >0,则1-e x <0,所以f ′(x )<0. ∴f (x )在(-∞,+∞)上为减函数, 即f (x )的单调减区间为(-∞,+∞).(2)由(1)知,f (x )在[-2,2]上单调递减. 故[f (x )]min =f (2)=2-e 2,∴m <2-e 2时,不等式f (x )>m 恒成立. 故m 的取值范围为(-∞,2-e 2). 考点八、利用导数证明不等式问题[典例] (2013·河南省三市调研)已知函数f (x )=ax -e x (a >0). (1)若a =12,求函数f (x )的单调区间;(2)当1≤a ≤1+e 时,求证:f (x )≤x . [解] (1)当a =12时,f (x )=12x -e x .f ′(x )=12-e x ,令f ′(x )=0,得x =-ln 2.当x <-ln 2时,f ′(x )>0; 当x >-ln 2时,f ′(x )<0,∴函数f (x )的单调递增区间为(-∞,-ln 2),单调递减区间为(-ln 2,+∞). (2)证明:法一:令F (x )=x -f (x )=e x -(a -1)x , (ⅰ)当a =1时,F (x )=e x >0, ∴f (x )≤x 成立.(ⅱ)当1<a ≤1+e 时,F ′(x )=e x -(a -1)=e x -e ln(a -1),∴当x <ln(a -1)时,F ′(x )<0; 当x >ln(a -1)时,F ′(x )>0,∴F (x )在(-∞,ln (a -1))上单调递减,在(ln(a -1),+∞)上单调递增. ∴F (x )≥F (ln(a -1))=e ln(a -1)-(a -1)·ln(a -1)=(a -1)[1-ln(a -1)],∵1<a ≤1+e ,∴a -1>0,1-ln(a -1)≥1-ln [(1+e)-1]=0, ∴F (x )≥0,即f (x )≤x 成立. 综上,当1≤a ≤1+e 时,有f (x )≤x . 法二:令g (a )=x -f (x )=-xa +x +e x ,只要证明g (a )≥0在1≤a ≤1+e 时恒成立即可. g (1)=-x +x +e x =e x >0,①g (1+e)=-x ·(1+e)+x +e x =e x -e x , 设h (x )=e x -e x ,则h ′(x )=e x -e , 当x <1时,h ′(x )<0;当x >1时,h ′(x )>0,∴h (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增, ∴h (x )≥h (1)=e 1-e·1=0, 即g (1+e)≥0.②由①②知,g (a )≥0在1≤a ≤1+e 时恒成立.∴当1≤a ≤1+e 时,有f (x )≤x .[针对训练](2014·东北三校联考)已知函数f (x )=12x 2-13ax 3(a >0),函数g (x )=f (x )+e x (x -1),函数g (x )的导函数为g ′(x ). (1)求函数f (x )的极值;(2)若a =e ,(ⅰ)求函数g (x )的单调区间;(ⅱ)求证:x >0时,不等式g ′(x )≥1+ln x 恒成立.解:(1)f ′(x )=x -ax 2=-ax ⎝⎛⎭⎫x -1a , ∴当f ′(x )=0时,x =0或x =1a,又a >0, ∴当x ∈(-∞,0)时,f ′(x )<0;当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, ∴f (x )的极小值为f (0)=0,f (x )的极大值为f ⎝⎛⎭⎫1a =16a 2.(2)∵a =e ,∴g (x )=12x 2-13e x 3+e x (x -1), g ′(x )=x (e x -e x +1).(ⅰ)记h (x )=e x -e x +1,则h ′(x )=e x -e ,当x ∈(-∞,1)时,h ′(x )<0,h (x )是减函数;x ∈(1,+∞)时,h ′(x )>0,h (x )是增函数,∴h (x )≥h (1)=1>0,则在(0,+∞)上,g ′(x )>0;在(-∞,0)上,g ′(x )<0,∴函数g (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0).(ⅱ)证明:x >0时,g ′(x )=x (e x -e x +1)≥1+ln x ⇔e x -e x +1≥1+ln x x, 由(ⅰ)知,h (x )=e x -e x +1≥1,记φ(x )=1+ln x -x (x >0),则φ′(x )=1-x x, 在区间(0,1)上,φ′(x )>0,φ(x )是增函数;在区间(1,+∞)上,φ′(x )<0,φ(x )是减函数,∴φ(x )≤φ(1)=0,即1+ln x -x ≤0,1+ln x x≤1, ∴e x -e x +1≥1≥1+ln x x,即g ′(x )≥1+ln x 恒成立.。