07年永州中考数学试卷及答案

合集下载

湖南永州市中考数学考试

湖南永州市中考数学考试
-28)2+(30-28)2+(29-28)2+3×(28-28)2+(27-28)2+(26-28)2+2×(25-28)2]= 46 , 11
因此选项 D 正确。故选 D。
6.湖南省第二次文物普查时,省考古研究所在冷水滩钱家州征集到一个宋代“青釉瓜棱形瓷
执壶”的主视图,该壶为盛酒器,瓷质,侈口,喇叭形长颈,长立把,则该“青釉瓜棱形瓷执
)
A.6 种‫ﻩﻩﻩﻩ‬B.20 种
C.24 种 ‫ﻩ‬
D.120 种‫ﻩ‬
【答案】D
【解析】从 5 个人中选出 4 个,不同的站位方法有 5×(5-1)×(5-2)×(5-4+1)=120(种)。
故选 D。
二、填空题(共 8 小题,每小题4分,计 32分)
11.2017 年端午小长假的第一天,永州市共接待旅客约275000 人次,请将 275000 用科学
)
A.a·a2=a2‫ﻩﻩﻩ‬B.(ab)2=ab 【答案】C
C. 3-1 1 ‫ﻩﻩﻩ‬D. 5 5 10 3
【解析】A,a·a2=a3,故选项 A 错误;B 1 ,故选 3
项C正确;D, 5 5 2 5 ,故选项 D 错误。故选 C。
C.AB,AC 边上的高所在直线的交点
D.∠BAC 与∠ABC 的角平分线的交点
(第7题图)
【答案】B
【解析】由题意可知,这块玻璃镜的圆心即为三角形 ABC 外接圆的圆心,即为三角形 ABC 三
边垂直平分线的交点。故选 B。
8.如图,在△ABC 中,点 D 是 AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面
记数法表示为__________。
【答案】2.75×105,

年湖南省永州市中考数学试卷及答案

年湖南省永州市中考数学试卷及答案

年湖南省永州市中考数学试卷及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-199982008年湖南省永州市中考数学试卷第Ⅰ卷考生注意:1、本试卷共三道大题,25个小题,满分120分,时量120分钟.2、本试卷分Ⅰ卷和Ⅱ卷,Ⅰ卷为选择填空题1-2页;Ⅱ卷为解答题3-8页.3、考生务必将Ⅰ卷的答案写在Ⅱ卷卷首的答案栏内,交卷时只交Ⅱ卷.一、填空题(每小题3分,共8个小题,24分.请将答案填在Ⅱ卷卷首的答案栏内.) 1 若商品的价格上涨5%,记为+5%,则价格下跌3%,记作 .2. 四川汶川地震发生以来,截至6月4日12时止,已接受国内外社会各界捐款亿元,用科学记数法(保留三个有效数字)记为 元. 3 如图,直线a 、b 被直线c 所截,若要a ∥b ,需增加条件 (填一个即可).4. 家家乐奥运福娃专卖店今年3月份售出福娃3600个,5月份售出4900个,设每月平均增长率为x ,根据题意,列出关于x 的方程为 .5. 一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C 处的距离为4米,∠ABC 约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为 米(答案可保留根号).6. 一个角的补角是这个角的余角的3倍,则这个角为度 .7. 右图是永州市几个主要景点示意图,根据图中信息可确定九疑山的中心位置C点的坐标为 .8. 已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据 的极差为 .二、选择题(每小题3分,共8个小题,24分.每小题只有一个正确选项,请将正确选项的代号填入Ⅱ卷卷首的答案栏内.)9. 如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b10.为悼念四川汶川地震中遇难同胞,在全国哀悼日第一天,某校升旗仪式中,先把国旗匀速升至旗杆顶部,停顿3秒钟后再把国旗匀速下落至旗杆中部.能正确反映这一过程中,国旗高度h (米)与升旗时间t (秒)的函数关系的大致图象是11.下列判断正确的是( )A .23<3<2 B . 2<2+3<3C . 1<5-3<2 D . 4<3·5<5 12.下图※是一种瑶族长鼓的轮廓图,其主视图正确的是( )13.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆. 在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )A .61 B .31C .21 D .32 14.下列命题是假命题...的是( ) A .两点之间,线段最短.B .过不在同一直线上的三点有且只有一个圆.C .一组对应边相等的两个等边三角形全等.D .对角线相等的四边形是矩形.15.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 ( )A .38cm B .316cm C .3cmD .34cm 16.形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132 的结果为( ) A .11B .-11C .5D .-22008年湖南省永州市中考数学试卷题号 一 二 三总分 合分人 核分人 17 18 19 20 21 22 23 24 25 得分请将Ⅰ卷的答案填入下面答案栏内.一、填空题1. 2. 3. 4. 5. 6. 7. 8.得 分 评卷人 复评人二、选择题9 10 11 12 13 14 15 16三、解答题:(本题9个小题,共72分,解答题要求写出证明步骤或解答过程)17.(6分)计算:cos45°·(-21)-2-(22-3)0+|-32|+121-18.(6分)解方程:xxx-2+2=12+xx19.(6分)如图所示,左边方格纸中每个正方形的边长均为a,右边方格纸中每个正方形的边长均为b,将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.20.(8分)如图,一次函数的图象经过M点,与x轴交于A点,与y轴交于B点,根据图中信息求:(1)这个函数的解析式;(2)tan∠BAO.21.(8分)某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆22.(8分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB (1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.23.(10分)为保护环境,节约资源,从今年6月1日起国家禁止超市、商场、药店为顾客提供免费塑料袋,为解决顾客购物包装问题,心连心超市提供了A.自带购物袋;B.租借购物篮;C.购买环保袋;D.徒手携带,四种方式供顾客选择.该超市把6月1日、2日两天的统计结果绘成如下的条形统计图和6月1日的扇形统计图,请你根据图形解答下列问题:(1)请将6月1日的扇形统计图补充完整.(2)根据统计图求6月1日在该超市购物总人次和6月1日自带购物袋的人次.(3)比较两日的条形图,你有什么发现请用一句话表述你的发现.24.(10分)如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.(1)求证:△APC∽△COD.(2)设AP=x,OD=y,试用含x的代数式表示y.(3)试探索x为何值时,△ACD是一个等边三角形.25.(10分)如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3 .(1)求此二次函数的解析式.(2)写出顶点坐标和对称轴方程.(3)点M 、N 在y =ax 2+bx +c 的图像上(点N 在点M 的右边),且MN∥x 轴,求以MN 为直径且与x 轴相切的圆的半径.2008年湖南省永州市中考数学试卷答案及评分标准一、填空题(每小题3分,共24分)1.3%- 2.104.3710⨯ 3.14∠=∠或13∠=∠或12180∠+∠=4.23600(1)4900x += 5.4+ 6.45° 7.(3,1) 8.4三、解答题17.(6分)解:原式412=- ··············· 2分11=+ ················· 4分=························· 6分 18.(6分)解:12211x x x +=-+ ······················ 1分 方程两边同乘以(1)(1)x x +-,得12(1)(1)2(1)x x x x x +++-=- ······················· 3分解之,得13x =······························ 4分 检验:把13x =代入(1)(1)x x +-得1111033⎛⎫⎛⎫+-≠ ⎪⎪⎝⎭⎝⎭···························· 5分 13x ∴=是原方程的根. ·························· 6分 19.(6分)20.(8分)(1)设一次函数的解析式为y kx b =+(0k ≠) 将点(06)(14)B M -,,,代入,得604(1)k b k b=+⎧⎨=-+⎩,······························ 2分 解之,得26k b ==,∴解析式为26y x =+ ··························· 4分(2)令0y =,代入26y x =+,得3x =-可知点A 的坐标(30)-,··························· 6分 tan 2BAO ∴∠= ····························· 8分21.(8分)解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ···························· 3分 解得:1133x ≥ ······························ 5分 由于x 是车的数量,应为整数,所以x 的最小值为14. ············· 7分 答:至少需要14台B 型车. ························· 8分 22.(8分)(1)证明:ABC △与CDE △都是等边三角形 ED CD ∴=60A DCE BCA DCE ∴∠=∠=∠=∠= ··················· 1分AB CD DE CF ∴∥,∥ ·························· 2分 又EF AB ∥∴EF CD ∥ ······························· 3分 ∴四边形EFCD 是菱形 ··························· 4分 (2)解:连结DF ,与CE 相交于点G ···················· 5分 由4CD =,可知2CG = ·························· 6分∴DG =·························· 7分DF ∴=······························· 8分23.(10分)(1)在扇形统计图的空白处填上“D 22%” ··········· 3分 (2)6月1日在该超市购物的总人次为1250(人次) ·············· 6分 6月1日自带购物袋的有225人次 ······················ 8分 (3)答案不唯一,如“自带购物袋的人增多”“租借购物篮的人减少”等 ························· 10分 24.(10分)(1)∵PC 是⊙O 的直径,CD 是⊙O 的切线∠PAC =∠OCD =90°,显然△DOA ≌△DOC ··················· 1分 ∴∠DOA =∠DOC ······························ 2分 ∴∠APC =∠COD ······························ 3分 APC COD ∴△∽△ ···························· 4分 (2)由APC COD △∽△,得AP OCPC OD=·················· 6分 12x y ∴=,2y x∴= ···························· 7分 (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=, ······· 8分 于是2OD OC =,可得2y =,1x ∴= 故,当1x =时,ACD △是一个等边三角形 ·················· 10分 25.(1)依题意(10)(30)(03)A B C --,,,,,分别代入2y ax bx c =++······ 1分 解方程组得所求解析式为223y x x =-- ··················· 4分 (2)2223(1)4y x x x =--=-- ······················ 5分∴顶点坐标(14)-,,对称轴1x = ······················ 7分(3)设圆半径为r ,当MN 在x 轴下方时,N 点坐标为(1)r r +-, ········ 8分把N 点代入223y x x =--得r =·················· 9分同理可得另一种情形r =∴圆的半径为12-+或12+ 10分。

2007年湖南省永州市数学中考真题(word版含答案)

2007年湖南省永州市数学中考真题(word版含答案)

永州市2007年初中毕业学业考试试卷数学I卷考生注意:1、本试卷共十道大题,其中正卷八大题,满分100分;另附加题2道,20分,合计120分,时量120分钟.2、本试卷分I卷和Ⅱ卷,I卷为选择填空题1—2页;Ⅱ卷为解答题3—8页.3、考生务必将I卷的答案写在Ⅱ卷卷首的答案栏内,交卷时只交Ⅱ卷.一、填空题(每小题3分,共8个小题,24分.请将答案填在Ⅱ卷卷首的答案栏内.) 1.30.001=________.2.因式分解:a3-a=_______.3.观察下列图形,根据变化规律推测第100个与第_______个图形位置相同.4.如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=_______.5.图形:①线段,②等边三角形,③平行四边形,④矩形,⑤梯形,⑥圆.其中既是轴对称图形又是中心对称图形的序号是_______.6.如图,添上条件:_______,则△ABC∽△ADE.7.夏雪同学每次数学测试成绩都是优秀,则在这次中考中他的数学成绩_______(填“可能”,“不可能”,“必然”)是优秀.8.如图,要把线段AB平移,使得点A到达点(42)A',,点B到达点B',那么点B'的坐标是_______.二、选择题(每小题3分,共8个小题,24分.每小题只有一个正确选项,请将正确选项的代号填入Ⅱ卷卷首的答案栏内.)9.函数121yx=-的自变量的取值范围是( )A.12x>B.12x<C.12x=D.12x≠的全体实数10.2006年9月在长沙市举行的“中国中部投资贸易博览会”中,永州市的外贸成交总额达31264万元人民币,用科学记数法(保留三个有效数字)表示这个数据(单位:万元),正确的是( )A .3.12×104B .3.13×104C .31.2×103D .31.3×103 11.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形 12.下列运算中,正确的是( )A .x 2007+x 2008=x 4015B .20070=0C . 22439-⎛⎫-= ⎪⎝⎭D .23()()a a a --=-·13.如图所示,AB CD ∥,∠E =27°,∠C =52°,则EAB ∠的度数为( )A .25°B .63°C .79°D .101°14.用三个正方体,一个圆柱体,一个圆锥的积木摆成如图※所示的几何体,其正视图为()15.在一周内体育老师对某运动员进行了5次百米短跑测试,若想了解该运动员的成绩是否稳定,老师需要知道他5次成绩的( )A .平均数B .方差C .中位数D .众数16.永州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y 元与运输路程x 千米的函数图象是()三、解答题(本题2个小题,每小题6分,共12分)17、计算:0211121sin301820072-⎛⎫⎛⎫---+-⎪ ⎪⎝⎭⎝⎭°·.18、解不等式组:513(5)662(19)95[2(3)]x xx x x x⎧-+⎪⎨⎪+->--⎩≤,并在数轴上表示不等式的解集.四、作图题:(本题6分,不写作法,保留作图痕迹)19.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P点的位置.五.(本题共8分)20.某校对初中三年级同学的视力进行了调查,如图是根据调查结果绘制的条形统计图.请根据统计图回答下列问题:(1)求视力在1.2—1.5的人数.(2)求视力在0.9以下的人数所占的比例.(3)根据统计图显示的信息,用一句话发表你的感想.六.(本题共8分)21.已知一次函数与反比例函数的图象都经过(21)--,和(2)n ,两点. (1)求这两个函数的解析式.(2)画出这两个函数的图象草图.七、应用题:(本题共8分)22.为净化空气,美化环境,我市冷水滩区在许多街道和居民小区都种上了玉兰和樟树,冷水滩区新建的某住宅区内,计划投资1.8万元种玉兰树和樟树共80棵,已知某苗甫负责种活以上两种树苗的价格分别为:玉兰树300元/棵,樟树200元/棵,问可种玉兰树和樟树各多少棵?八、综合题(本题共10分)23.AB 是O 的直径,D 是O 上一动点,延长AD 到C 使CD AD =,连结BC BD ,. (1)证明:当D 点与A 点不重合时,总有AB BC =. (2)设O 的半径为2,AD x =,BD y =,用含x 的式子表示y .(3)BC 与O 是否有可能相切?若不可能相切,则说明理由;若能相切,则指出x 为何值时相切.附加题:(本题2个小题,每小题10分,共20分)九.24.如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉.已知主桥拱为抛物线型,在正常水位下测得主拱宽24m ,最高点离水面8m ,以水平线AB 为x 轴,AB 的中点为原点建立坐标系. ①求此桥拱线所在抛物线的解析式.②桥边有一浮在水面部分高4m ,最宽处122m 的河鱼餐船,试探索此船能否开到桥下?说明理由.25、在梯形ABCD 中,AB CD ∥,90ABC ∠=°,5AB =,10BC =,tan 2ADC ∠=. (1)求DC 的长;(2)E 为梯形内一点,F 为梯形外一点,若BF DE =,FBC CDE ∠=∠,试判断ECF △的形状,并说明理由.(3)在(2)的条件下,若BE EC ⊥,:4:3BE EC =,求DE 的长.湖南永州市2007初中毕业学业考试试卷数学参考答案及评分标准一、填空题(每小题3分) 1.0.1 2.(1)(1)a a a +-3.1(或4)4.2205.①④⑥6.BC DE ∥或ABC ADE ∠=∠或AB ACAD AE=等 7.可能8.(74),二、填空题(每小题3分) 9.D 10.B 11.D 12.D 13.C 14.A15.B 16.B三、解答题: 17.解:原式12114322=--+⨯- ·············································································· 4分232112=---+ 22=- ·························································································································· 6分 18.解不等式①得0x ≥ ······································································································· 2分 解不等式②得4x < ········································································································ 4分原不等式组的解集为04x <≤ ····················································································· 6分 19.画出角平分线··················································································································· 3分 作出垂直平分线 ················································ 3分20.解:①25分 ····················································································································· 3分 ②95100%47.5%200⨯= ································································································ 6分 ③只要与主题有关就给分 ······························································································· 8分 21.解①设反比例函数为m y x=, 则2(1)2m =-⨯-= ······································································································· 2分 ∴反比例函数的解析式为2y x= ···················································································· 3分 ②(2)n ,在反比例函数上,1n ∴=设一次函数为y kx b =+0 4 李张 P因为图象经过(21)(12)--,,,两点 212k b k b -+=-⎧∴⎨+=⎩ ··················································· 5分11k b =⎧∴⎨=⎩一次函数为1y x =+ ······································································································· 6分 ②如图: ·························································································································· 8分 22.解:设种玉兰树x 棵,樟树y 棵,则 ············································································ 1分8030020018000x y x y +=⎧⎨+=⎩··································································································· 5分 解之得:2060x y =⎧⎨=⎩ ··········································································································· 7分答:可种玉兰树20棵,樟树60棵. ············································································ 8分 23.(1)AB 为O 直径,BD AC ∴⊥ ·········································································· 1分 又DC AD =BD ∴是AC 的垂直平分线 A B A C ∴= ···················································································································· 3分 (2)在Rt ABD △中,222BD AB AD =- ································································· 5分 2224y x ∴=- ················································································································ 6分 即216y x =- ·············································································································· 7分 (3)BC 与O 有可能相切 ·························································································· 8分 当BC 与O 相切时,BC AB ⊥A B B C =,45A ∴∠= ···························································································· 9分2222x AB ∴== ··································································································· 10分 24.解:(1)(120)(120)(08)A B C -,,,,,.设抛物线为2y ax bx c =++ C 点坐标代入得:8c = ································································································· 2分A B ,点坐标代入得:14412801441280a b a b -+=⎧⎨++=⎩·································································· 4分O 1- 1 22 12- 2-1-xy解得1180a b ⎧=-⎪⎨⎪=⎩,所求抛物线为21818y x =-+ ··························································· 6分 (2)当4y =时得2418x =,62x ∴=± ···································································· 8分 高出水面4m 处,拱宽122122m m =(船宽)所以此船在正常水位时不可以开到桥下 ······································································· 10分 25.解(1)过A 点作AG DC ⊥,垂足为G ····································································· 1分90AB CD BCD ABC ∴∠=∠=∥,∴四边形ABCG 为矩形510C G A B A G B C ∴====, ·················································································· 2分t a n 2AGADG DG∠== 510D G D C D G C G ∴=∴=+=, ··············································································· 4分(2)DE BF FBC CDE BC DC =∠=∠=,,D E C B F C ∴△≌△ ······································································································· 5分 E C C F E C D F C ∴=∠=∠, ···················································································· 6分9090B C E E C D E C F ∠+∠=∠=,E CF ∴△是等腰直角三角形 ·························································································· 7分(3)过F 点作FH BE ⊥B E EC C F C E C E C =⊥,⊥, ∴四边形ECFH 是正方形,6FH EC ∴== ····························································· 8分:4:390B E EC B E C =∠=, 222B C B E E C ∴=+68EC BE ∴==, ········································································································ 9分2B H B E E H ∴=-=22210DE BF FH BH ∴==+= ········································································ 10分。

2007年湖南省衡阳市中考数学试卷(答案版)

2007年湖南省衡阳市中考数学试卷(答案版)

2007年湖南省衡阳市中考数学试卷(教师版)一、填空题(共8小题,每小题3分,满分24分)1.(3分)单项式ab3的系数为 ﹣ .【微点】单项式.【思路】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解析】解:根据单项式系数的定义,单项式的系数为﹣.【点拨】本题考查单项式的系数,注意单项式中数字因数叫做单项式的系数.2.(3分)计算:(x+1)(x﹣1)= x2﹣1 .【微点】平方差公式.【思路】根据平方差公式计算即可.平方差公式:(a+b)(a﹣b)=a2﹣b2.【解析】解:(x+1)(x﹣1)=x2﹣1.【点拨】本题主要考查平方差公式,熟记公式结构是解题的关键.3.(3分)数据:2,3,2,1,3,2中,众数是 2 .【微点】众数.【思路】众数是指一组数据中出现次数最多的数据,根据众数的定义就可以解决.【解析】解:本题中数据2出现了3次,出现的次数最多,所以本题的众数是2.故填2.【点拨】众数是指一组数据中出现次数最多的数据.4.(3分)半径分别是3cm和4cm的两圆外切,则它们的圆心距为 7 cm.【微点】圆与圆的位置关系.【思路】根据两圆外切时,圆心距等于两圆半径的和解答.【解析】解:∵半径分别是3cm和4cm的两圆外切,3+4=7cm,∴圆心距为7cm.【点拨】本题利用了两圆外切时圆心距等于两圆半径的和.5.(3分)双曲线经过点(﹣2,1),则k= ﹣2 .【微点】待定系数法求反比例函数解析式.【思路】双曲线经过点(﹣2,1),则把(﹣2,1)代入解析式就可以得到k的值.【解析】解:根据题意得:﹣1=,则k=﹣2.故答案为:﹣2.【点拨】本题比较简单,考查的是用待定系数法求反比例函数的比例系数,是中学阶段的重点内容.6.(3分)五边形的内角和为 540° .【微点】多边形内角与外角.【思路】根据多边形的内角和公式(n﹣2)•180°计算即可.【解析】解:(5﹣2)•180°=540°.故答案为:540°.【点拨】本题主要考查了多边形的内角和公式,熟记公式是解题的关键,是基础题.7.(3分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则m的取值范围是 m≤1 .【微点】根的判别式.【思路】方程有实数根即△≥0,根据△建立关于m的不等式,求m的取值范围.【解析】解:由题意知,△=4﹣4m≥0,∴m≤1答:m的取值范围是m≤1.【点拨】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.(3分)如图,Rt△AOB的斜边OA在y轴上,且OA=5,OB=4.将Rt△AOB绕原点O 逆时针旋转一定的角度,使直角边OB落在x轴的负半轴上得到相应的Rt△A′OB′,则A′点的坐标是 (﹣4,3) .【微点】坐标与图形变化﹣旋转.【思路】根据旋转的性质“旋转不改变图形的大小和形状”解答.【解析】解:∵OA=5,OB=4,∠B=90°根据勾股定理可得AB=3,当OB落在x轴的负半轴时,点A旋转到第二象限,则A′B′⊥x轴,可得到OB′=OB=4,A′B′=AB=3,∴A'点的坐标是(﹣4,3).【点拨】需注意旋转前后线段的长度不变,第二象限点的符号为(﹣,+).二、选择题(共10小题,每小题3分,满分30分)9.(3分)下列长度的三条线段,能组成三角形的是( )A.2,2,4B.2,2,5C.2,3,6D.2,4,5【微点】三角形三边关系.【思路】看哪个选项中两条较小的边的和>最大的边即可.【解析】解:A、2+2=4,不能构成三角形;B、2+2<5,不能构成三角形;C、2+3<6,不能构成三角形;D、2+4>5,能构成三角形.故选:D.【点拨】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果>最长那条就能够组成三角形.10.(3分)点P(3,2)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限【微点】关于原点对称的点的坐标.【思路】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.就可以求出点P关于原点的对称点坐标,就可以确定所在象限.【解析】解:点P(3,2)关于原点对称的点是(﹣3,﹣2),所以该点在第三象限.故选:C.【点拨】这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.(3分)下列词语所描述的事件是随机事件的是( )A.守株待兔B.拔苗助长C.刻舟求剑D.竹篮打水【微点】随机事件.【思路】随机事件是可能发生也可能不发生的事件.【解析】解:B,C,D都是不可能事件.所以是随机事件的是守株待兔.故选:A.【点拨】本题主要考查随机事件的概念,它与必然事件,不可能事件相对.随机事件是可能发生也可能不发生的事件;必然事件就是一定发生的事件;不可能事件就是一定不发生的事件.此题要能够理解各个词语的意义.12.(3分)如果某物体的三视图是如图所示的三个图形,那么该物体的形状是( )A.正方体B.长方体C.圆锥D.三棱柱【微点】简单几何体的三视图.【思路】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解析】解:A、正方体的三视图分别为正方形,正方形,正方形,错误;B、长方体的三视图分别为长方形,长方形,长方形,错误;C、圆锥的三视图分别为三角形,三角形,圆,错误;D、三棱柱三视图分别为长方形,长方形,三角形,正确.故选:D.【点拨】本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析.13.(3分)小明做题一向粗心,下面计算,他只做对了一题,此题是( )A.a3+a3=a6B.a2•a5=a7C.(2a3)2=2a6D.(a﹣b)2=a2﹣ab+b2【微点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【思路】根据合并同类项、同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算.【解析】解:A、应为a3+a3=2a3,故本选项错误;B、正确;C、应为(2a3)2=4a6,故本选项错误;D、应为(a﹣b)2=a2﹣2ab+b2,故本选项错误.故选:B.【点拨】本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法、积的乘方、完全平方公式,需熟练掌握且区分清楚,才不容易出错.14.(3分)若矩形的面积为10,矩形的长为x,宽为y,则y关于x的函数图象大致是( )A.B.C.D.【微点】反比例函数的应用.【思路】根据题意有:xy=10;故y与x之间的函数图象为反比例函数,且根据实际意义x、y应大于0.【解析】解:根据矩形的面积公式可得xy=10∴y=(x>0,y>0)故选:D.【点拨】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.15.(3分)将五张分别画有等边三角形、平行四边形、矩形、等腰梯形、正六边形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张卡片,图形一定是中心对称图形的概率是( )A.B.C.D.【微点】中心对称图形;概率公式.【思路】任意翻开一张卡片,共有5种情况,其中是中心对称图形的有平行四边形,矩形,正六边形3种,所以概率是.【解析】解:P(中心对称图形)=.故选:C.【点拨】本题关键理解什么是中心对称图形,然后根据事件的总数和出现中心对称图形的次数求出概率.16.(3分)如图,一块呈三角形的草坪上,一小孩将绳子一端栓住兔子,另一端套在木桩A 处.若∠BAC=120°,绳子长3米(不包括两个栓处用的绳子),则兔子在草坪上活动的最大面积是( )A.π米2B.2π米2C.3π米2D.9π米2【微点】扇形面积的计算.【思路】兔子在草坪上活动的最大面积实际是一个扇形的面积,所以利用扇形面积公式计算即可.【解析】解:由题意得:S max==3π(米2);故选:C.【点拨】本题结合实际问题考查了扇形面积的计算方法.17.(3分)小明根据下表,作了三个推测:x110100100010000…2+3 2.1 2.01 2.001 2.0001…(1)2+(x>0)的值随着x的增大越来越小(2)2+(x>0)的值有可能等于2(3)2+(x>0)的值随着x的增大越来越接近于2其中,推测正确的有( )A.3个B.2个C.1个D.0个【微点】反比例函数的性质.【思路】本题考查反比例函数的图象和性质,结合图中数据进行推测.【解析】解:(1)在2+(x>0)中k=1>0,图象在1,3象限,2+(x>0)的值随着x的增大越来越小.(2)在2+(x>0)中x≠0,≠0,2+(x>0)的值不可能等于2.(3)在2+(x>0)中k=1>0,图象在1,3象限,2+(x>0)的值随着x的增大越来越小,即越来越小.其值随着x的增大越来越接近于2.∴(1)、(3)正确.故选:B.【点拨】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y 随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.18.(3分)如图,点D,E,F分别是△ABC(AB>AC)各边的中点,下列说法中,错误的是( )A.AD平分∠BAC B.EF=BCC.EF与AD互相平分D.△DFE是△ABC的位似图形【微点】三角形中位线定理;位似变换.【思路】根据中位线定理和位似图形的判定求解.【解析】解:A、因为AB>AC,所以中线AD不平分∠BAC,故错误;B、根据中位线定理,EF=BC.故正确;C、根据中位线定理,AF∥ED,AE∥FD,四边形AEDF为平行四边形,对角线EF与AD互相平分.故正确;D、因为△DFE和△ABC的各边对应成比例,为1:2,而且每组对应点所在的直线都经过同一个点,对应边互相平行,是位似图形.故选:A.【点拨】解答此题,要熟练掌握中位线定理,并灵活运用.三、解答题(共8小题,满分66分)19.(6分)计算:+()﹣1﹣(﹣3)0﹣|﹣|.【微点】零指数幂;负整数指数幂;二次根式的性质与化简.【思路】本题涉及零指数幂、负整数指数幂、绝对值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解析】解:原式=2+3﹣1﹣=+2.【点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6分)先化简,再求值:,其中x=6.【微点】分式的化简求值.【思路】首先把括号里因式通分,然后进行约分化简,最后代值计算.【解析】解:原式=,当x=6时,原式=x﹣2=4.【点拨】本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键.21.(8分)已知,如图,▱ABCD中,BE,CF分别是∠ABC和∠BCD的一平分线,BE,CF 相交于点O.(1)求证:BE⊥CF;(2)试判断AF与DE有何数量关系,并说明理由;(3)当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形?(直接写出答案)【微点】平行四边形的判定与性质;矩形的判定.【思路】(1)平行四边形中邻角互补,且BE、CF分别为一组邻角的平分线,所以BE 和CF垂直.(2)在三角形AEB中,因为BE为平分线,AD和BC平行,所以可得∠ABE=∠AEB,即AB=AE,同理,DF=DC,所以AF=DE.(3)当△BOC为等腰直角三角形时,即∠BOC=90°,由题可知,∠ABC=∠BCD=90°,有一个角是直角的平行四边形为矩形.【解析】(1)证明:∵四边形ABCD是平行四边形∴AB∥CD∴∠ABC+∠BCD=180°(1分)又∵BE,CF分别是∠ABC,∠BCD的平分线∴∠EBC+∠FCB=90°∴∠BOC=90°故BE⊥CF(3分)(2)解:AF=DE理由如下:∵AD∥BC∴∠AEB=∠CBE又∵BE是∠ABC的平分线,∴∠ABE=∠CBE∴∠AEB=∠ABE∴AB=AE同理CD=DF(5分)又∵四边形ABCD是平行四边形∴AB=CD∴AE=DF∴AF=DE(6分)(3)解:当△BOC为等腰直角三角形时四边形ABCD是矩形.(8分)【点拨】此题主要考查了平行四边形的性质以及矩形的判定,难易程度适中.22.(8分)某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40KG到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:问:(1)辣椒和蒜苗各批发了多少KG?(2)他当天卖完这些辣椒和蒜苗能赚多少钱?品名辣椒蒜苗批发价(单位:元/kg) 1.6 1.8零售价(单位:元/kg) 2.6 3.3【微点】二元一次方程组的应用.【思路】(1)要求辣椒和蒜苗各批发了多少KG?就要设出它们各是多少,然后根据批发了辣椒和蒜苗共40kg,列出x+y=40,再根据用70元钱,列出1.6x+1.8y=70,解方程组即可.(2)求当天卖完这些辣椒和蒜苗能赚多少钱?就用零售价卖出的总价﹣批发总价.【解析】解:方法一:(1)设该经营户从蔬菜市场批发了辣椒xkg,则蒜苗(40﹣x)kg,得1.6x+1.8(40﹣x)=70解得:x=10,则40﹣x=30(2)利润:10(2.6﹣1.6)+30(3.3﹣1.8)=55(元)答:该经营户批发了10kg辣椒和30kg蒜苗;当天能赚55元.方法二:(1)设该经营户从蔬菜市场批发了辣椒xkg,蒜苗ykg,得解得:x=10 y=30(2)利润:10×(2.6﹣1.6)+30(3.3﹣1.8)=55(元)答:该经营户批发了10kg辣椒和30kg蒜苗;当天能赚55元.【点拨】解题关键是弄清题意,合适的等量关系,即辣椒的重量+蒜苗的重量=40,合计用钱70元,列出方程组.利润=零售价卖出的总价一批发总价.23.(9分)李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上(含80分)为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,如图.综合素质考试成绩体育测试满分100100100小聪729860小亮907595请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议;(3)扇形图中“优秀率”是多少?(4)“不及格”在扇形图中所占的圆心角是多少度?(5)请从扇形图中,写出你发现的一个现象并分析其产生的原因.【微点】统计表;扇形统计图.【思路】(1)结合统计表,按4:4:2的计算方法分别求出小聪、小亮的成绩,进行比较即可;(2)结合两人对比的劣势提出合理的建议即可;(3)优秀率=×100%;(4)利用1﹣6%﹣18%﹣36%即可求出答案;(5)自由发挥,只要合理即可.【解析】解:(1)小聪成绩是:72×40%+98×40%+60×20%=80(分),小亮成绩是:90×40%+75×40%+95×20%=85(分),∴小聪、小亮成绩都达到了“优秀毕业生”水平,小亮毕业成绩好些;(2)小聪要加强体育锻炼,注意培养综合素质,小亮在学习文化知识方面还要努力,成绩有待进一步提高;(3)优秀率是:×100%=6%;(4)“不及格”在扇形中所占的圆心角是:360°×(1﹣6%﹣18%﹣36%)=144°;(5)现象:体育成绩优秀学生太少,不及格人数太多.产生原因:①学校不重视体育,只注意文化成绩,②学生不爱运动,喜欢看电视、上网等,③学生作业负担较重,无时间锻炼,④有些体育老师不负责任,没有宣传锻炼身体的好处,⑤体育场地、设施不够好.【点拨】本题需仔细分析图表,利用简单的计算即可解决问题.24.(9分)国家为了关心广大农民群众,增强农民抵御大病风险的能力,积极推行农村医疗保险制度,某县根据本地的实际情况,制定了纳入医疗保险的农民医疗费用报销规定.享受医保的农民可在定点医院就医,在规定的药品品种范围内用药,由患者先垫付医疗费用,年终到医保中心报销,医疗费的报销比例标准如下表:费用范围500元以下(含500元)超过500元且不超过10000元的部分超过10000元的部分报销比例标准不予报销50%60%(1)设刘爷爷一年的实际医疗费为x元(500<x≤10000),按标准报销的金额为y元,试求y与x的函数关系式;(2)若刘爷爷一年内自付医疗费为2000元(自付医疗费=实际医疗费﹣按标准报销的金额),则刘爷爷当年实际医疗费为多少元?(3)若刘爷爷一年内自付医疗费不小于6250元,则刘爷爷当年实际医疗费至少为多少元?【微点】一次函数的应用.【思路】(1)根据报销的金额=符合报销条件的金额×对应的报销比例,然后根据表中给出的不同的条件,确定出y与x的函数关系式;(2)根据自付医疗费=实际医疗费﹣按标准报销的金额,然后将(1)中得出的函数关系式代入其中,即可求出刘爷爷当年的实际医疗费;(3)要先判断出刘爷爷总共花费的金额大概是多少,然后根据图表中给出的条件,看看符合哪种条件,然后再进行计算.【解析】解:(1)y=(x﹣500)×50%=x﹣250,(500<x≤10000);(2)设实际医疗费用为x 元,依题意得x﹣(x﹣250)=2000,解得x=3500,答:刘爷爷当年实际医疗费用是3500元;(3)∵500+0.5×(10000﹣500)=5250<6250,∴刘爷爷实际医疗费用超过了10000元,设刘爷爷实际医疗费用为x元,依题意得:500+(10000﹣500)×50%+(x﹣10000)(1﹣60%)≥6250,解得x≥12500.答:刘爷爷实际医疗费用至少是12500元时,自付费用不少于6250元.【点拨】利用一次函数求最值时,主要应用一次函数的性质;要注意题目中自变量的取值范围,根据不同的条件进行不同的运算.25.(10分)如图,点P在y轴上,⊙P交x轴于A,B两点,连接AP并延长交⊙P于C 点,过点C的直线y=﹣2x+b交x轴于点D,交y轴于点E,且⊙P的半径为,AB=4.(1)求点P,点C的坐标;(2)求证:CD是⊙P的切线;(3)若二次函数y=﹣x2+mx+n的图象经过A,C两点,求这个二次函数的解析式,并写出使函数值大于一次函数y=﹣2x+b值的x的取值范围.【微点】一次函数综合题;二次函数综合题;切线的判定.【思路】(1)连接CB,根据已知及勾股定理等即可求解;(2)只要证明∠ACD=90°即可得到DC是⊙P的切线.(3)把A,C两点代入解析式求出未知数的值,进而求出其解析式;可求二次函数y=﹣x2+x+3与一次函数y=﹣2x+6的交点C和D,由此可知,满足条件的x的取值范围.【解析】(1)解:如图,连接CB,∵OP⊥AB,∴OB=OA=2.(1分)∵OP2+AO2=AP2∴OP2=5﹣4=1,OP=1,(2分)∵AC是⊙P的直径,∴∠ABC=90°.∵CP=PA,BO=OA,∴BC=2PO=2.∴P(0,1),C(2,2).(3分)(2)证明:方法一:∵y=﹣2x+b过C点,∴b=6.∴y=﹣2x+6.(4分)∵当y=0时,x=3,∴D(3,0).∴BD=1.∵OA=BC=2PO=BD=1,∠AOP=∠CBD,∴△AOP≌△CBD.∴∠PAO=∠DCB.∵∠PAO+∠ACB=90°,∴∠ACB+∠DCB=90°.∴∠ACD=90°.∴DC是⊙P的切线.(6分)方法二:∵直线y=﹣2x+b过C点(2,2),∴y=﹣2x+6.(4分)又∵直线y=﹣2x+6交x轴于点D,y轴于点E,∴D(3,0),E(0,6).∴OD=3OE=6.∴.又∵∠AOP=∠EOD,∴△AOP∽△EOD.∴∠APO=∠EDO.又∵∠APO+∠PAO=90°,∴∠EDO+∠PAO=90°.∴∠ACD=90°.∴CD是⊙O的切线.(6分)(3)解:∵y=﹣x2+mx+n过A(﹣2,0)和C(2,2),∴解得,∴这个二次函数的解析式为y=﹣x2+x+3.(8分)可求二次函数y=﹣x2+x+3与一次函数y=﹣2x+6的交点C(2,2)和D(3,0),由此可知,满足条件的x的取值范围为2<x<3.(10分)【点拨】此题考查的是用待定系数法求一次函数的解析式及圆的相关知识,涉及面较广.26.(10分)如图,在等腰△ABC中,AB=AC=5cm,BC=6cm,AD⊥BC,垂足为点D.点P,Q分别从B,C两点同时出发,其中点P从点B开始沿BC边向点C运动,速度为1cm/s,点Q从点C开始沿CA边向点A运动,速度为2cm/s,设它们运动的时间为x.(1)当x为何值时,将△PCQ沿直线PQ翻折180°,使C点落到C′点,得到的四边形CQC′P是菱形;(2)设△PQD的面积为y(cm2),当0<x<2.5时,求y与x的函数关系式;(3)当0<x<2.5时,是否存在x,使得△PDM与△MDQ的面积比为5:3?若存在,求出x的值;若不存在,请说明理由.【微点】二次函数综合题.【思路】(1)当PC=CQ时,根据图形翻折变换后与原图形重合,可以判断出此时形成的四边形是菱形.(2)过点Q作QE⊥BC,由勾股定理可求出AD的值,再根据△QEC∽△ADC可用x表示出QE的长,再由三角形的面积公式即可求出y与x之间的函数关系式.(3)过点Q作QF⊥AD,垂足为F,连接DQ,把三角形的面积比转化成高的比,再分别用x表示出两三角形的高,根据比值求出未知数的值即可.【解析】解:(1)PC=6﹣x,CQ=2x要使四边形CQC′P是菱形,则PC=CQ即6﹣x=2x得x=2∴当x=2时,四边形CQC′P是菱形.(3)(2)过点Q作QE⊥BC,垂足为E,∵AB=AC=5cm,BC=6cm,AD⊥BC∴AD==4(cm)∵QE∥AD∴△QEC∽△ADC,∴=即=,∴QE=又∵PD=3﹣x∴y=PD•QE=(3﹣x)•x即y=﹣x2+x(0<x<2.5).(6)(3)存在.理由如下过点Q作QF⊥AD,垂足为F,连接DQ∵S△PDM:S△MDQ=5:3∴PM:MQ=PD:QF=5:3在Rt△QEC中,EC==xQF=DE=3﹣x(也可由Rt△AEQ Rt△ADC,求得QF)(8)∴=解得x=2∴当x=2时,S△PDM:S△MDQ=5:3.(10分)【点拨】此题是典型的动点问题,涉及到菱形及相似三角形的性质,题中的(3)是开放性题目,解法不唯一.。

2007年江西省中考数学试卷及答案

2007年江西省中考数学试卷及答案

机密★2007年6月19日江西省2007年中等学校招生考试数学试卷(课标卷)说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟. 一、填空题(本大题共10小题,每小题3分,共30分) 1.计算:(3)2-⨯= .2.化简:52a a -= . 3.在“We like maths .”这个句子的所有字母中,字母“e ”出现的频率约为 (结果保留2个有效数字).4.在Rt ABC △中,90C ∠=°,a b c ,,分别是A B C ∠∠∠,,的对边,若2b a =,则tan A = .5.在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,是总价y (元)与加油量x (升)的函数关系式是 .6.的点的距离最近的整数点所表示的数是 .7.如图,在ABC △中,点D 是BC 上一点,80BAD ∠=°,AB AD DC ==,则C ∠= 度.8.如图,点A B ,是O 上两点,10AB =,点P 是O 上的动点(P 与A B ,不重合),连结AP PB ,,过点O 分别作OE AP ⊥于E ,OF PB ⊥于F ,则EF = .9.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的解为 .10.如图,已知AOB OA OB ∠=,,点E 在OB 边上,四边形AEBF是矩形.请你只用无BE O (第10题)ACBD80(第7题)(第9题)C Bb(第4题)AP(第8题)刻度的直尺在图中画出AOB ∠的平分线(请保留画图痕迹). 二、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.11.在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是( ) A .冠军属于中国选手 B .冠军属于外国选手 C .冠军属于中国选手甲 D .冠军属于中国选手乙 12.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小13.下列图案中是轴对称图形的是( )A. B. C. D. 14.已知:20n 是整数,则满足条件的最小正整数n 为( )A .2B .3C .4D .5 15.桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是( )16.如图,将矩形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,若22.5DBC ∠=°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有( )A .6个B .5个C .4个D .3个 三、(本大题共3小题,第17小题6分,第18、19小题各7分,共20分) 17.计算:2007(1)132sin 60-+--°.2008年北京 2004年雅典 1988年汉城 1980年莫斯科左面 (第15题)A .B .C.D.A E C 'D C 22.5 (第16题)18.化简:24214a a a+⎛⎫+⎪-⎝⎭·19.如图,在正六边形ABCDEF 中,对角线AE 与BF 相交于点M ,BD 与CE 相交于点N .(1)观察图形,写出图中两个不同形状....的特殊四边形; (2)选择(1)中的一个结论加以证明.四、(本大题共2小题,每小题8分,共16分)20.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数. 方案4 所有评委所给分的众数. 为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.21.如图,在Rt ABC △中,90A ∠=°,86AB AC ==,.若动点D 从点B 出发,沿线段BA 运动到点A 为止,运动速度为每秒2个单位长度.过点D 作DE BC ∥交AC 于点E ,设动点D 运动的时间为x 秒,AE 的长为y .(1)求出y 关于x 的函数关系式,并写出自变量x 的取值范围; (2)当x 为何值时,BDE △的面积S 有最大值,最大值为多少?分数人数五、(本大题共2小题,第22小题8分,第23小题9分,共17分)22.在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式: ①AB DC = ②ABE DCE ∠=∠ ③AE DE = ④A D ∠=∠ 小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定BEC △是等腰三角形吗?说说你的理由; (2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使BEC △不能..构成等腰三角形的概率.23.2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票. (1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张? (2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求六、(本大题共2小题,第24小题9分,第25小题10分,共19分)24.在同一平面直角坐标系中有6个点:(11)(31)(31)(22)A B C D -----,,,,,,,,(23)E --,,(04)F -,.(1)画出ABC △的外接圆P ,并指出点D 与P 的位置关系;(2)若将直线EF 沿y 轴向上平移,当它经过点D 时,设此时的直线为1l . ①判断直线1l 与P 的位置关系,并说明理由;②再将直线1l 绕点D 按顺时针方向旋转,当它经过点C 时,设此时的直线为2l .求直线2l 与P 的劣弧..CD 围成的图形的面积(结果保留π).25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现 (3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明); 运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.x图1x图2x图3)x图4江西省2007年中等学校招生考试 数学试题参考答案及评分意见(课标卷)说明:1.如果考生的解答与本参考答案不同,可根据试题的主要考查内容参照评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分;但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、填空题(本大题共10小题,每小题3分,共30分) 1.6-; 2.3a ; 3.0.18; 4.12; 5. 4.75y x =; 6.2; 7.25; 8.5; 9.11x =-,23x =;10.如图:二、选择题(本大题共6小题,每小题3分,共18分)11.A ; 12.C ; 13.D ; 14.D ; 15.C ; 16.B . 三、(本大题共3小题,第17小题6分,第18,19小题各7分,共20分) 17.解:原式11)2=-+- ······························································ 3分11=- ······································································· 4分2=- ························································································· 6分 18.解:原式224424a a a a-++=- ······································································· 2分22(2)(2)a a a a a+=+- ······························································· 4分 2a a =- ······················································································ 7分 19.解:(1)矩形ABDE ,矩形BCEF ; 或菱形BNEM ;或直角梯形BDEM ,AENB 等. ····································································· 4分(第10题) A OE B F(2)选择ABDE 是矩形.证明:ABCDEF 是正六边形,120AFE FAB ∴==∠∠,30EAF ∴=∠,90EAB FAB FAE ∴=-=∠∠∠. ··· 5分 同理可证90ABD BDE ==∠∠.∴四边形ABDE 是矩形. ················································································ 7分选择四边形BNEM 是菱形.证明:同理可证:90FBC ECB ==∠∠,90EAB ABD ==∠∠,BM NE ∴∥,BN ME ∥. ∴四边形BNEM 是平行四边形.BC DE =,30CBD DEN ==∠∠,BNC END =∠∠,BCN EDN ∴△≌△. BN NE ∴=.∴四边形BNEM 是菱形. ··············································································· 7分 选择四边形BCEM 是直角梯形.证明:同理可证:BM CE ∥,90FBC =∠,又由BC 与ME 不平行,得四边形BCEM 是直角梯形. ········································································· 7分 四、(本大题共2小题,每小题8分,共16分) 20.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; ········ 1分 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=; ············································· 2分 方案3最后得分:8; ····················································································· 3分 方案4最后得分:8或8.4. ············································································· 4分(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案. ···························································· 6分 因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案. ········································································ 8分 (说明:少答一个方案扣2分,多答一个方案扣1分) 21.解:(1)DE BC ∥,ADE ABC ∴△∽△.AD AEAB AC∴=.······························································································ 1分 又8AB =,6AC =,82AD x =-,AE y =,8286x y-∴=. 362y x ∴=-+. ··························································································· 3分自变量x 的取值范围为04x ≤≤. ··································································· 4分(2)11326222S BD AE x x ⎛⎫==-+ ⎪⎝⎭22336(2)622x x x =-+=--+. ····································································· 6分 ∴当2x =时,S 有最大值,且最大值为6. ······················································· 8分(或用顶点公式求最大值) 五、(本大题共2小题,第22小题8分,第23小题9分,共17分) 22.解:(1)能.··························································································· 1分 理由:由AB DC =,ABE DCE =∠∠,AEB DEC =∠∠, 得ABE DCE △≌△. ··················································································· 3分BE CE ∴=,BEC ∴△是等腰三角形. ····························································· 4分 (2)树状图:先抽取的纸片序号所有可能出现的结果(①②)(①③)(①④)(②①)(②③)(②④)(③①)(③②)(③④)(④①)(④②)(④③) ················································································· 6分····· 6分 由表格(或树状图)可以看出,抽取的两张纸片上的等式可能出现的结果有12种,它们出现的可能性相等,不能构成等腰三角形的结果有4种,所以使BEC △不能构成等腰三角形的概率为13. ································································································ 8分 23.解:(1)设预订男篮门票x 张,则乒乓球门票(10)x -张.由题意,得1000500(10)8000x x +-=, ··························································· 2分 解得6x =.104x ∴-=. ······························································································· 3分 答:可订男篮门票6张,乒乓球门票4张. ·························································· 4分① ② ③ ④ ② ① ③ ④ ③ ① ② ④ ④ ① ② ③ 开始 123456------后抽取的纸片序号(2)解法一:设男篮门票与足球门票都订a 张,则乒乓球门票(102)a -张.由题意,得1000800500(102)8000500(102)1000.a a a a a ++-⎧⎨-⎩≤,≤ ·············································· 6分解得132324a ≤≤. 由a 为正整数可得3a =. ················································································ 8分 答:他能预订男篮门票3张,足球门票3张,乒乓球门票4张. ······························· 9分解法二:设男篮门票与足球门票都订a 张,则乒乓球门票(102)a -张.由题意,得500(102)10001020.a a a -⎧⎨->⎩≤,·································································· 6分解得552a <≤.由a 为正整数可得3a =或4a =. 当3a =时,总费用31000380045007400⨯+⨯+⨯=(元)8000<(元), 当4a =时,总费用41000480025008200⨯+⨯+⨯=(元)8000>(元),不合题意,舍去.··························································································· 8分 答:他能预订男篮门票3张,足球门票3张,乒乓球门票4张. ······························ 9分 六、(本大题共2小题,第24小题9分,第25小题10分,共19分) 24.解:(1)所画P 如图所示,由图可知PPD =.∴点D 在P 上. (2)(2)①直线EF 向上平移1个单位经过点D ,且经过点(0G -,∴2221310PG =+=,25PD =,25DG =.222PG PD DG ∴=+.则90PDC ∠=,1PD l ∴⊥.∴直线1l 与P 相切.(另法参照评分)··························································································· 6分 ②PC PD ==CD =222PC PD CD ∴+=.90CPD ∴∠=. 5π4S ∴==扇形,21522PCD S ==△.∴直线2l 与劣弧CD 围成的图形的面积为5π542-. ………………………………………9分 25.解:(1)()e c d +,,()c e a d +-,. ························································ 2分x(2)分别过点A B C D ,,,作x 轴的垂线,垂足分别为1111A B C D ,,,, 分别过A D ,作1AE BB ⊥于E ,1DF CC ⊥于点F . 在平行四边形ABCD 中,CD BA =,又11BB CC ∥,180EBA ABC BCF ABC BCF FCD ∴∠+∠+∠=∠+∠+∠=.EBA FCD ∴∠=∠.又90BEA CFD ∠=∠=,BEA CFD ∴△≌△. ····················································································· 4分 AF DF a c ∴==-,BE CF d b ==-. 设()C x y ,.由e x a c -=-,得x e c a =+-.由y f d b -=-,得y f d b =+-.()C e c a f d b ∴+-+-,. ···························· 5分 (此问解法多种,可参照评分)(3)m c e a =+-,n d f b =+-.或m a c e +=+,n b d f +=+. ·················· 7分(4)若GS 为平行四边形的对角线,由(3)可得1(27)P c c -,.要使1P 在抛物线上, 则有274(53)(2)c c c c c =--⨯--,即20c c -=.10c ∴=(舍去),21c =.此时1(27)P -,. ························································· 8分 若SH 为平行四边形的对角线,由(3)可得2(32)P c c ,,同理可得1c =,此时2(32)P ,. 若GH 为平行四边形的对角线,由(3)可得(2)c c -,,同理可得1c =,此时3(12)P -,. 综上所述,当1c =时,抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形.符合条件的点有1(27)P -,,2(32)P ,,3(12)P -,. ··············································· 10分)x。

湖南省永州市中考数学真题试题含解析

湖南省永州市中考数学真题试题含解析

湖南省永州市中考数学试卷一、选择题,共10小题,每小题3分,共30分1.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013 B.2014 C.2015 D.2016考点:数轴..分析:数轴上两点间的距离等于表示这两点的数的差的绝对值.解答:解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015,故选:C.点评:本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.(3分)(2015•永州)下列运算正确的是()A.a2•a3=a6B.(﹣a+b)(a+b)=b2﹣a2C.(a3)4=a7D.a3+a5=a8考点:平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..分析:A:根据同底数幂的乘法法则判断即可.B:平方差公式:(a+b)(a﹣b)=a2﹣b2,据此判断即可.C:根据幂的乘方的计算方法判断即可.D:根据合并同类项的方法判断即可.解答:解:∵a2•a3=a5,∴选项A不正确;∵(﹣a+b)(a+b)=b2﹣a2,∴选项B正确;∵(a3)4=a12,∴选项C不正确;∵a3+a5≠a8∴选项D不正确.故选:B.点评:(1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(4)此题还考查了合并同类项的方法,要熟练掌握.3.(3分)(2015•永州)某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A.这组数据的众数是170B.这组数据的中位数是169C.这组数据的平均数是169D.若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为考点:众数;加权平均数;中位数;概率公式..分析:分别利用众数、中位数、平均数及概率的知识求解后即可判断正误;解答:解:A、数据170出现了3次,最多,故众数为170,正确,不符合题意;B、排序后位于中间位置的两数为168和170,故中位数为169,正确,不符合题意;C、平均数为(168+165+168+166+170+170+176+170)÷4=169.125,故错误,符合题意;D、从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为=,故选C.点评:本题考查了众数、加权平均数、中位数及概率公式,解题的关键是能够分别求得有关统计量,难度不大.4.(3分)(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00考点:一元一次方程的应用..分析:设开幕式当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人”列出方程并解答.解答:解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2000,解得x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.(3分)(2015•永州)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11 B.12 C.13 D.14考点:由三视图判断几何体..分析:从俯视图可得:碟子共有3摞,结合主视图和左视图,可得每摞碟子的个数,相加可得答案.解答:解:由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个,故选:B.点评:本题考查的知识点是简单空间图形的三视图,分析出每摞碟子的个数是解答的关键.6.(3分)(2015•永州)如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°考点:圆周角定理..分析:先由圆周角定理求出∠A与∠ADB的度数,然后根据三角形外角的性质即可求出∠P的度数.解答:解:∵和所对的圆心角分别为90°和50°,∴∠A=25°,∠ADB=45°,∵∠P+∠A=∠ADB,∴∠P=∠AD B﹣∠P=45°﹣25°=20°.故选D.点评:此题考查了圆周角定理及三角形外角的性质,解题的关键是:熟记并能灵活应用圆周角定理及三角形外角的性质解题.7.(3分)(2015•永州)若不等式组恰有两个整数解,则m的取值范围是()A.A﹣1≤m<0 B.﹣1<m≤0C.﹣1≤m≤0D.﹣1<m<0考点:一元一次不等式组的整数解..分析:先求出不等式的解集,根据题意得出关于m的不等式组,求出不等式组的解集即可.解答:解:∵不等式组的解集为m﹣1<x<1,又∵不等式组恰有两个整数解,∴﹣2≤m﹣1<﹣1,解得:﹣1≤m<0恰有两个整数解,故选A.点评:本题考查了解一元一次不等式组,不等式组的解集的应用,解此题的关键是能求出关于m的不等式组,难度适中.8.(3分)(2015•永州)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.A B2=AD•AC D.=考点:相似三角形的判定..分析:根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.解答:解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.9.(3分)(2015•永州)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)考点:角平分线的性质..分析:根据角平分线的性质分析,作∠E的平分线,点P到AB和CD的距离相等,即可得到S△PAB=S△PCD.解答:解:作∠E的平分线,可得点P到AB和CD的距离相等,因为AB=CD,所以此时点P满足S△PAB=S△PCD.故选D.点评:此题考查角平分线的性质,关键是根据AB=CD和三角形等底作出等高即可.10.(3分)(2015•永州)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数)B.0≤x﹣[x]<1C.[x+y]≤[x]+[y] D.[n+x]=n+[x](n为整数)考点:一元一次不等式组的应用..专题:新定义.分析:根据“定义[x]为不超过x的最大整数”进行计算.解答:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.点评:本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年高考常考的题型.二、填空题,共8小题,每小题3分,共24分11.(3分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为0元,0用科学记数法表示为 3.65×108.考点:科学记数法—表示较大的数..分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将0用科学记数法表示为3.65×108.故答案为:3.65×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2015•永州)如图,∠1=∠2,∠A=60°,则∠ADC=120 度.考点:平行线的判定与性质..分析:由已知一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数.解答:解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°.故答案为:120°点评:本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.13.(3分)(2015•永州)已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x ≥2时,y≤0.考点:待定系数法求一次函数解析式;一次函数的性质..分析:利用待定系数法把点A(0,﹣1),B(1,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式,再解不等式即可.解答:解:∵一次函数y=kx+b的图象经过两点A(0,1),B(2,0),∴,解得:这个一次函数的表达式为y=﹣x+1.解不等式﹣x+1≤0,解得x≥2.故答案为x≥2.点评:本题考查了待定系数法求一次函数解析式,解不等式,把点的坐标代入函数解析式求出解析式是解题的关键.14.(3分)(2015•永州)已知点A(﹣1,y1),B(1,y2)和C(2,y3)都在反比例函数y=(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).考点:反比例函数图象上点的坐标特征..分析:先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解答:解:∵反比例函数y=(k>0)中k>0,∴函数图象的两个分式分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣1<0,﹣1<0,∴点A(﹣1,y1)位于第三象限,∴y1<0,∴B(1,y2)和C(2,y3)位于第一象限,∴y2>0,y3>0,∵1<2,∴y2>y3,∴y1<y3<y2.故答案为:y1,y3,y2.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(3分)(2015•永州)如图,在△ABC中,已知∠1=∠2,BE=C D,AB=5,AE=2,则CE= 3 .考点:全等三角形的判定与性质..分析:由已知条件易证△ABE≌△AC D,再根据全等三角形的性质得出结论.解答:解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.点评:本题主要考查了全等三角形的性质和判定,熟记定理是解题的关键.16.(3分)(2015•永州)如图,在平面直角坐标系中,点A的坐标(﹣2,0),△ABO是直角三角形,∠AOB=60°.现将Rt△ABO绕原点O按顺时针方向旋转到Rt△A′B′O的位置,则此时边OB扫过的面积为π.考点:扇形面积的计算;坐标与图形性质;旋转的性质..分析:根据点A的坐标(﹣2,0),可得OA=2,再根据含30°的直角三角形的性质可得OB 的长,再根据性质的性质和扇形的面积公式即可求解.解答:解:∵点A的坐标(﹣2,0),∴OA=2,∵△ABO是直角三角形,∠AOB=60°,∴∠OAB=30°,∴OB=OA=1,∴边OB扫过的面积为:=π.故答案为:π.点评:本题考查了扇形的面积公式:S=,其中n为扇形的圆心角的度数,R为圆的半径),或S=lR,l为扇形的弧长,R为半径.17.(3分)(2015•永州)在等腰△ABC中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF ,AE .(填A′D、A′E、A′F)考点:平移的性质;等腰三角形的性质..分析:根据三角形中线的定义,可得答案,根据三角形角平分线的定义,可得答案,三角形高线的定义,可得答案.解答:解:,在等腰△AB C中,AB=AC,则有BC边上的中线,高线和∠BAC的平分线重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A′BC(如图二),那么,此时BC边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是A′D,AF,AE,故答案为:A′D,A′F,A′E.点评:本题考查了平移的性质,平移不改变三角形的中线,三角形的角平分线分角相等,三角形的高线垂直于角的对边.18.(3分)(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015= 2 .考点:尾数特征..分析:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,先求出2015÷10的商和余数,再根据商和余数,即可求解.解答:解:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,1+6+1+6+5+6+1+6+1+0=33,2015÷10=201…5,33×201+(1+6+1+6+5)=6633+19=6652.故a1+a2+a3+…+a2013+a2014+a2015=2.故答案为:2.点评:考查了尾数特征,本题关键是得出正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环.三、简单题,共9小题,共76分19.(6分)(2015•永州)计算:cos30°﹣+()﹣2.考点:实数的运算;负整数指数幂;特殊角的三角函数值..专题:计算题.分析:原式第一项利用特殊角的三角函数值计算,第二项化为最简二次根式,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=﹣+4=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(6分)(2015•永州)先化简,再求值:•(m﹣n),其中=2.考点:分式的化简求值..分析:先根据分式混合运算的法则把原式进行化简,再由=2得出m=2n,代入原式进行计算即可.解答:解:原式=•(m﹣n)=,由=2得m=2n,故原式===5.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)(2015•永州)中央电视台举办的“中国汉字听写大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国汉字听写大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A 类(非常喜欢),B类(较喜欢),C类(一般),D类(不喜欢).已知A类和B类所占人数的比是5:9,请结合两幅统计图,回答下列问题:(1)写出本次抽样调查的样本容量;(2)请补全两幅统计图;(3)若该校有2000名学生.请你估计观看“中国汉字听写大会”节目不喜欢的学生人数.考点:条形统计图;用样本估计总体;扇形统计图..分析:(1)用A类的人数除以它所占的百分比,即可得样本容量;(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;(3)用2000乘以26%,即可解答.解答:解:(1)20÷20%=100,∴本次抽样调查的样本容量为100.(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,如图所示:(3)2000×26%=520(人).故若该校有2000名学生.估计观看“中国汉字听写大会”节目不喜欢的学生人数为520人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2015•永州)已知关于x的一元二次方程x2+x+m2﹣2m=0有一个实数根为﹣1,求m的值及方程的另一实根.考点:一元二次方程的解;根与系数的关系..分析:把x=﹣1代入已知方程列出关于m的新方程,通过解该方程来求m的值;然后结合根与系数的关系来求方程的另一根.解答:解:设方程的另一根为x2,则﹣1+x2=﹣1,解得x2=0.把x=﹣1代入x2+x+m2﹣2m=0,得(﹣1)2+(﹣1)+m2﹣2m=0,即m(m﹣2)=0,解得m1=0,m2=2.综上所述,m的值是0或2,方程的另一实根是0.点评:本题主要考查了一元二次方程的解.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.23.(8分)(2015•永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E 点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.考点:全等三角形的判定与性质..专题:证明题.分析:(1)根据四边形的内角和等于360°求出∠B+∠ADC=180°,再根据邻补角的和等于180°可得∠CDE+∠ADE=180°,从而求出∠B=∠CDE;(2)根据“边角边”证明即可.解答:(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADE=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△AB C和△EDC中,,∴△ABC≌△EDC(SAS).点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,根据四边形的内角和定理以及邻补角的定义,利用同角的补角相等求出夹角相等是证明三角形全等的关键,也是本题的难点.24.(10分)(2015•永州)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.考点:勾股定理的应用;垂径定理的应用..分析:(1)直接利用直角三角形中30°所对的边等于斜边的一半求出即可;(2)根据题意可知,图中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂径定理及勾股定理解答即可.解答:解:(1)过点A作AD⊥ON于点D,∵∠NOM=30°,AO=80m,∴AD=40m,即对学校A的噪声影响最大时卡车P与学校A的距离为40米;(2)由图可知:以50m为半径画圆,分别交ON于B,C两点,AD⊥BC,BD=CD=BC,OA=800m,∵在Rt△AOD中,∠AOB=30°,∴AD=OA=×800=400m,在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD===30m,故BC=2×30=60米,即重型运输卡车在经过BD时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即=30米/分钟,∴重型运输卡车经过BD时需要60÷30=2(分钟).答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为2分钟.点评:此题考查的是垂径定理与勾股定理在实际生活中的运用,解答此题的关键是卡车在哪段路上运行时对学校产生影响.25.(10分)(2015•永州)如图,已知△AB C内接于⊙O,且AB=AC,直径AD交BC于点E,F 是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.考点:垂径定理;勾股定理;菱形的判定..分析:(1)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据等腰三角形的性质即可证明;(2)菱形,证明△BFE≌△CDE,得到BF=DC,可知四边形BFCD是平行四边形,易证BD=CD,可证明结论;(3)设DE=x,则根据CE2=DE•AE列方程求出DE,再用勾股定理求出CD.解答:(1)证明:∵AD是直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD,∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,∴△BED≌△CEF,∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∴CE2=DE•AE,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.点评:本题主要考查了圆的有关性质:垂径定理、圆周角定理,三角形全等的判定与性质,菱形的判定与性质,勾股定理,三角形相似的判定与性质,熟悉圆的有关性质是解决问题的关键.26.(10分)(2015•永州)已知抛物线y=ax2+bx+c的顶点为(1,0),与y轴的交点坐标为(0,).R(1,1)是抛物线对称轴l上的一点.(1)求抛物线y=ax2+bx+c的解析式;(2)若P是抛物线上的一个动点(如图一),求证:点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)设直线PR与抛物线的另一交点为Q,E为线段PQ的中点,过点P、E、Q分别作直线y=﹣1的垂线.垂足分别为M、F、N(如图二).求证:PF⊥QF.考点:二次函数综合题..专题:计算题.分析:(1)设顶点式y=a(x﹣1)2,然后把(0,)代入求出a即可;(2)根据二次函数图象上点的坐标,设P(x,(x﹣1)2),易得PM=(x﹣1)2+1,然后利用两点的距离公式计算PR,得到PR2=(x﹣1)2+[(x﹣1)2﹣1]2,接着根据完全平方公式变形可得PR2=[(x﹣1)2+1]2,则PR=(x﹣1)2+1,所以PR=PM,于是可判断点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)根据(2)的结论得到得QN=QR,PR=PM,则PQ=PR=QR=PM+QN,再证明EF为梯形PMNQ的中位线,所以EF=(QN+PM),则EF=PQ=EQ=EP,根据点与圆的位置关系得到点F在以PQ为直径的圆上,则根据圆周角定理得∠PFQ=90°,即有PF⊥QF.解答:(1)解:设抛物线解析式为y=a(x﹣1)2,把(0,)代入得a=,所以抛物线解析式为y=(x﹣1)2;(2)证明:如图1,设P(x,(x﹣1)2),则PM=(x﹣1)2+1,∵PR2=(x﹣1)2+[(x﹣1)2﹣1]2=(x﹣1)2+[(x﹣1)]4﹣(x﹣1)2+1=[(x ﹣1)]4+(x﹣1)2+1=[(x﹣1)2+1]2,∴PR=(x﹣1)2+1,∴PR=PM,即点P到R的距离与点P到直线y=﹣1的距离恒相等;(3)证明:由(2)得QN=QR,PR=PM,∴PQ=PR=QR=PM+QN,∵EF⊥MN,QN⊥MN,PM⊥MN,而E为线段PQ的中点,∴EF为梯形PMNQ的中位线,∴EF=(QN+PM),∴EF=PQ,∴EF=EQ=EP,∴点F在以PQ为直径的圆上,∴∠PFQ=90°,∴PF⊥QF.点评:本题考查了二次函数综合题:熟练掌握二次函数图象上点的坐标特征和梯形的中位线性质;理解坐标与图形性质;会利用待定系数法求二次函数解析式和利用两点间的距离公式计算线段的长.要充分运用(2)的结论解决(3)中的问题.27.(10分)(2015•永州)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.考点:圆的综合题..专题:探究型.分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN 是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.解答:解:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;(2)如图一,∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,∴MN=O P=2,∴MN的长为定值,该定值为2;(3)①如图二,∵P1是的中点,∠BOC=120°∴∠COP1=∠BOP1=60°,∠MP1N=60°.∵P1M⊥OC,P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,则有∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,∴MN=OP•s in∠MQN=2×sin60°=2×=,∴MN是定值.(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.点评:本题主要考查了圆内接四边形的判定定理、圆周角定理、在同圆中弧与圆心角的关系、矩形的判定与性质、等边三角形的判定与性质、三角函数、角平分线的性质等知识,推出MN=OP•sin∠MQN是解决本题的关键.。

2007年安徽中考数学试题及答案

2007年安徽中考数学试题及答案

安徽省2007年初中毕业学业考试数 学 试 卷考生注意:本卷共八大题,计 23 小题,总分值 150 分,考试时间 120 分一、选择题〔此题共10 小题,每题4 分,总分值40分〕每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号。

每一小题:选对得 4 分,不选、选错或选出的代号超过一个的〔不管是否写在括号内〕一律得0分。

1.34相反数是………………【 】 A.43 B.43 C.34D. 342.化简〔-a 2〕3的结果是………………【 】A .-a 5 B. a 5 C .-a 6 D. a 6“五一”黄金周,我省实现社会消费的零售总额约为94亿元。

假设用科学记数法表示,则94亿可写为…………………………【 】A ×109 B.×109 C ×107 D. ×108 ………………【 】A .环保部门对淮河某段水域的水污染情况的调查C .质检部门对各厂家生产的电池使用寿命的调查5.以下图形中,既是中心对称又是轴对称的图形是…………………【 】211xx x的结果是………………………………【 】第7题图PDCBAA.-x-1B.-x+1C.11 xD.11x7.如图,已知AB∥CD,AD与BC相交于点P,AB=4,CD=7,AD=10,则AP的长等于【】A.4011B.407C.7011D.70410cm,经过45分钟,它的针尖转过的弧长是……………【】A.152cm B. 15cm C.752cm D. 75cm9.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如下图,设小矩形的长和宽分别为x、y,剪去部分的面积为20,假设2≤x≤10,则y与x的函数图象是…【】10.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=…………………………………………【】A.60°B. 65°C. 72°D.75°二、填空题〔此题共4 小题,每题 5 分,总分值20 分〕11.5-5的整数部分是_________12.如图,已知∠1=100°,∠2=140°,那么∠3=______13.两个小组进行定点投篮对抗赛,每组6名组员,每人投10次。

历年湖南省永州市中考数学试题(含答案)

历年湖南省永州市中考数学试题(含答案)

2016年湖南省永州市中考数学试卷一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣20162.不等式组的解集在数轴上表示正确的是()A.B.C.D.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣15.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣29.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm211.下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数21=2 22=4 23=8 …31=3 32=9 33=27 …运算新运log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=.16.方程组的解是.17.化简:÷=.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM <1),E是DC上的一点,连接ME,ME与AD交于点O,且S△MO A=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)2016年湖南省永州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣2016【考点】倒数;相反数.【分析】直接利用相反数的概念以及倒数的定义分析,进而得出答案.【解答】解:﹣的相反数是:,∵×2016=1,∴﹣的相反数的倒数是:2016.故选:C.2.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:.故选A.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【考点】二次根式的混合运算;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式即可判断.【解答】解:A、﹣a•a3=﹣a4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据图形的三视图的知识,即可求得答案.【解答】解:该实物图的主视图为.故选B.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【考点】方差;算术平均数;中位数;众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,∴<,故D正确;故选:C.7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【考点】圆的认识;线段的性质:两点之间线段最短;垂线段最短;三角形的稳定性.【分析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选B.8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣2【考点】抛物线与x轴的交点.【分析】由抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.【解答】解:∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选A.9.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2【考点】中心投影.【分析】先根据AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的对应边成比例可求出BD的长,进而得出BD′=0.3m,再由圆环的面积公式即可得出结论.【解答】解:如图所示:∵AC⊥OB,BD⊥OB,∴△AOC∽△BOC,∴=,即=,解得:BD=0.9m,同理可得:AC′=0.2m,则BD′=0.3m,∴S=0.92π﹣0.32π=0.72π(m2).圆环形阴影故选:D.11.下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【考点】互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值.【分析】根据正弦和余弦的性质以及正切、余切的性质即可作出判断.【解答】解:A、sin40°=sin(90°﹣50°)=cos50°,式子正确;B、tan15°•tan75°=tan15°•cot15°=1,式子正确;C、sin225°+cos225°=1正确;D、sin60°=,sin30°=,则sin60°=2sin30°错误.故选D.12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数21=2 22=4 23=8 …31=3 32=9 33=27 …运算新运log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2 =﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③【考点】实数的运算.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为 3.9×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3900000000=3.9×109,故答案为:3.9×109.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.【考点】概率公式.【分析】首先找出大于2的数字个数,进而利用概率公式求出答案.【解答】解:∵在1,π,,2,﹣3.2这五个数中,只有π这个数大于2,∴随机取出一个数,这个数大于2的概率是:.故答案为:.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=﹣2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.16.方程组的解是.【考点】二元一次方程组的解.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y)+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.17.化简:÷=.【考点】分式的乘除法.【分析】将分子、分母因式分解,除法转化为乘法,再约分即可.【解答】解:原式=•=,故答案为:.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=35度.【考点】圆周角定理.【分析】先根据等腰三角形的性质求出∠ABO的度数,再由平行线的性质求出∠BOC的度数,根据圆周角定理即可得出结论.【解答】解:∵∠AOB=40°,OA=OB,∴∠ABO==70°.∵直径CD∥AB,∴∠BOC=∠ABO=70°,∴∠BAC=∠BOC=35°.故答案为:35.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为﹣1.【考点】一次函数图象与系数的关系.【分析】由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:﹣<k<0.∵k为整数,∴k=﹣1.故答案为:﹣1.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l 为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=1;(2)当m=2时,d的取值范围是0<d<3.【考点】直线与圆的位置关系.【分析】根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案.【解答】解:(1)当d=3时,∵3>2,即d>r,∴直线与圆相离,则m=1,故答案为:1;(2)当m=2时,则圆上到直线l的距离等于1的点的个数记为2,∴直线与圆相交或相切或相离,∴0<d<3,∴d的取值范围是0<d<3,故答案为:0<d<3.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|【考点】实数的运算;零指数幂.【分析】直接利用立方根的性质化简再结合零指数幂的性质以及绝对值的性质化简求出答案.【解答】解:﹣(3﹣π)0﹣|﹣3+2|=2﹣1﹣1=0.22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了50名学生,a=37.5%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a 的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=37.5%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;37.6;(3)36.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;(2)先证明△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS证明△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可的出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.【考点】切线的判定与性质.【分析】(1)连接OC,由弦切角定理和切线的性质得出∠CBE=∠A,∠ABD=90°,由圆周角定理得出∠ACB=90°,得出∠ACO+∠BCO=90°,∠BCD=90°,由直角三角形斜边上的中线性质得出CE=BD=BE,得出∠BCE=∠CBE=∠A,证出∠ACO=∠BCE,得出∠BCE+∠BCO=90°,得出CE⊥OC,即可得出结论;(2)由勾股定理求出AB,再由三角函数得出tanA===,求出BD=AB=,即可得出CE的长.【解答】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90°,∴AB===2,∵tanA====,∴BD=AB=,∴CE=BD=.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令抛物线解析式中x=0求出y值即可得出C点的坐标,有点(﹣1,0)、(3,0)利用待定系数法即可求出抛物线的解析式;(2)将正比例函数解析式代入抛物线解析式中,找出关于x的一元二次方程,根据根与系数的关系即可得出“x A+x B=2+k,x A•x B=﹣3”,结合点O为线段AB的中点即可得出x A+x B=2+k=0,由此得出k的值,将k的值代入一元二次方程中求出x A、x B,在代入一次函数解析式中即可得出点A、B的坐标;(3)假设存在,利用三角形的面积公式以及(2)中得到的“x A+x B=2+k,x A•x B=﹣3”,即可得出关于k的一元二次方程,结合方程无解即可得出假设不成了,从而得出不存在满足题意的k值.【解答】解:(1)令抛物线y=ax2+bx﹣3中x=0,则y=﹣3,∴点C的坐标为(0,﹣3).∵抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,∴有,解得:,∴此抛物线的解析式为y=x2﹣2x﹣3.(2)将y=kx代入y=x2﹣2x﹣3中得:kx=x2﹣2x﹣3,整理得:x2﹣(2+k)x﹣3=0,∴x A+x B=2+k,x A•x B=﹣3.∵原点O为线段AB的中点,∴x A+x B=2+k=0,解得:k=﹣2.当k=﹣2时,x2﹣(2+k)x﹣3=x2﹣3=0,解得:x A=﹣,x B=.∴y A=﹣2x A=2,y B=﹣2x B=2.故当原点O为线段AB的中点时,k的值为﹣2,点A的坐标为(﹣,2),点B的坐标为(,﹣2).(3)假设存在.由(2)可知:x A+x B=2+k,x A•x B=﹣3,S△AB C=OC•|x A﹣x B|=×3×=,∴(2+k)2﹣4×(﹣3)=10,即(2+k)2+2=0.∵(2+k)2非负,无解.故假设不成了.所以不存在实数k使得△ABC的面积为.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM <1),E是DC上的一点,连接ME,ME与AD交于点O,且S△MO A=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)【考点】圆的综合题;等边三角形的性质.【分析】(1)根据等腰三角形三线合一即可证明,利用直角三角形30°性质,即可求出AD.(2)根据相似三角形性质面积比等于相似比的平方,即可解决问题.(3)如图三中,作MN⊥AE于N,DF⊥AE于F,先证明MN=DF,推出四边形MNFD是平行四边形即可.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,求出EM,利用不等式性质证明ME≥即可解决问题.【解答】解:(1)如图一中,∵AB=AC=BC=2,AD⊥BC,∴BD=DC,∴S△AB D=S△ADC,∴线段AD是△ABC的面径.∵∠B=60°,∴sin60°=,∴=,∴AD=.(2)如图二中,∵ME∥BC,且ME是△ABC的一条面径,∴△AME∽△ABC,=,∴=,∴ME=.(3)如图三中,作MN⊥AE于N,DF⊥AE于F.∵S△M OA=S△DOE,∴S△AEM=S△AED,∴•AE•MN=•AE•DF,∴MN=DF,∵MN∥DF,∴四边形MNFD是平行四边形,∴DM∥AE.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,∵DM∥AE,∴=,∴=,∴xy=2,在RT△MBF中,∵∠MFB=90°,∠B=60°,BM=x,∴BF=x,MF=x,∴ME===≥,∴ME≥,∵ME是等边三角形面径,AD也是等边三角形面积径,∴等边三角形ABC的面径长l的取值范围≤l≤.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永州市2007年初中毕业学业考试试卷
数 学
I 卷
考生注意:1、本试卷共十道大题,其中正卷八大题,满分100分;另附加题2道,20分, 合计120分,时量120分钟。

2、本试卷分I 卷和Ⅱ卷,I 卷为选择填空题1—2页;Ⅱ卷为解答题3—8页。

3、考生务必将I 卷的答案写在Ⅱ卷卷首的答案栏内,交卷时只交Ⅱ卷。

一、填空题(每小题3分,共8个小题,24分。

请将答案填在Ⅱ卷卷首的答案栏内。

) 1.30.001=________。

2.因式分解:a 3-a =_______。

3.观察下列图形,根据变化规律推测第100个与第_______个图形位置相同。

4.如图,已知△ABC 中,∠A =40°,剪去∠A 后成四边形,则∠1+∠2=_______。

5.图形:①线段,②等边三角形,③平行四边形,④矩形,⑤梯形,⑥圆,其中既是轴对称图形又是中心对称图形的序号是_______。

6.如图,添上条件:_______,则△ABC ∽△ADE 。

7.夏雪同学每次数学测试成绩都是优秀,则在这次中考中他的数学成绩_______(填“可能”,“不可能”,“必然”)是优秀。

8.如图,要把线段AB 平移,使得点A 到达点A'(4,2),点B 到达点B',那么点B'的坐标是_______。

二、选择题(每小题3分,共8个小题,24分。

每小题只有一个正确选项,请将正确选项的代号填入Ⅱ卷卷首的答案栏内。

)
9.函数y =12x -1
的自变量的取值范围是( ) A :x >12 B :x <12 C :x =12 D :x ≠12
的全体实数
10.2006年9月在长沙市举行的“中国中部投资贸易博览会”中,永州市的外贸成交总额达31264万元人民币,用科学记数法(保留三个有效数字)表示这个数据(单位:万元),正确的是( )
A:3.12×104B:3.13×104C:31.2×103D:31.3×103
11.下列命题是假命题的是( )
A:四个角相等的四边形是矩形B:对角线互相平分的四边形是平行四边形
C:四条边相等的四边形是菱形D:对角线互相垂直且相等的四边形是正方形12.下列运算中,正确的是( )
A、x2007+x2008=x4015B:20070=0 C:(-2
3)
-2=
4
9
D:(-a)·(-a)2=-a3
13.如图所示,AB∥ED,∠E=27°,∠C=52°,则∠EAB的度数为( )
A:25°B:63°C:79°D:101°
14.用三个正方体,一个圆柱体,一个圆锥的积木摆成如图※所示的几何体,其正视图为( )
15.在一周内体育老师对某运动员进行了5次百米短跑测试,若想了解该运动员的成绩是否稳定,老师需要知道他5次成绩的( )
A:平均数B:方差C:中位数D:众数
16.永州市内货摩(运货的摩托)的运输价格为:2千米内运费5元;路程超过2千米的,每超过1千米增加运费1元,那么运费y元与运输路程x千米的函数图象是( )
三、解答题(本题2个小题,每小题6分,共12分)
17、计算:|1-2|-(1-
12007)0+sin30°·(12
)-2-18 18、解不等式组:⎩
⎪⎨⎪⎧56-3x ≤16(x +5)2(x +19)-9x >5[x -2(x -3)] ,并在数轴上表示不等式的解集。

四.作图题:(本题6分,不写作法,保留作图痕迹)
19.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示)。

医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P 点的位置。

五.(本题共8分)
20.某校对初中三年级同学的视力进行了调查,如图是根据调查结果绘制的条形统计图。

请根据统计图回答下列问题:
(1)求视力在1.2—1.5的人数。

(2)求视力在0.9以下的人数所占的比例。

(3)根据统计图显示的信息,用一句话发表你的感想。

六.(本题共8分)
21.已知一次函数与反比例函数的图象都经过(-2,-1)和(n,2)两点。

(1)求这两个函数的解析式。

(2)画出这两个函数的图象草图。

七、应用题:(本题共8分)
22.为净化空气,美化环境,我市冷水滩区在许多街道和居民小区都种上了玉兰和樟树,冷水滩区新建的某住宅区内,计划投资1.8万元种玉兰树和樟树共80棵,已知某苗甫负责种活以上两种树苗的价格分别为:玉兰树300元/棵,樟树200元/棵,问可种玉兰树和樟树各多少棵?
八、综合题(本题共10分)
23.AB是⊙O的直径,D是⊙O上一动点,延长AD到C使CD=AD,连结BC、BD。

(1)证明:当D点与A点不重合时,总有AB=BC。

(2)设⊙O的半径为2,AD=x,BD=y,用含x的式子表示y。

(3)BC与⊙O是否有可能相切?若不可能相切,则说明理由;若能相切,则指出x为何值时相切。

附加题:(本题2个小题,每小题10分,共20分)
九.24.如图所示是永州八景之一的愚溪桥,桥身横跨愚溪,面临潇水,桥下冬暖夏凉,常有渔船停泊桥下避晒纳凉。

已知主桥拱为抛物线型,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x轴,AB的中点为原点建立坐标系。

①求此桥拱线所在抛物线的解析式。

②桥边有一浮在水面部分高4m,最宽处122m的河鱼餐船,试探索此船能否开到桥下?说明理由。

25、在梯形ABCD中,AB∥CD,∠ABC=900,AB=5,BC=10,tan∠ADC=2。

⑴求DC的长;⑵E为梯形内一点,F为梯形外一点,若BF=DE,∠FBC=∠CDE,试判断△
ECF的形状,并说明理由。

⑶在⑵的条件下,若BE⊥EC,BE∶EC=4∶3,求DE的长。

相关文档
最新文档