初中数学课堂评价.17.反比例函数单元测试卷二
反比例函数测试卷2

反比例函数测试卷(二)一、选择题1. 对于反比例函数2y x=,下列说法正确的是( ) A .点()2,1-在它的图像上 B .它的图像经过原点C .它的图像在第一、三象限D .当0x >时,y 随x 的增大而增大 2. 设反比例函数)0(≠-=k xky 中,y 随x 的增大而增大,则一次函数k kx y -=的图象不经过( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 3. 若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )4. ()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c >B .b c <C .b c =D .无法判断5. 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点, B C ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .4S >6. 若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数ky x=(k>0123y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >> 7. 如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点, 若AOB S ∆=5,则k 的值为( ) (A ) 10 (B ) 10- (C ) 5- (D )25-8. 若y 与-3x 成反比例,x 与z4成反比例,则y 是z 的( ) (A )正比例函数 (B )反比例函数 (C )一次函数 (D )不能确定 9. 在同一坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系是( )A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号10. 已知1y +2y =y,其中1y 与1x成反比例,且比例系数为1k ,而2y 与2x 成正比例,且比例系数为2k ,若x=-1时,y=0,则1k ,2k 的关系是( )A.12k k + =0B.12k k =1C.12k k - =0D.12k k =-1 二、填空题1. 经过点A (1,2)的反比例函数解析式是_____ _____2.点(231)P m -,在反比例函数1y x=的图象上,则m = . 3. 如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是4. 已知反比例函数y =xa (a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y =-a x +a 的图象不经过...第 象限。
反比例函数全章测试卷

《反比例函数》单元测试题班级_____________姓名____________得分______________一、选择题(30分)1、若反比例函数22)12(--=mx m y 的图像在第二、四象限,则m 的值是( ) (A )-1或1 (B )小于21 的任意实数 (C ) -1 (D) 不能确定 2、在反比例函数1k y x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1 D .23、已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 24、已知反比例函数y=2x,下列结论中,不正确...的是( )A .图象必经过点(1,2)B .y 随x 的增大而减少C .图象在第一、三象限内D .若x >1,则0<y <25、如图是三个反比例函数312,,k k k y y y x x x===,在x 轴 上方的图像,由此观察得到k l 、k 2、k 3的大小关系为( )(A ) k 1>k 2>k 3 (B ) k 3>k 1>k 2 (C ) k 2>k 3>k 1 (D ) k 3>k 2>k 16、反比例函数k y x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .47、如图,直线l 和双曲线k y x=(0k >)交于A 、B 两点,P 是线段 AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD的面积为2S 、△POE 的面积为3S ,则有( ) A .123S S S << B .123S S S >> C . 123S S S =< D .123S S S =>8、如图,直线y=mx 与双曲线y=xk 交于A 、B 两点,过点A 作AM ⊥x 轴, 垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、49、已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a(升),那么从甲地到乙地汽车的总耗油量y(升)与汽车的行驶速度v(千米/时)的函数图象大致是()10.如图,已知关于x的函数y=k(x-1)和y=-kx(k≠0), 它们在同一坐标系内的图象大致是( )11、两位同学在描述同一反比例函数的图象时,甲同学说:“从这个反比例函数图象上任意一点向x轴、y轴作垂线,与两坐标轴所围成的矩形的面积为6.”乙同学说:“这个反比例函数图象与直线y=-x有两个交点.”你认为这两位同学所描述的反比例函数的表达式为.12、已知:点A(m,m)在反比例函数1yx=的图象上,点B与点A关于坐标轴对称,以AB为边作等边△ABC,则满足条件的点C有个.13、若反比例函数的表达式为3yx=,则当1x<-时,y的取值范围是14、反比例函数1kyx=与一次函数2y x b=-+的图象交于点(23)A,和点(2)B m,.若12y y>,则x的取值范围是______ ________.15、如图,正方形OABC的面积是4,点B在反比例函数(00)ky k xx=><,的图象上.若点R是该反比例函数图象上异于点B的任意一点,过点R分别作x轴、y轴的垂线,垂足为M、N,从矩形OMRN的面积中减去其与正方形OABC重合部分的面积,记剩余部分的面积为S.则当S=m(m为常数,且0<m<4)时,点R的坐标是_______________ (用含m的代数式表示)16、两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P 在k y x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).三、解答题17(10分)、已知y=y 1+y 2 ,y 1与x+1成正比例,y2与x+1成反比例,当x=0时,y=-5;当x=2时,y=-7. (1)求y与x的函数关系式; (2)当2y x =-时,求x的值。
北师大版九年级数学上册第六章反比例函数第2节反比例函数的图像和性质课堂练习

第六章反比例函数第2节反比例函数的图像和性质课堂练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.反比例函数y =1x(x <0)的图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于反比例函数3y x=,下列说法错误的是( ) A .图象经过点()1,3B .图象在第一、三象限C .0x >时,y 随x 的增大而增大D .x 0<时,y 随x 增大而减小3.若点A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2.则( )A .12y 0y <<B .12y 0y >>C .12y 0y >>D .12y 0y <<4.反比例函数y =mx的图象如图所示,以下结论:①常数m >0;①在每个象限内,y 随x 的增大而增大;①若A (﹣1,h ),B (2,k )在图象上,则h <k ;①若P (x ,y )在图象上,则P '(﹣x ,﹣y )也一定在图象上.其中正确的是( )A .①①B .①①C .①①①D .①①①5.如图,P (x ,y )是反比例函数3y x=的图象在第一象限分支上的一个动点,P A ①x 轴于点A ,PB ①y 轴于点B ,随着自变量x 的逐渐增大,矩形OAPB 的面积( )A .保持不变B .逐渐增大C .逐渐减小D .无法确定6.已知正比例函数1y k x=和反比例函数2kyx=,在同一直角坐标系下的图象如图所示,其中符合120k k⋅>的是()A.①①B.①①C.①①D.①①7.若反比例函数()110ay a xx-=><,图象上有两个点()()1122,,x y x y,,设()1212()m x x y y=--,则y mx m=-不经过第()象限.A.一B.二C.三D.四8.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x (x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则①ABC的面积为()A.3B.6C.9D.92评卷人得分二、填空题9.已知反比例函数6yx=,当x>3时,y的取值范围是_____.10.如图,直线y=kx与双曲线y=2x交于A,B两点,BC①y轴于点C,则△ABC的面积为_____.11.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=1x图象上的三个点,则y1、y2、y3的大小关系是_____.12.若点A(-2,a),B(1,b),C(4,c)都在反比例函数8yx=-的图象上,则a、b、c大小关系是________.13.若点A(﹣5,y1),B(1,y2),C(2,y3)在反比例函数21ayx+=(a为常数)的图象上,则y1,y2,y3的大小关系是_____.(用“<”连接)14.如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB①x轴,AC①y 轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________.15.如图,点A在双曲线y=kx的第一象限的那一支上,AB①y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若①ADE的面积为32,则k的值为______.评卷人得分三、解答题16.如图,()A4,3是反比例函数kyx=在第一象限图象上一点,连接OA,过A作AB//x轴,截取AB OA(B=在A右侧),连接OB,交反比例函数kyx=的图象于点P.(1)求反比例函数kyx=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求OAP的面积.17.如图,反比例函数kyx=与一次函数y x b=-+的图象交于点A(1,3)和点B.(1)求k的值和点B的坐标.(2)结合图象,直接写出当不等式kx bx<-+成立时x的取值范围.(3)若点C是反比例函数kyx=第三象限图象上的一个动点,当CA CB=时,求点C的坐标.18.如图,Rt AOB ∆的直角边OB 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过斜边OA的中点D ,与直角边AB 相交于点C . ①若点(4,6)A ,求点C 的坐标: ①若9S OCD ∆=,求k 的值.19.如图,已知一次函数y =kx +b 的图象与反比例函数8y x=-的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.20.已知:如图,∆ABC是等腰直角三角形,①B=90°,点B的坐标为(1,2).反比例函数kyx的图象经过点C,一次函数y=ax+b的图象经A,C两点.(1)求反比例函数和一次函数的关系式;(2)直接写出不等式组0<ax+b≤kx的解集.参考答案:1.C 【解析】 【分析】根据题目中的函数解析式和x 的取值范围,可以解答本题. 【详解】解:①反比例函数y =1x(x <0)中,k =1>0,①该函数图象在第三象限, 故选:C . 【点睛】本题考查反比例函数的图象,关键在于熟记反比例函数图象的性质. 2.C 【解析】 【分析】根据反比例函数的性质得出函数的增减性以及所在象限和经过的点的特点分别分析得出即可. 【详解】解:A ,因为133⨯=,所以图象经过点(1)3,,A 选项正确,故不选A ; B ,因为30k =>,图象在第一、三象限,B 选项正确,故不选B ;C ,因为30k =>,图象在第一、三象限,所以0x >时,y 随x 的增大而减小,C 选项错误,故选C ;D ,因为30k =>,图象在第一、三象限,所以0x <时,y 随x 的增大而减小,D 选项正确,故不选D . 故选:C . 【点睛】此题主要考查了反比例函数的性质,根据解析式确定函数的性质是解题的关键. 3.B 【解析】 【分析】根据题意和反比例函数的性质可以解答本题.①反比例函数3y -x=,①该函数图像在第二、四象限,在每个象限y 随x 的增大而增大, ①A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2,①12y 0y >>, 故选B. 【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答. 4.D 【解析】 【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可. 【详解】解:①反比例函数的图象可知,m >0,故①正确;当反比例函数的图象位于一、三象限时,在每一象限内,y 随x 的增大而减小,故①错误; 将A (-1,h ),B (2,k )代入y =mx得到h=-m ,2k=m , ①m >0,①h <k ,故①正确; 将P (x ,y )代入y =m x 得到m=xy ,将P′(-x ,-y )代入y =mx得到m=xy , 若P (x ,y )在图象上,则P′(-x ,-y )也在图象上 故①正确, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,熟练掌握反比例函数的图象和性质是解题的关键. 5.A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=12|k|,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 【详解】解:依题意有矩形OAPB 的面积=2×12|k|=3,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 故选:A . 【点睛】本题考查了反比例函数 y =kx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 6.B 【解析】 【分析】根据正比例函数和反比例函数的图象逐一判断即可. 【详解】解: 观察图像①可得120,0k k >>,所以120k k >,①符合题意; 观察图像①可得120,0k k <>,所以120k k <,①不符合题意; 观察图像①可得120,0k k ><,所以120k k <,①不符合题意; 观察图像①可得120,0k k <<,所以120k k >,①符合题意; 综上,其中符合120k k ⋅>的是①①, 故答案为:B . 【点睛】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限. 7.C【分析】利用反比例函数的性质判断出m 的正负,再根据一次函数的性质即可判断. 【详解】 解:①()110a y a x x-=><,, ①a-1>0, ①()110a y a x x-=><,图象在三象限,且y 随x 的增大而减小, ①图象上有两个点(x 1,y 1),(x 2,y 2),x 1与y 1同负,x 2与y 2同负, ①m=(x 1-x 2)(y 1-y 2)<0,①y=mx-m 的图象经过一,二、四象限,不经过三象限, 故选:C . 【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.D 【解析】 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC 的面积12⨯=AB ×P 的横坐标,求出即可.【详解】解:设P (a ,0),a >0,则A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x =-中得:y 6a=-,故A (a ,6a -);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),①AB=AP+BP639a a a+==,则S△ABC12=AB•xP19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k 的几何意义.9.0<y<2【解析】【分析】根据反比例函数的性质可以得到反比例函数y=6x,当x>3时,即可得到y的取值范围.【详解】①y=6x,6>0,①当x>0时,y随x的增大而减小,当x=3时,y=2,①当x>3时,y的取值范围是0<y<2,故答案为0<y<2【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.10.2【解析】【分析】根据直线y=kx与双曲线y=2x交于A,B两点,可得A、B关于原点对称,从而得到S△BOC=S△AOC,然后根据反比例函数的系数k的几何意义求出的S△BOC面积即可.【详解】①直线y=kx与双曲线y=2x交于A,B两点,①点A与点B关于原点对称,①S△BOC=S△AOC,而S△BOC=12×2=1,①S△ABC=2S△BOC=2.故答案为2.【点睛】反比例函数中比例系数k的几何意义是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.y2>y3>y1【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可.【详解】解:①1>0,反比例函数y=1x图象在一、三象限,并且在每一象限内y随x的增大而减小,因为-1<0,①A点在第三象限,①y1<0,①2>1>0,①B、C两点在第一象限,①y2>y3>0,①y2>y3>y1.故答案是:y2>y3>y1.【点睛】本题主要考查的是反比例函数图象上点的坐标特点,解决本题的关键是要熟练掌握反比例函数图象性质.12.a>c>b【解析】【分析】根据题意,分别求出a 、b 、c 的值,然后进行判断,即可得到答案.【详解】解:①点A 、B 、C 都在反比例函数8y x =-的图象上,则 当2x =-时,则842a =-=-; 当1x =时,则881b =-=-; 当4x =时,则824c =-=-; ①a c b >>;故答案为:a c b >>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.y 1<y 3<y 2.【解析】【分析】先计算出自变量为﹣5、1、2对应的函数值,从而得到y 1,y 2,y 3的大小关系. 【详解】当x =﹣5时,y 1=﹣15(a 2+1); 当x =1时,y 2=a 2+1;当x =2时,y 3=12(a 2+1), 所以y 1<y 3<y 2.故答案为:y 1<y 3<y 2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.-4【解析】【详解】试题分析:由于点A是反比例函数y=kx上一点,矩形ABOC的面积S=|k|=4,则k的值为-4.考点:反比例函数15.83【解析】【分析】如下图,连接CD,由AE=3EC,①ADE的面积为32,得到①CDE的面积为12,则①ADC 的面积为2,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABD+S△ADC+S△ODC即可得出ab的值进而得出结论.【详解】如下图,连CD①AE=3EC,①ADE的面积为32,①①CDE的面积为12,①①ADC的面积为2,设A点坐标为(a,b),则AB=a,OC=2AB=2a,①点D为OB的中点,①BD=OD=12b,①S梯形OBAC=S△ABD+S△ADC+S△ODC,①12(a+2a)×b=12a×12b+2+12×2a×12b,①ab=83,把A(a,b)代入双曲线y=kx得,k =ab =83. 故答案为:83. 【点睛】本题考查利用几何图形的面积求解反比例函数的解析式,解题关键是将几何图形的面积和点的坐标结合起来,然后利用待定系数法求得解析式.16.(1)12y x =(2)(9,3);13y x = (3)5 【解析】【分析】(1)直接代入A 点坐标课的k 的值,进而可得函数解析式;(2)过点A 作AC①x 轴于点C ,利用勾股定理计算出AO 的长,进而可得AB 长,然后可得B 点坐标.设OB 所在直线解析式为y=mx (m≠0)利用待定系数法可求出BO 的解析式;(3)首先联立两个函数解析式,求出P 点坐标,过点P 作PD①x 轴,延长DP 交AB 于点E ,连接AP ,再确定E 点坐标,最后求面积即可.【详解】解:()1将点()A 4,3代入()k y k 0x=≠, 得:12k =,则反比例函数解析式为:12y x =; () 2如图,过点A 作AC x ⊥轴于点C ,则OC 4=、AC 3=,22OA 435∴=+=,AB//x 轴,且AB OA 5==,∴点B的坐标为()9,3;设OB所在直线解析式为()y mx m0=≠,将点()B9,3代入得13=m,OB∴所在直线解析式为1y x3=;()3联立解析式:1y x312yx⎧=⎪⎪⎨⎪=⎪⎩,解得:x6,y2=⎧⎨=⎩可得点P坐标为()6,2,过点P作PD x⊥轴,延长DP交AB于点E,连接AP,则点E坐标为()6,3,AE2∴=,PE1=,PD2=,则OAP的面积()11126362215222=⨯+⨯-⨯⨯-⨯⨯=.【点睛】此题主要考查了待定系数法求反比例函数和正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.17.(1)3k=,B(3,1);(2)1x3<<或x0<;(3)C(33--,)【解析】【分析】(1)分别把()1,3A代入一次函数与反比例函数,可得,k b的值,联立两个解析式,解方程组可得B的坐标;(2)由k x<x b -+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,从而可得答案;(3)由,CA CB = 则C 在AB 的垂直平分线上,利用直线AB 与坐标轴构成的三角形是等腰直角三角形,证明AB 的垂直平分线经过原点,再求解垂直平分线的解析式,联立两个解析式解方程组即可得到答案.【详解】解:(1)把()1,3A 代入y x b =-+,13,b ∴-+=4,b ∴=所以:一次函数为:4,y x =-+把()1,3A 代入k y x=, 133,k ∴=⨯= 3,y x∴= 3,4y x y x ⎧=⎪∴⎨⎪=-+⎩ 34,x x∴=-+ 2430,x x ∴-+=121,3,x x ∴== 把11x =代入4,y x =-+13,y ∴=把23x =代入4,y x =-+21,y ∴=121213,,31x x y y ==⎧⎧∴⎨⎨==⎩⎩ 经检验:方程的解符合题意,()3,1.B ∴(2)由kx<x b-+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,结合图像可得:1x3<<或0x<.(3),CA CB=C∴在AB的垂直平分线上,记AB的中点为D,()()1,3,3,1,A B∴()2,2,D∴记AB与,x y轴的交点分别为,F EAB为4,y x=-+()()4,0,0,4,F E∴4,OE OF∴==OD∴为AB的垂直平分线,设OD为,y mx=把()2,2D代入:22,m=1,m∴=AB∴的垂直平分线为:,y x=,3y xyx=⎧⎪∴⎨=⎪⎩解得:121233,,33x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩ 经检验:方程的解符合题意,C 在第三象限,()3,3.C ∴--【点睛】本题考查的是利用待定系数法求解一次函数与反比例函数中的字母参数,同时考查利用图像判断一次函数值与反比例函数值的大小,还考查线段的垂直平分线的性质,函数的交点坐标问题,一元二次方程的解法,掌握以上知识是解题的关键.18.①(4,32);①k=12 【解析】【分析】①根据点D 是OA 的中点即可求出D 点坐标,再将D 的坐标代入解析式求出解析式,从而得到C 的坐标;①连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD 的面积,再根据条件列出方程求k 的值即可.【详解】解:①①D 是OA 的中点,点A 的坐标为(4,6),①D (42,62),即(2,3) ①k=2×3=6①解析式为6y x= ①A 的坐标为(4,6),AB①x 轴①把x=4代入6y x=得y=32 ①C 的坐标为(4,32) ①连接OC,设A(a,b),则D(2a , 2b ) 可得k=4ab ,ab=4k ①解析式为4ab y x= ①B(a,0),C(a, 4b ) ①11222OAB SOB AB ab k === 1122OBC S OB BC k =•= 11()22OCD OAC OAB OBC S S S S ∴==- ①11(2)922k k -= 解得:k=12【点睛】本题考查了一次函数的性质,要正确理解参数k 的几何意义,能用代数式表达三角形OCD 的面积是解题的关键.19.(1)y =-x +2;(2)6【解析】【分析】(1)把点A 的横坐标代入8y x=-,可得4y =,即可求出A 点的坐标,把B 点的纵坐标代入8y x=-,可得4x =,即可求出B 点的坐标,把A B 、两点的坐标代入一次函数的解析式即可求解;(2)首先求出直线AB 与x 轴的交点坐标M ,然后根据AOB AOM BOM S S S ∆∆∆=+进行求解即可;【详解】解:(1)把2A x =-代入8y x=-中,得4A y = ① 点()2,4A -把2B y =-代入8y x=-中,得4B x = ① 点()4,2B -把AB 、两点的坐标代入y kx b =+中,得 42,24.k b k b ⎧⎨-⎩=-+=+ 解得1,2.k b ⎧⎨⎩=-= ① 所求一次函数的解析式为2y x =-+(2)当0y =时,2x =, ①2y x =-+与x 轴的交点为()2,0M ,即2OM =①AOB AOM BOM S S S ∆∆∆=+ B A y OM y OM ⋅⋅⋅⋅2121+=11242222⨯⨯⨯⨯=+=6【点睛】本题主要考查反比例函数与一次函数的综合,熟练掌握一次函数的解析式求法以及图中的面积求法是求解本题的关键.20.(1)反比例函数关系式为y =6x,一次函数函数关系式为y =x-1;(2)1<x ≤3 【解析】【分析】①根据等腰三角形的性质求出A,C 点的坐标,即可求出反比例和一次函数关系式 ①观察图像即可找出x 的解集【详解】解:(1)①∆ABC 是等腰直角三角形且点B 的坐标为(1,2)①AB =BC =2①点C 的坐标为(3,2),点A 的坐标为(1,0)把点C 的坐标代入y =k x,解得k =6 ①反比例函数关系式为y =6x 把点C(3,2),点A(1,0)代入一次函数y=ax+b320a b a b +=⎧⎨+=⎩解得11a b =⎧⎨=-⎩①一次函数函数关系式为y =x-1(2)由函数图像及A ,C 两点坐标可得不等式组的解集为:1<x ≤3【点睛】本题解题的关键是根据等腰直角三角形的性质求出A,C 点的坐标,写x 的范围时可以先用笔画出符合要求的线段不易出错。
苏教版初中数学八年级下册《反比例函数》单元试卷及参考答案

苏教版初中数学八年级下册《反比例函数》单元试卷(总分:100分 考试时间:90分钟)一、选择题(每题3分,共24分)1. 反比例函数21m y x--=(m 为常数)的图像在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2. 某物质的密度ρ(kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V 之间的函数表达式是 ( ) A. ρ=12V B. ρ=2V C. ρ=6VD. V ρ=3第2题 第4题 第5题 第7题 第8题3. 在同一平面直角坐标系中,正比例函数2y x =的图像与反比例函数42ky x-=的图像没有交点,则实数k 的取值范围在数轴上可表示为 ( ) A B C D4. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图像经过顶点B ,则k 的值为 ( ) A.一12 B.一27 C.一32 D.一36 5. 如图,A 是双曲线2y x=在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C的位置也随之变化.设点C 的坐标为(,)m n ,则m 、n 满足的表达式为 ( ) A.2n m =- B.2n m =- C.4n m =- D.4n m=- 6. 已知(,)P a b 是反比例函数1y x=图像上异于点(一1,-1)的一个动点,则 1111a b+++的值为 ( ) A. 2 B. 1 C. 32 D. 127. 如图,A 、B 是双曲线ky x=上的两点,过点A 作AC x ⊥轴,交OB 于点D ,垂足为C .若ADO ∆的面积为1,D 为OB 的中点,则k 的值为 ( )A.43B.83 C. 3 D. 48. 如图,在平面直角坐标系中,直线33y x =-+与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线(0)ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后,点C 恰好落在该双曲线上,则a 的值是 ( )A. 1B. 2C. 3D. 4 二、填空题(每题2分,共20分)9. 在ABC ∆的三个顶点(2,3)A -、(4,5)B --、(3,2)C -中,可能在反比例函数(ky k x=>0) 的图像上的是点 .10. 已知函数23k y x-=,当x <0时,y 随x 的增大减小,则k 的取值范围是 . 11. 已知直线2y x =与双曲线ky x=的一个交点是(2,)A m ,则点A 的坐标是 ,双曲线y = .12. 在对物体做功一定的情况下,力F (N)与此物体在力的方向上移动的距离s (m)之间成反比例函数关系,其图像如图所示,且点(5,1)P 在其图像上,则当力达到10 N 时,物体在力的方向上移动的距离是 m.第12题 第13题 第14题13. 如图,等边三角形AOB 的顶点A 的坐标为(-4,0),顶点B 在反比例函数(0)ky x x=<的图像上,则k = .14. 如图, A 是反比例函数图像上的一点,过点A 作ABCD ,使点B 、C 在x 轴上,点D 在y 轴上,若ABCD 的面积为8,则此反比例函数的表达式为 .15. 如图,一次函数y kx b =+的图像经过点(3,2)P ,与反比例函数2(0)y x x=>的图像交于点(,)Q m n .当一次函数y 的值随x 值的增大而增大时,m 的取值范围是 .第l5题 第17题 第18题16. 点1(1,)a y -、2(1,)a y +在反比例函数(ky k x=>0)的图像上,若12y y <,则a 的取值范围是 .17. 如图, A 是y 轴正半轴上的一点,过点A 作x 轴的平行线,交反比例函数4y x=-的图像于点B ,交反比例函数ky x =的图像于点C .若:3:2AB AC =,则k 的值是 . 18. 如图,直线26,3y x y x ==分别与双曲线ky x =在第一象限内交于点A 、B ,若8OAB S ∆=,则k = .三、解答题(共56分)19. (8分)我们学过反比例函数,例如,当矩形面积S 一定时,长a 是宽b 的反比例函数,其函数表达式可以写成Sa b=(S 为常数,0S ≠).请你仿照上例另举出一个在日常生活、生产或学习中具有反比例函数关系的实例,并写出它的函数表达式.20. (8分)(2015·甘孜改编)如图,一次函数5y x =-+的图像与反比例函数(0)ky k x=≠在第一象限内的图像交于(1,)A n 和(4,)B m 两点. (1)求反比例函数的表达式;(2)在第一象限内,当一次函数5y x =-+的值大于反比例函数(0)ky k x=≠的值时,写出自变量x 的取值范围.第20题21. (8分)如图,在方格纸中(小正方形的边长为1 ), 反比例函数ky x=的图像与直线的交点A 、B 均在格点上,根据所给的平面直角坐标系(O 是坐标原点).解答下面的问题:(1)分别写出点A 、B 的坐标后,把直线AB 向右平移5个单位长度。
初中数学(人教版)九年级下册单元检测卷及答案—反比例函数

初中数学(人教版)九年级下册单元检测卷及答案—反比例函数一、选择题(每小题3分,共30分)1.下列函数中,图象经过点(1,-1)的反比例函数解析式是( ) A .y =1x B .y =-1x C .y =2x D .y =-2x2.当三角形的面积S 为常数时,底边a 与底边上的高h 的函数关系的图象大致是( )3.在反比例函数y =k -3x 图象的任一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A .k >3 B .k >0 C .k <3 D .k <04.点A 为双曲线y =kx (k ≠0)上一点,B 为x 轴上一点,且△AOB 为等边三角形,△AOB 的边长为2,则k 的值为( )A .2 3B .±2 3 C. 3 D .±35.在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =kx (k≠0)的图象大致是( )6.某汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如图所示.当它所受牵引力为1 200牛时,汽车的速度为( )A .180千米/时B .144千米/时C .50千米/时D .40千米/时7.如图,函数y 1=x -1和函数y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >28.已知反比例函数y =kx (k <0)图象上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,则y 1-y 2的值是( )A .正数B .负数C .非负数D .不能确定9.如图,函数y =-x 与函数y =-4x 的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( ) A .2 B .4 C .6 D .8第6题图) ,第7题图) ,第9题图),第10题图)10.如图,正方形ABCD 的顶点B ,C 在x 轴的正半轴上,反比例函数y =kx (k ≠0)在第一象限的图象经过顶点A (m ,2)和CD 边上的点E (n ,23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( )A .(54,0)B .(74,0)C .(94,0)D .(114,0)点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题(每小题3分,共24分)11.写出一个图象在第二、四象限的反比例函数解析式:____.12.已知反比例函数y =kx 的图象在第二、第四象限内,函数图象上有两点A (2,y 1),B (5,y 2),则y 1与y 2的大小关系为____.13.双曲线y=kx和一次函数y=ax+b的图象的两个交点分别为A(-1,-4),B(2,m),则a+2b=____.14.若点A(m,2)在反比例函数y=4x的图象上,则当函数值y≥-2时,自变量x的取值范围是____.15.直线y=ax(a>0)与双曲线y=3x交于A(x1,y1),B(x2,y2)两点.则4x1y2-3x2y1=____.16.点A在函数y=6x(x>0)的图象上,如果AH⊥x轴于点H,且AH∶OH=1∶2,那么点A的坐标为____.17.在平面直角坐标系xOy中,直线y=x向上平移1个单位长度得到直线l,直线l与反比例函数y=kx的图象的一个交点为A(a,2),则k的值等于____.18.如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=k1x和y=k2x的一支上,分别过点A,C作x轴的垂线,垂足分别为M和N,则有以下的结论:①AMCN=|k1||k2|;②阴影部分面积是12(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是____.(把所有正确的结论的序号都填上)三、解答题(共66分)19.(6分)已知y=y1+y2,其中y1与3x成反比例,y2与-x2成正比例,且当x=1时,y=5;当x=-1时,y=-2.求当x=3时,y的值.20.(8分)已知点P(2,2)在反比例函数y=kx(k≠0)的图象上.(1)当x=-3时,求y的值;(2)当1<x<3时,求y的取值范围.21.(10分)超超家利用银行贷款购买了某山庄的一套100万元的住房,在交了首期付款后,每年需向银行付款y万元.预计x年后结清余款,y与x之间的函数关系如图,试根据图象所提供的信息回答下列问题:(1)确定y与x之间的函数表达式,并说明超超家交了多少万元首付款;(2)超超家若计划用10年时间结清余款,每年应向银行交付多少万元?(3)若打算每年付款不超过2万元,超超家至少要多少年才能结清余款?22.(10分)如图是反比例函数y=kx的图象,当-4≤x≤-1时,-4≤y≤-1.(1)求该反比例函数的表达式;(2)若点M,N分别在该反比例函数的两支图象上,请指出什么情况下线段MN最短(不需要证明),并注出线段MN长度的取值范围.23.(10分)如图是函数y=3x与函数y=6x在第一象限内的图象,点P是y=6x的图象上一动点,PA⊥x轴于点A,交y=3x的图象于点C,PB⊥y轴于点B,交y=3x的图象于点D.(1)求证:D是BP的中点;(2)求四边形ODPC的面积.24.(10分)如图,已知反比例函数y=k1x的图象与一次函数y=k2x+b的图象交于A,B两点,A点横坐标为1,B(-12,-2).(1)求反比例函数和一次函数的解析式;(2)在x轴上是否存在点P,使△AOP为等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(12分)如图,已知正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C在y轴上,点B在函数y=kx(k>0,x>0)的图象上,点P(m,n)是函数y=kx(k>0,x>0)的图象上任一点,过点P分别作x轴、y轴的垂线,垂足分别为E,F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(1)求点B的坐标和k的值;(2)当S=92时,求点P的坐标;(3)写出S关于m的函数表达式.参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.A 7.D 8.D 9.D10.C点拨:由题意可知AB =2,n =m +2,所以2m =(m +2)×23=k ,解得m =1,所以E (3,23),设EG 的解析式为y =kx +b ,把E (3,23),G (0,-2)代入y =kx +b ,解得⎩⎪⎨⎪⎧k =89b =-2,∴y =89x -2,令y =0,解得x =94,∴F (94,0)二、填空题11.y =-1x (答案不唯一) 12.y 1<y 2 13.-2 14.x≤-2或x >015.-3 16.(23,3) 17.2 18.①④ 三、解答题19.解:设y =k 13x +k 2(-x 2),求得y =72x +32x 2,当x =3时,y =443. 20.解:(1)-43;(2)43<y <4.21.解:(1)12×5=60(万元),100-60=40(万元),∴y =60x,超超家交了40万元的首付款.(2)把x =10代入y =60x得y =6,∴每年应向银行交付6万元.(3)∵y≤2,∴60x ≤2,∴2x ≥60,∴x ≥30,∴至少要30年才能结清余款.22.解:(1)反比例函数图象的两支曲线分别位于第一、三象限,∴当-4≤x ≤-1时,y 随着x 的增大而减小,又∵当-4≤x≤-1时,-4≤y ≤-1,∴当x =-4时,y =-1,由y =kx得k =4,∴该反比例函数的表达式为y =4x .(2)当点M ,N 都在直线y =x 上时,线段MN 的长度最短,当MN 的长度最短时,点M ,N 的坐标分别为(2,2),(-2,-2),利用勾股定理可得MN 的最短长度为42,故线段MN 长度的取值范围为MN≥4 2.23.(1)证明:∵点P 在函数y =6x 上,∴设P 点坐标为(6m ,m ),∵点D 在函数y =3x上,BP ∥x轴,∴设点D 坐标为(3m ,m ),由题意,得BD =3m ,BP =6m =2BD ,∴D 是BP 的中点.(2)解:S 四边形OAPB =6m ·m =6,设C 坐标为(x ,3x ),D 点坐标为(3y ,y ),S △OBD =12·y ·3y =32,S△OAC=12·x·3x =32,S 四边形OCPD =S 四边形PBOA -S △OBD -S △OAC =6-32-32=3. 24.解:(1)反比例函数为y =1x ,一次函数为y =2x -1.(2)存在,点P 的坐标是(1,0)或(2,0).25.解:(1)依题意,设B 点的坐标为(x B ,y B ),∴S 正方形OABC =x B ·y B =9.∴x B =y B =3,即点B 的坐标为(3,3).又∵x B y B =k ,∴k =9.(2)①∵P (m ,n )在y =9x上,当P 点位于B 点下方时,如图(1),∴S 矩形OEPF =mn =9,S 矩形OAGF=3n.由已知,得S =9-3n =92,∴n =32,m =6,即此时P 点的坐标为P 1(6,32).②当P 点位于B 点上方时,如图(2),同理可求得P 2(32,6).(3)①如图(1),当m≥3时,S 矩形OAGF =3n ,∵mn =9,∴n =9m,∴S =S 矩形OEP 1F -S 矩形OAGF=9-3n =9-27m .②如图(2),当0<m <3时,S 矩形OEGC =3m ,∴S =S 矩形OEP 2F -S 矩形OEGC =9-3m.。
【易错题】北师大版九年级数学上册第六章反比例函数单元测试卷学生用

【易错题解析】北师大版九年级数学上册第六章反比例函数一、单选题(共10题;共30分)1.下列函数中,反比例函数是( )A. B. C. D.2.点A(3,2)在反比例函数y=(x>0),则点B的坐标不可能的是()A. (2,3)B. (,)C. (,)D. (tan60°,)3.反比例函数y= 的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A. k<3B. k≤3C. k>3D. k≥34.如图,双曲线y= 的一个分支为()A. ①B. ②C. ③D. ④5.已知甲、乙两地相距(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度(km/h)的函数关系图像大致是()A. B.C. D.6.如图,矩形OABC上,点A、C分别在x、y轴上,点B在反比例y= 位于第二象限的图象上,矩形面积为6,则k的值是()A. 3B. 6C. ﹣6D. ﹣37.已知点A(x1,y1)、B(x2,y2)是反比例函数y=﹣图象上的两点,若x2<0<x1,则有()A. 0<y1<y2B. 0<y2<y1C. y2<0<y1D. y1<0<y28.如图,直线y=x+2与双曲线y=相交于点A,点A的纵坐标为3,k的值为().A. 1B. 2C. 3D. 49.函数y=x+m与在同一坐标系内的图象可以是()A. B.C. D.10.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB 上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的面积为()A. 2B. 4C. 6D. 12二、填空题(共10题;共30分)11.若点P(2,6)、点Q(-3,b)都是反比例函数y= (k≠0)图象上的点,则b=________.12.若函数的图象在其所在的每一象限内,函数值随自变量的增大而增大,则的取值范围是________13.A、B两地相距120千米,一辆汽车从A地去B地,则其速度v(千米/时)与行驶时间t(小时)之间的函数关系可表示为________;14.如图,根据图中提供的信息,可以写出正比例函数的关系式是________;反比例函数关系式是________.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为________.16.函数y=- 的图象的两个分支分布在________象限.17.如图,反比例函数y= 的图象经过矩形OABC的边AB的中点E,并与矩形的另一边BC交于点F,若S△BEF=1,则k=________18.如图,点A是反比例函数y= (x≠0)的图象上一点,AB⊥y轴于B,若△ABO的面积为4,则k的值为________.19.(2017•辽阳)如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y= (x<0)的图象经过点B和CD边中点E,则k的值为________.20.如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,过点A作AD⊥x轴于D,连接OB,与AD相交于点C,若AC=2CD,则k的值为________.三、解答题(共7题;共60分)21.已知反比例函数y=的图象经过点(﹣1,﹣2).(1)求y与x的函数关系式;(2)若点(2,n)在这个图象上,求n的值22.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y1= (x<0)图象上一点,AO的延长线交函数y2= (x>0,k<0)的y2图象于点B,BC⊥x轴,若S△ABC= ,求函数y2.23.如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数(x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.24.如图,在Rt△ABC中,∠C=90°,AC=2,BC=4,AC∥x轴,A、B两点在反比例函数y=(x>0)的图象上,延长CA交y轴于点D,AD=1.(1)求该反比例函数的解析式;(2)将△ABC绕点B顺时针旋转得到△EBF,使点C落在x轴上的点F处,点A的对应点为E,求旋转角的度数和点E的坐标.25.如图,在Rt△AOB中,∠ABO=90°,OB=4,AB=8,且反比例函数在第一象限内的图象分别交OA、AB于点C和点D,连结OD,若S△BOD=4,请回答下列问题:(1)求反比例函数解析式;(2)求C点坐标.26.如图,已知一次函数y= x﹣3与反比例函数的图象相交于点A(4,n),与轴相交于点B.(1)填空:n的值为________,k的值为________;(2)以AB为边作菱形ABCD,使点C在轴正半轴上,点D在第一象限,求点D的坐标;(3)考察反比函数的图象,当时,请直接写出自变量的取值范围.27.综合题(1)探究:如图1 ,直线l与坐标轴的正半轴分别交于A,B两点,与反比例函数,的图象交于C,D两点(点C在点D的左边),过点C作CE⊥y轴于点E,过点D作DF⊥x轴于点F,CE与DF交于点G(a,b).①若,请用含n的代数式表示;②求证:;(2)应用:如图2,直线l与坐标轴的正半轴分别交于点A,B两点,与反比例函数,的图象交于点C,D两点(点C在点D的左边),已知,△OBD的面积为1,试用含m的代数式表示k.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】C7.【答案】D8.【答案】C9.【答案】B10.【答案】B二、填空题11.【答案】-412.【答案】m<-213.【答案】v =14.【答案】y=-2x;15.【答案】616.【答案】二、四17.【答案】-418.【答案】819.【答案】﹣420.【答案】9三、解答题21.【答案】解:(1)∵点(﹣1,﹣2)在反比例函数y=上,∴k=﹣1×(﹣2)=2,∴y与x的函数关系式为y=.(2)∵点(2,n)在这个图象上∴2n=2∴n=1.22.【答案】解:设A(m,)(m<0),直线AB的解析式为y=ax(k≠0),∵A(m,),∴ma= ,解得a= ,∴直线AB的解析式为y= x.∵AO的延长线交函数y= 的图象于点B,∴B(﹣mk,﹣),∵△ABC的面积等于,CB⊥x轴,∴×(﹣)×(﹣mk+|m|)= ,解得k1=﹣5(舍去),k2=3,∴y2=23.【答案】解:∵点B(2,n)、P(3n﹣4,1)在反比例函数y= (x>0)的图象上,∴.解得.∴反比例函数解析式:y= ,∴点B(2,4),(8,1).过点P作PD⊥BC,垂足为D,并延长交AB与点P′.在△BDP和△BDP′中,∠∠′,∴△BDP≌△BDP′.∴DP′=DP=6.∴点P′(﹣4,1).∠∠′∴,解得:.∴一次函数的表达式为y= x+3.24.【答案】解:(1)∵AC∥x轴,AD=1,∴A(1,k),∵∠C=90°,AC=2,BC=4,∴B(3,k﹣4),∵点B在y=的图象上,∴3(k﹣4)=k,解得k=6,∴该反比例函数的解析式为y=;(2)作BM⊥x轴于M,EN⊥x轴于N,如图,∵△ABC绕点B顺时针旋转得到△EBF,∴BF=BC=4,EF=AC=2,∠BFE=∠BCA=90°,∠CBF等于旋转角,∵BC⊥x轴,A(1,6),∴BM=CM﹣BC=6﹣4=2,在Rt△BMF中,∵cos∠MBF===,∴∠MBF=60°,MF=BM=,∴∠CBF=180°﹣∠MBF=120°,∴旋转角为120°;∵∠BFM+∠MBF=90°,∠BFM+∠EFN=90°,∴∠MBF=∠EFN,∴Rt△BMF∽Rt△FNE,∴==,即==,∴FN=1,EN=,∴ON=OM+MF+FN=1++1=2+,∴E点坐标为(2+,).25.【答案】(1)解:∵∠ABO=90°,S△BOD=4,∴×k=4,解得k=8,∴反比例函数解析式为y= ;(2)解:∵∠ABO=90°,OB=4,AB=8,∴A点坐标为(4,8),设直线OA的解析式为y=kx,把A(4,8)代入得4k=8,解得k=2,∴直线OA的解析式为y=2x,解方程组,得或,∵C在第一象限,∴C点坐标为(2,4).26.【答案】(1)解:把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;;把点A(4,3)代入反比例函数y=,可得3=,解得k=12;(2)解:∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0);如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=BC=,∵AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,∠∠∠∠∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3;∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3)(3)解:当y=﹣2时,﹣2=,解得x=﹣6.故当y≥﹣2时,自变量x的取值范围是x≤﹣6或x>0.27.【答案】(1)①∵CE⊥y轴,DF⊥x轴,∴∠AEC=∠DFB=90°,又∵∠ACE=∠DCG,∴△ACE∽△DCG∴;②证明:易证△ACE∽△DCG∽△DBF又∵G(a,b)∴C( ) ,D(a,)∴即△ACE与△DBF都和△DCG相似,且相似比都为∴△ACE≌△DBF∴AC=BD.(2)如图,过点D作DH⊥x轴于点H由(2)可得AC=BD∵∴∴又∵∴∴∴.。
湘教版九年级数学上册 第1章 反比例函数 单元测试卷(2024年秋)

湘教版九年级数学上册第1章反比例函数单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.下列四个函数中,是反比例函数的是()A.y=x2B.y=2xC.y=3x-2D.y=x22.[2023·衡阳外国语学校模拟]反比例函数y=-7x的图象位于() A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限3.已知反比例函数y=kx(k≠0)的图象经过点(-2,4),那么该反比例函数的图象也一定经过点()A.(4,2)B.(1,8)C.(-1,8)D.(-1,-8)4.已知反比例函数y=4x,下列结论中不正确的是()A.图象必经过点(1,4)B.在第三象限内,y随x的增大而减小C.图象是轴对称图形,且对称轴是y轴D.图象是中心对称图形,且对称中心是坐标原点5.已知点A(x1,y1),B(x2,y2)都在反比例函数y=-1x的图象上,且x1<0<x2,则y1,y2的关系一定成立的是()A.y1>y2B.y1<y2C.y1+y2=0D.y1-y2=06.[2023·湘西州]如图,点A在函数y=2x (x>0)的图象上,点B在函数y=3x(x>0)的图象上,且AB∥x轴,BC⊥x轴于点C,则四边形ABCO的面积为() A.1B.2C.3D.47.[2023·呼和浩特]在同一直角坐标系中,函数y =-kx +k 与y =kx(k ≠0)的大致图象可能为()8.一个长方体物体的一顶点所在A ,B ,C 三个面的面积比是3∶2∶1,如果分别按A ,B ,C 面朝上将此物体放在水平地面上,地面所受的压力产生的压强分别为p A ,p B ,p p p A ∶p B ∶p C =()A .2∶3∶6B .6∶3∶2C .1∶2∶3D .3∶2∶19.如图,分别过反比例函数y =2x(x >0)的图象上任意两点A ,B 作x 轴的垂线,垂足分别为点C ,D ,连接OA ,OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1,S 2,则S 1与S 2的大小关系是()A .S 1>S 2B .S 1<S 2C .S 1=S 2D .不能确定10.如图,在平面直角坐标系中,一次函数y =-4x +4的图象与x 轴、y 轴分别交于A ,B 两点.正方形ABCD 的顶点C ,D 在第一象限,顶点D 在反比例函数y =kx (k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是()A .3B .4C .5D .6二、填空题(每题3分,共24分)11.已知反比例函数y =-2x,在每个象限内,y 随x 的增大而________.12.已知反比例函数y=6-3kx(k>1且k≠2)的图象与一次函数y=-7x+b的图象共有两个交点,且两交点横坐标的乘积x1·x2>0,请写出一个满足条件的k值:________.13.若点A(a,b)在双曲线y=3x上,则代数式ab-8的值为________.14.[2022·锦州]如图,在平面直角坐标系中,△AOB的边OB在y轴上,边AB与x轴交于点D,且BD=AD,反比例函数y=kx (x>0)的图象经过点A,若S△OAB=1,则k的值为________.15.[2023·徐州]如图,点P在反比例函数y=kx(k>0)的图象上,PA⊥x轴于点A,PB⊥y轴于点B,PA=PB.一次函数y=x+1与PB交于点D,若D为PB的中点,则k的值为________.16.如图,点A,B在第一象限,且为反比例函数y=4x的图象上的两点,点A,B关于原点对称的点分别为点C,D,若点B的横坐标是点A的横坐标的4倍,则图中阴影部分的面积为________.17.[2024·重庆凤鸣山中学联考]如图,在平面直角坐标系中,菱形ABCD的顶点B,D在反比例函数y=kx(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(-1,2),菱形的边长为5,则k的值是________.18.[2023·衢州]如图,点A,B在x轴上,分别以OA,AB为边,在x轴上方作正方形OACD、正方形ABEF.反比例函数y=kx(k>0)的图象分别交边CD,BE于点P,Q.作PM⊥x轴于点M,QN⊥y轴于点N.若OA=2AB,Q为BE的中点,且阴影部分面积等于6,则k的值为________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.已知y与2x-3成反比例,且当x=2时,y=4,求y关于x的函数表达式.20.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气球的体积V(立方米)的反比例函数,其图象如图所示.(千帕是压强单位)(1)求这个函数的表达式.(2)当气球的体积为1.2立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于160千帕时,气球将爆炸,为了安全起见,求气球的体积应控制的范围.21.[2023·甘孜州]如图,在平面直角坐标系xOy中,一次函数y=4x与反比例函3数y=kx(k>0)的图象相交于A(3,m),B两点.(1)求反比例函数的表达式;(2)若点C为x轴正半轴上一点,且满足AC⊥BC,求点C的坐标.22.[2024·北师大株洲附属学校模拟]在平面直角坐标系xOy中,一次函数y=kx+b和反比例函数y=-6x的图象都经过点A(3,m),B(n,-3).(1)求n的值和一次函数的表达式;(2)不等式kx+b≥-6x的解集是____________.23.[2022·湘西州]如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=kx的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的表达式;(2)求△ABC的面积.24.[2023·盘锦]如图,在平面直角坐标系中,A(1,0),B(0,3),反比例函数y=kx(k≠0)在第一象限的图象经过点C,BC=AC,∠ACB=90°,过点C作直线CE∥x轴,交y轴于点E.(1)求反比例函数的表达式;(2)若点D是x轴上一点(不与点A重合),∠DAC的平分线交直线CE于点F,请直接写出点F的坐标.答案一、1.B2.D 【点拨】对于反比例函数y =kx(k ≠0),当k >0时图象位于第一、三象限,当k <0时图象位于第二、四象限.因为-7<0,所以y =-7x的图象位于第二、四象限,故选D.3.C4.C 【点拨】反比例函数y =4x的图象是轴对称图形,对称轴是直线y =x 和y=-x .5.A 【点拨】∵在反比例函数y =-1x中,k =-1<0,∴图象位于第二、四象限.∵点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =-1x的图象上,且x 1<0<x 2,∴点B 在第四象限,点A 在第二象限,∴y 2<0<y 1,故选A.6.B 【点拨】如图,延长BA 交y 轴于点D .∵AB ∥x 轴,∴DA ⊥y 轴.又∵点A 在函数y =2x(x >0)的图象上,∴S △ADO =12×2=1.∵BC ⊥x 轴于点C ,DB ⊥y 轴,点B 在函数y =3x (x >0)的图象上,∴S 矩形OCBD =3.∴S 四边形ABCO =S 矩形OCBD -S △ADO =3-1=2,故选B.7.D 【点拨】①当k <0时,-k >0,一次函数y =-kx +k 的图象经过第一、三、四象限,反比例函数y=kx(k≠0)的图象位于第二、四象限;②当k>0时,-k<0,一次函数y=-kx+k的图象经过第一、二、四象限,反比例函数y=kx(k≠0)的图象位于第一、三象限.故选D.8.A【点拨】∵长方体物体的一顶点所在A,B,C三个面的面积比是3∶2∶1,∴长方体物体的A,B,C三个面朝上时对应的受力面积的比也为3∶2∶1.∵p=FS,F>0,且F一定,∴p A∶p B∶p C=13∶12∶11=2∶3∶6,故选A.9.C【点拨】∵点A,B均在反比例函数y=2x(x>0)的图象上,AC⊥x轴于点C,BD⊥x轴于点D,∴S△AOC=S△BOD=1.∴S△AOC-S△OCE=S△BOD-S△OCE,即S1=S2,故选C.10.A【点拨】如图,过点D作DE⊥x轴于点E,过点C作CF⊥y轴于点F.对于y=-4x+4,当x=0时,y=4;当y=0时,0=-4x+4,解得x=1.∴A(1,0),B(0,4),∴OA=1,OB=4.∵四边形ABCD是正方形,∴AB⊥AD,AB=AD=BC,∴∠ABO+∠BAO=∠DAE+∠BAO,∴∠ABO=∠DAE.∵AB=DA,∠BOA=∠AED=90°,∴△ABO≌△DAE(AAS),∴AE=BO=4,DE=OA=1,∴OE=OA+AE=5,∴D(5,1).∵顶点D在反比例函数y=kx(k≠0)的图象上,∴k=5×1=5,∴y=5 x .∵四边形ABCD 是正方形,∴AB ⊥BC ,∴∠ABO +∠CBF =∠BCF +∠CBF ,∴∠ABO =∠BCF .∵AB =BC ,∠BOA =∠CFB =90°,∴△ABO ≌△BCF (AAS),∴CF =BO =4,BF =OA =1,∴OF =BO +BF =5,∴C (4,5).∵C 向左移动n 个单位后为(4-n ,5),且在反比例函数图象上,∴5(4-n )=5,∴n =3,故选A.二、11.增大12.1.5(满足1<k <2都可以)【点拨】∵-7<0,∴一次函数y =-7x +b 的图象必定经过第二、四象限.∵x 1·x 2>0,∴反比例函数图象和一次函数图象的两个交点在同一象限,∴反比例函数y =6-3kx(k >1且k ≠2)的图象位于第一、三象限,∴6-3k >0,∴k <2.∵k >1,∴1<k <2,∴满足条件的k 值可以为1.5(满足1<k <2都可以).13.-5【点方法】将点A (a ,b )的坐标代入y =3x 中,可求得ab 的值为3,进而求得ab -8的值为-5.14.2【点拨】设A (a ,b ),如图,过点A 作x 轴的垂线与x 轴交于C ,则AC =b ,OC =a ,∠ACD =∠BOD =90°.∵AD =BD ,∠ADC =∠BDO ,∴△ADC ≌△BDO ,∴S △ADC =S △BDO ,∴S △OAB =S △AOD +S △BDO =S △AOD +S △ADC =S △OAC =1,∴12×OC ×AC =12ab =1,∴ab =2.∵A (a ,b )在y =kx(x >0)的图象上,∴k =ab =2.15.4【点拨】∵PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,PA =PB ,∴点P 的横纵坐标相同,∴可设点P 的坐标为(2m ,2m ).∵D为PB的中点,∴D(m,2m).∵D(m,2m)在直线y=x+1上,∴m+1=2m,∴m=1,∴P(2,2).∵点P在反比例函数y=kx(k>0)的图象上,∴k=2×2=4.16.15【点拨】如图,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,设点A的横坐标为a,则点B的横坐标为4a,∵点A,B在第一象限,且为反比例函数y=4x的图象上的两点,∴点AB的坐标为aAE=4a,BF=1a,∴S△AOB=S△AOE+S梯形AEFB-S△OBF=12×4a-a)-12×4=152.∵点A,B关于原点对称的点分别为点C,D,∴S△COD=S△AOB=152,∴阴影部分的面积为S△COD+S△AOB=152+152=15.17.8【点拨】∵四边形ABCD是菱形,∴AC⊥BD.∵点A(-1,2),∴OA=5.∵菱形的边长为5,∴AD=5,∴OD=52-5=2 5.∵对角线AC与BD相交于坐标原点O,A(-1,2),∴直线AC的表达式为y=-2x,∴直线BD的表达式为y=12x.设,12aa2=20,∴a=4或a=-4(舍去),∴D(4,2).∵D在反比例函数y=kx(k>0)的图象上,∴k =2×4=8.18.24【点拨】设OA =4a ,PM 与QN 的交点为H .∵OA =2AB ,∴AB =2a ,∴OB =AB +OA =6a .在正方形ABEF 中,AB =BE =2a ,∵Q 为BE 的中点,∴BQ =12AB =a ,∴Q (6a ,a ).∵Q 在反比例函数y =k x(k >0)的图象上,∴k =6a ×a =6a 2.∵四边形OACD 是正方形,∴AC =OA =4a ,∴C (4a ,4a ).∵P 在CD 上,∴P 的纵坐标为4a .∵P 在反比例函数y =k x (k >0)的图象上,∴P 的横坐标为x =k 4a ,∴4∵∠HMO =∠HNO =∠NOM =90°,∴四边形OMHN 是矩形.∵NO =k 4a ,MO =a ,∴S 矩形OMHN =NO ×MO =k 4a×a =6,∴k =24.三、19.【解】依题意可设y =k 2x -3(k ≠0),∵当x =2时,y =4,∴4=k 2×2-3,∴k =4,∴y 关于x 的函数表达式是y =42x -3.20.【解】(1)设这个函数的表达式为p =k V ,则48=k 2,解得k =96,∴这个函数的表达式为p =96V .(2)当V =1.2立方米时,p =961.2=80(千帕),∴气球内的气压是80千帕.(3)根据题意,当p ≤160千帕时,气球不爆炸,∴96V≤160,∴V ≥0.6立方米,故为了安全起见,气球的体积应控制的范围为V ≥0.6立方米.21.【解】(1)∵点A (3,m )在一次函数y =43x 的图象上,∴m =43×3=4,∴点A 的坐标为(3,4).∵反比例函数y =k x(k >0)的图象经过点A (3,4),∴k =3×4=12.∴反比例函数的表达式为y =12x.(2)如图,过点A 作y 轴的垂线,垂足为点H .∵A (3,4),∴AH =3,OH =4.由勾股定理,得OA =AH 2+OH 2=5,由图象的对称性,可知OB =OA .又∵AC ⊥BC ,∴△ACB 为直角三角形,∴OC =12AB =OA =5,∴点C 的坐标为(5,0).22.【解】(1)将点A (3,m ),B (n ,-3)的坐标分别代入y =-6x ,得m =-63,-3=-6n,解得m =-2,n =2,∴A (3,-2),B (2,-3),将A (3,-2),B (2,-3)的坐标分别代入y =kx +b ,-2=3k +b ,-3=2k +b ,k =1,b =-5.∴一次函数的表达式为y =x -5.(2)x ≥3或0<x ≤223.【解】(1)∵一次函数y =ax +1(a ≠0)的图象经过点B (1,3),∴a +1=3,∴a =2.∴一次函数的表达式为y =2x +1.∵反比例函数y =k x 的图象经过点B (1,3),∴k =1×3=3,∴反比例函数的表达式为y =3x .(2)在y =2x +1中,令y =0,则2x +1=0,∴x =-12.∴-12,0.∴OA =12.∵BC ⊥x 轴于点C ,B (1,3),∴OC =1,BC =3.∴AC =12+1=32.∴△ABC 的面积=12AC ·BC =94.24.【解】(1)如图①,作CG ⊥x 轴于点G ,则∠OGC =90°.∵CE ∥x 轴,∠AOB=90°,∴∠CEO =∠CEB =90°.∴四边形OECG 是矩形,∴∠ECG =90°.∵∠ACB =90°,∴∠BCE =∠ACG .又∵BC =AC ,∠BEC =∠AGC =90°,∴△BEC ≌△AGC (AAS ),∴CE =CG ,BE =AG ,∴矩形OECG 是正方形,∴OE =OG .∵A (1,0),B (0,3),∴OA =1,OB =3.设BE =AG =m ,则1+m =3-m ,解得m =1,∴OE =OG =2,∴点C 的坐标为(2,2),代入y =k x ,得k =2×2=4,∴反比例函数的表达式为y =4x.(2)(2+5,2)或(2-5,2)【点拨】Ⅰ.当点D 在点A 右侧时,如图①,∵OA =1,OB =3,∠AOB =90°,∴AB =12+32=10.∵BC =AC ,∠ACB =90°,∴AC =BC =22AB =5.∵CE ∥x 轴,∴∠CF A =∠FAD .∵AF 平分∠CAD ,∴∠CAF =∠DAF ,∴∠CAF =∠CF A ,∴CA =CF = 5.∵OE =EC =2,∴EF =2+5,∴点F 的坐标是(2+5,2).Ⅱ.当点D在点A左侧时,如图②,∵CE∥x轴,∴∠CF A=∠DAF.∵∠DAC的平分线交直线EC于点F,∴∠CAF=∠DAF,∴∠CAF=∠CF A,∴CF=AC= 5.∵C(2,2),∴点F的横坐标为2-5,∴F(2-5,2).综上,点F的坐标为(2+5,2)或(2-5,2).。
第17章 反比例函数 单元测试卷(A)3

第17章 反比例函数 单元测试卷(A )一、选择题(每小题2分,共20分)1.下列各变量之间是反比例函数关系的是( ).A .存入银行的利息和本金B .在耕地面积一定的情况下,人均占有耕地面积与人口数C .汽车行驶的时间与速度D .电线的长度与其质量 2.函数x k y =的图象经过点(2,8),则下列各点不在xky =图像上的是( ). A .(4,4) B .(-4,-4) C .(8,2) D .(-2,8) 3.如果反比例函数xky =的图象经过点(-1,5),那么直线1y kx =+一定不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.函数y kx =-与k y x=(k ≠0)的图象的交点的个数是( ). A. 2 B.1 C. 0 D.不确定5.若点(3,4)是反比例函数xm m y 122++=图象上一点,则此函数图象必经过点( ).A.(3,-4)B.(2,-6)C.(4,-3)D. (2,6) 6.已知不等式ax b +>0的解集为x >b a -,那么双曲线ay x=的图象上的点一定位于( ).A .第一象限B .第二象限C .第一、三象限D .第二、四象限 7.函数1y x=-的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( ).A.21y y <B.21y y >C.21y y =D.1y 与2y 之间的大小关系不能确定8.一条直线与双曲线x y 1=的交点是A (a ,4),B (-1,b ),则这条直线的解析式为( ) A .34-=x y B .341+=x y C .34+=x y D .34--=x y9.函数y =-kx +k 与y =xk-(k ≠0)在同一坐标系中的图象可能是( ).10.如图,点P 是x 轴上的一个动点,过点P 作 x 轴的垂线PQ 交双曲线xy 1=于点Q ,连结OQ ,当点P 沿x 轴正半方向运动时, Rt △QOP 面积( ).A .逐渐减小B .逐渐增大C .保持不变D .无法确定 二、填空题(每小题3分,共24分)11.一般地,函数 是反比例函数,其图象是 ,当k <0时,图象两支在 象限内. 12.反比例函数y =x2,当y =6时,x =_________. 13.近视眼镜的度数y (度)与焦距x (米)的函数关系式为100y x=,已知某同学近视眼镜镜片的焦距为0. 25米,则该同学配的镜片的度数是__________度.14.若函数的图象经过点(2,1),则函数的表达式可能是____________(写出一个即可). 15.已知函数y =x k 的图像过点(31,43),则函数的关系式是 ,当y =65时,x= .16.若函数y =4x 与y =x 1的图象有一个交点是(21,2),则另一个交点坐标是 _.17.点P 在反比例函数y =x6-的图像上,若点P 的纵坐标小于-1,则点P 的横坐标的取值范围是 . 18.直线y =-2x ─2与双曲线y =xk相交于点A ,与x 、y 轴交于点B 、C ,AD ⊥x 轴于点D ,如果ADB S △=COB S △, 那么k = . 三、解答题(共56分)19.有一个水池,池内原有水500升,现在以每分钟20升注入水,35分钟可注满水池. (1)水池的容积是多少?(2)若每分钟注入的水量达到Q 升,注满水池需要t 分钟,写出t 与Q 之间的关系式. (3)若要20分钟注满水池,每分钟的注水量应达到多少升?20.甲、乙两地相距12千米,一辆汽车从甲地开往乙地,若设汽车的平均速度为每小时x千米,到达乙地所用的时间为y 小时,(1)y 与x(221.在反比例函数y =42008k x-图像的每一条曲线上,y 随x 的增大而减小,求k 的取值范围.22.我们学过反比例函数,例如小明准备用20元钱去买单价为x 元/千克的水果,那么他能够购买的水果的重量y (千克)与x 之间就是反比例函数关系.函数解析式是xy 20=,其中x >0.请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数的量的实例,并写出它的函数关系式.你自己能完成吗?实例:_______________________________________________________________________ ___________________.函数关系式:____________________________.23.已知反比例函数xky =与一次函数b kx y +=的图象都经过点(-2,-1),求这两个函数解析式.24.面积一定的梯形,其上底长是下底长的21,设下底长x =10 cm 时,高y =6 cm (1)求y 与x 的函数关系式;(2)求当y =5 cm 时,下底长多少?25.若反比例函数xy 6=与一次函数4-=mx y 的图象都经过点A (a ,2) (1)求点A 的坐标;(2)求一次函数4-=mx y 的解析式.26.如图,已知一次函数b kx y +=的图象与反比例函数xy 8-=的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是2-,求: (1)一次函数的解折式; (2)△AOB 的面积.27.已知点A (-2,0)和点B (2,0),点P 在函数y =x1-的图像上,如果△PAB 的面积是6,求点P 的坐标.28.如图,反比例函数1k y x=图象在第一象限的分支上有一点C (1,3),过点C 的直线2y k x b =+〔k < 0〕与x 轴交于点A (a ,0).(1)求反比例函数的解析式;(2)求A 点横坐标a 和2k 之间的函数关系式;(3)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COA 的面积.参考答案一、选择题1.B 2.D 3.C 4.C 5.D 6.C 7.D 8.C 9.A 10.C 二、填空题 11.(0)k y k x =≠、双曲线、第二和第四 12.13 13.400 14.2y x = 15.14y x=、 310 16.(12-,-2) 17.0<x <6 18.-4 三、解答题19.(1)1200升(2)1200t Q=(3)60升 20.(1)12y x =(x >0)(2)略21.k >502 22.京沪高速公路全长约为1262km ,汽车沿京沪高速公路从上海驶往北京,汽车完成全程所需的时间t (h )与行驶的平均速度v (km/h)是反比例函数关系,1262t v= 23.一次函数解析式23y x =+,反比例函数解析式2y x =24.(1)60y x= (2)下底长12cm . 25.(1)A 点坐标(3,2) (2)24y x =- 26.(1)一次函数解析式2y x =-+ (2)△AOB 的面积是6. 27.P 点坐标是(13,-3)或(-13,3) 28.(1)3y x = (2)a =225k k - (3)△COA 面积是6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反比例函数》单元测试卷(二)
一、选择题(每小题2分,共20分)
1.下列函数中,y 与x 为反比例函数的是( ) (A )2)1(=-y x . (B )32+=x y . (C ) 21x
y =. (D )x y 31=.
2.函数x k y =
的图象经过点(-2,3),则下列各点中在x
k
y =图象上的是( ) (A )(3,2). (B )(3,-2). (C )(-2,-3). (D )(-2,-3).
3.正比例函数x y 32=
与反比例函数x
y 6
=的图象相交于A 、B 两点,其中点A 的坐标为(3,2),那么点B 的坐标为( )
(A )(-3,-2). (B )(-3,2). (C )(-2,-3). (D )(2,3).
4.如果点A (-1,1y )、B(1,2y )、C(2,3y )是反比例函数x
y 1
-=图象上的三个点,则下列结论正确的是( ).
(A )1y >2y >3y . (B )1y >3y >2y . (C )2y >1y >3y . (D )3y >1y >2y .
5.当k<0时,正比例函数kx y -=和反比例函数x
k
y =在同一坐标系内的图象为( )
(A )
(B )
6.
如上右图,A 为反比例函数x
k
y =图象上一点,AB 垂直x 轴于B 点,若S △AOB =3,则k 的值为( )
(A )6. (B )3 . (C )2
3. (D )不能确定.
7.如果矩形的面积为6cm2,那么它的长y cm与
宽x cm之间的函数关系用图象表示大致()
(A)(B)(C)(D)
8.在同一直角坐标平面内,如果直线x
k
y
1
=与双曲线
x
k
y2
=没有交点,那么
1
k和
2
k的关系一定是()
(A)
1
k<0,
2
k>0 .(B)
1
k>0,
2
k<0. (C)
1
k、
2
k同号. (D)
1
k、
2
k异号.
9.在同一坐标系中,函数x
k
y=和3
+
=kx
y的图像大致是()
10.如图,面积为2的ΔABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()
(A)(B)(C)(D)
二、填空题(每小题2分,共20分)
11.u与t成反比,且当u=7时,
14
1
=
t,这个函数解析式为.
12.已知y与x成正比例,z与y成反比例,那么z与x的关系是:__________函数.
o
y y
o
y
o
y
o
13.函数x
y 3
-=的图像,在每一个象限内,y 随x 的增大而 .
14.如果点(4,3)在反比例函数)(,0≠=k x
k
y 图象上,要使点(m ,-3)也在这一函数图象上,则m = _______________.
15.反比例函数x
k
y =
与一次函数m kx y +=的图象有一个交点是(-2,1),则它们的另一个交点的坐标是 .
16.已知一次函数y=ax+b 的图象经过第一、二、三象限,则函数x
ab
y =的图象在第________象限.
17.已知反比例函数x
m y 2
3-=
,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大.
18.已知反比例函数x
k
y =
图象与直线x y 2=和1+=x y 的图象过同一点,则当 x >0时,这个反比例函数值y 随x 的增大而 (填增大或减小).
19.如图,面积为4的矩形OABC 的一个顶点B 在反比例函数
x
k
y =
的图象上,另三点在坐标轴上,则k = .
20.设有反比例函数y k x
=
+1
,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________.
三、解答题(共60分)
21.(15分)已知121,y y y y -=与x 成反比例,2y 与)2(-x 成正比例,并且当x =3时,y =5,当x =1时,y =-1;求y 与x 之间的函数关系式.
22.(15分)已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系.
23.(15分)反比例函数y=x
k
的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,
(1)(5分)求反比例函数解析式;
(2)(10分)当P 在什么位置时,△OPA 为直角三角形,求出此时P 点的坐标.
24.(15分)如图,已知一次函数)0(≠+=k b kx y 的图象与反比例函数)0(8
≠-=m x
y 的图象交于A ,B 两点,且A 点的横坐标与B 点的纵坐标都是2-; (1) 求一次函数的解析式 (2) 求△AOB 的面积.
参考答案:
一、选择题
1. D ;提示:根据反比例函数的概念.
2. B ;提示:将各点坐标代入解析式.
3. A ;提示:根据反比例函数图象的中心对称性.
4. B ;提示:根据反比例函数图象比较.
5. C ;提示:根据正、反比例函数的图象的性质.
6. A ;提示:根据反比例函数图象的特点.
7. C ;提示:要与实际相符.
A
E
B
D
C
F
8. D ;提示:根据正、反比例函数图象的特征. 9. A ;提示:根据正、反比例函数图象的特征. 10. C ;提示:要与实际相符. 二、填空题 11.t
u 21
=
; 提示:根据反比例函数. 12.反比例;
提示:根据正、反比例函数的概念. 13.增大 ;
提示:根据反比例函数图象的性质. 14.-4;
提示:将(4,3)代入反比例函数解析式求出k 值,在将(m ,-3)代入求出m. 15.(
2
1
,-4) ; 提示:将(-2,1)代入x
k
y = 求出k 值,在代入y=kx+m 求出m 的值,将两个解析式组成方程组,求出结果. 16.一、三 ;
提示:根据一次函数和反比例函数图象的性质. 17.>
32,<3
2
; 提示:根据图象. 18.减小;
提示:根据反比例函数的性质. 19.-4;
提示:根据反比例函数图象的特征. 20.k<-1;
提示:结合图象得出结论. 三、解答题 21.设()2,2211-==
x k y x k y ,则()221--=x k x
k
y
将(3,5)和(1,-1)代入得: 21
3
5k k -=
211k k +=- 解得:4,321-==k k
∴y 与x 之间的函数关系式为()243
-+=
x x
y 22.由题意可知:FBE ∆与ADE ∆相似,则x
x
y -=
-422
化简得:8=xy x
y 8
=
∴y 与x 之间的函数关系为x y 8= 23.(1)反比例函数解析式为12
y x
=
(2)P 点坐标:(6,0),(5,0)(25
6
,0) 24.(1)一次函数的解析式为y=-x+6 (2)18ABC S ∆= 备注:
第1、2、7、10、11、14题通过求函数解析式、确定k 值等具体数学问题进一步认识和理解反比例函数的定义,并能够灵活的应用. 第3、4、5、6、8、9题通过不同角度和方式使学生进一步理解反比例函数的图像及其性质,使学生能够将数学知识应用到实际生活中.第12、15、16题考查一次函数和正比例函数的定义,让学生能够更好的理解和区分两者的联系和区别. 第21、22、23、24题考查反比例函数在实际生活中的应用. 本套题中,简单题为1、2、6、8、9、10、11、12、13、14、16、17题,中等难度题为3、4、5、7、10、15、18题,难题为20、21、22、23、24题,易中难的比例约为5:3:2.。