因式分解测试1
第4章 因式分解 单元测试1

单元测试(一)一、选择题1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12x C.x2﹣2x D.(x﹣3)2+2(x﹣3)+12.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2 )2﹣4 4.下列等式从左到右的变形属于因式分解的是()A.x2﹣2x+1=(x﹣1)2B.ax﹣ay+a=a(x﹣y)+aC.x3﹣x=x(x+1)(x﹣1)+1 D.x2﹣4+3x=(x+2)(x﹣2)+3x5.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣46.多项式x2﹣4分解因式的结果是()A.(x+2)(x﹣2)B.(x﹣2)2C.(x+4)(x﹣4)D.x(x﹣4)7.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9) B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)2 8.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)29.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b210.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+111.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣112.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c二、填空题13.分解因式:m2+2m=.14.分解因式:a2+a=.15.因式分解:m2﹣m= .16.因式分解:x2﹣2x+(x﹣2)=.17.分解因式:ab﹣b2=.三、解答题18.因式分解:﹣3a3b+6a2b2﹣3ab3.19.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.20.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.21.(1)计算:(﹣+)÷(﹣)(2)分解因式:x3﹣4x.22.将下列各式因式分解:(1)x2﹣9(2)﹣3ma2+12ma﹣9m(3)4x2﹣3y(4x﹣3y)(4)(a+2b)2+2(a+2b﹣1)+3.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.答案与解析1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12x C.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【考点】51:因式分解的意义.【专题】选择题【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选B【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.2.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解的意义即可判断.【解答】解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选C【点评】本题考查因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.3.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2 )2﹣4【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】多项式提取公因式即可得到结果.【解答】解:a2﹣4a=a(a﹣4).故选A【点评】此题考查了因式分解﹣提公因式法,找出多项式的公因式是解本题的关键.4.下列等式从左到右的变形属于因式分解的是()A.x2﹣2x+1=(x﹣1)2B.ax﹣ay+a=a(x﹣y)+aC.x3﹣x=x(x+1)(x﹣1)+1 D.x2﹣4+3x=(x+2)(x﹣2)+3x【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解的意义,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:A.【点评】本题考查了因式分解的意义,利用因式分解得意义是解题关键.5.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4,故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.6.多项式x2﹣4分解因式的结果是()A.(x+2)(x﹣2)B.(x﹣2)2C.(x+4)(x﹣4)D.x(x﹣4)【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用平方差公式进行分解即可.【解答】解:x2﹣4=(x+2)(x﹣2),故选:A.【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).7.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9) B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)2【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】直接找出公因式m,提取分解因式即可.【解答】解:m2﹣9m=m(m﹣9).故选:A.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)2【考点】52:公因式.【专题】选择题【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:m2﹣m=m(m﹣1),2m2﹣4m+2=2(m﹣1)(m﹣1),m2﹣m与多项式2m2﹣4m+2的公因式是(m﹣1),故选:A.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.9.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2 B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b2【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用乘法公式分解因式,进而判断得出答案.【解答】解:A、4a2+4a+1=(2a+1)2,正确;B、a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C、a2﹣2a﹣1无法运用公式分解因式,故此选项错误;D、(a﹣b)(a+b)=a2﹣b2,是多项式乘法,故此选项错误;故选:A.【点评】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.10.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1【考点】54:因式分解﹣运用公式法;53:因式分解﹣提公因式法.【专题】选择题【分析】分别利用公式法以及提取公因式法分解因式得出答案.【解答】解:A、m2+n2无法分解因式,故此选项错误;B、x2+2x﹣1无法分解因式,故此选项错误;C、a2﹣a=a(a﹣1),正确;D、a2+2a+1=(a+1)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.11.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣1【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】由互为相反数两数之和为0得到a+b=0,原式变形后代入计算即可求出值.【解答】解:由题意得到a+b=0,则原式=a(a+b)﹣2=0﹣2=﹣2,故选C【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积是解题关键.13.分解因式:m2+2m=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)【点评】本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.14.分解因式:a2+a=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.15.因式分解:m2﹣m= .【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】式子的两项含有公因式m,提取公因式即可分解.【解答】解:m2﹣m=m(m﹣1)故答案是:m(m﹣1).【点评】本题主要考查了提取公因式分解因式,正确确定公因式是解题的关键.16.因式分解:x2﹣2x+(x﹣2)=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】通过两次提取公因式来进行因式分解.【解答】解:原式=x(x﹣2)+(x﹣2)=(x+1)(x﹣2).故答案是:(x+1)(x﹣2).【点评】本题考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.17.分解因式:ab﹣b2=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).【点评】本题考查了因式分解,利用提公因式法是解题关键.18.因式分解:﹣3a3b+6a2b2﹣3ab3.【考点】55:提公因式法与公式法的综合运用.【专题】解答题【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3ab(a2﹣2ab+b2)=﹣3ab(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.【考点】59:因式分解的应用.【专题】解答题【分析】验证(1)计算(﹣1)2+02+12+22+32的结果,再将结果除以5即可;(2)用含n的代数式分别表示出其余的4个整数,再将它们的平方相加,化简得出它们的平方和,再证明是5的倍数;延伸:设三个连续整数的中间一个为n,用含n的代数式分别表示出其余的2个整数,再将它们相加,化简得出三个连续整数的平方和,再除以3得到余数.【解答】解:发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍;(2)设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;延伸设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.【点评】本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.20.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.【点评】此题考查了因式分解的应用,弄清题中“吉祥数”的定义是解本题的关键.21.(1)计算:(﹣+)÷(﹣)(2)分解因式:x3﹣4x.【考点】55:提公因式法与公式法的综合运用;1G:有理数的混合运算.【专题】解答题【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(2)原式提取x,再利用平方差公式分解即可.【解答】解:(1)原式=(﹣+)×(﹣72)=﹣56+27﹣10=﹣39;(2)原式=x(x2﹣4)=x(x+2)(x﹣2).【点评】此题考查了提公因式法与公式法的综合运用,以及有理数的混合运算,熟练掌握因式分解的方法及运算法则是解本题的关键.22.将下列各式因式分解:(1)x2﹣9(2)﹣3ma2+12ma﹣9m(3)4x2﹣3y(4x﹣3y)(4)(a+2b)2+2(a+2b﹣1)+3.【考点】55:提公因式法与公式法的综合运用.【专题】解答题【分析】(1)直接利用平方差公式分解因式得出答案;(2)首先提取公因式﹣3m,进而利用十字相乘法分解因式得出答案;(3)首先去括号,进而利用完全平方公式分解因式得出答案;(4)首先去括号,进而利用完全平方公式分解因式得出答案.【解答】解:(1)x2﹣9=(x+3)(x﹣3);(2)﹣3ma2+12ma﹣9m=﹣3m(a2﹣4a+3)=﹣3m(a﹣1)(a﹣3);(3)4x2﹣3y(4x﹣3y)=4x2﹣12xy+9y2,=(2x﹣3y)2;(4)(a+2b)2+2(a+2b﹣1)+3=(a+2b)2+2(a+2b)+1,=(a+2b+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.【考点】59:因式分解的应用.【专题】解答题【分析】运用完全平方公式进行正确的计算后即可得到正确的结果.【解答】解:答案:错在“﹣2×300×(﹣4)”,应为“﹣2×300×4”,公式用错.∴2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.【点评】本题考查了因式分解的应用,解题的关键是了解完全平方公式的形式并正确的应用.。
(完整版)因式分解单元测试题及答案,推荐文档

8、6,9 9、4.03
10、 n n 2 n 12 1 (n≥2 的整数)
4
三、解答题
1、(1) a a b2 (2) 3a 2a2 15b2 3c2
(3) m 1m 22
(4) x 22 x 22
2、(1)0
(2) 59
3、1000
4、(1)
1993 199 199 1992 1 199 199 1
0.52 0.22
7.8
3.14 0.21 5.14 (吨)
四、(用解法二的方法求解),设 x4 mx3 nx 16 A x 1x 2( A 为整式),
取 x =1,得 m n 15
①,取 x =2,得 4m n 0 ②,由①、②得:
m =-5, n =20。
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十
3、若 x2 3x 10 x ax b,则 a =________, b =________。
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十
4、若 x y 5, xy 6 则 x2 y xy2 =_________, 2x2 2 y2 =__________。
199 1 199198 200
(2) n3 n n n2 1 n n 1n 1因为 n 为正整数,n-1,n,n+1 为三个连
续的整数,必有 2 的倍数和 3 的倍数,所以 n n 1n 1必有 6 的倍数。
5、3
6、四根钢立柱的总质量为
7.8
D 2
2
d 2
2
h
7.8
3.14
6、已知两个正方形的周长差是 96cm,面积差是 960 cm2 ,则这两个正方形的边 长分别是_______________cm。
最新初中数学因式分解基础测试题及答案解析(1)

最新初中数学因式分解基础测试题及答案解析(1)一、选择题1.下列各式从左到右的变形中,属于因式分解的是()A.m(a+b)=ma+mb B.a2+4a﹣21=a(a+4)﹣21C.x2﹣1=(x+1)(x﹣1) D.x2+16﹣y2=(x+y)(x﹣y)+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、把一个多项式转化成几个整式积的形式,故C符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选C.【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.2.多项式x2y(a-b)-xy(b-a)+y(a-b)提公因式后,另一个因式为()A.21--D.21x x+-x x-+B.21x xx x++C.21【答案】B【解析】解:x2y(a-b)-xy(b-a)+y(a-b)= y(a-b)(x2+x+1).故选B.3.下列等式从左到右的变形属于因式分解的是()A.a2﹣2a+1=(a﹣1)2B.a(a+1)(a﹣1)=a3﹣aC.6x2y3=2x2•3y3D.mx﹣my+1=m(x﹣y)+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A、a2﹣2a+1=(a﹣1)2,从左到右的变形属于因式分解,符合题意;B、a(a+1)(a﹣1)=a3﹣a,从左到右的变形是整式乘法,不合题意;C、6x2y3=2x2•3y3,不符合因式分解的定义,不合题意;D、mx﹣my+1=m(x﹣y)+1不符合因式分解的定义,不合题意;故选:A.本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.4.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.5.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010- ()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.6.已知a ﹣b =2,则a 2﹣b 2﹣4b 的值为( )A .2B .4C .6D .8【答案】B【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a ﹣b =2,∴原式=(a +b )(a ﹣b )﹣4b =2(a +b )﹣4b =2a +2b ﹣4b =2(a ﹣b )=4.故选:B .【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.7.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.8.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.9.下列各式能用平方差公式分解因式的是( )A .21a +B .20.040.09y --C .22x y +D .22x y -【答案】D【解析】【分析】判断各个选项是否满足平方差的形式,即:22a b -的形式【详解】A 、C 都是22a b +的形式,不符;B 中,变形为:-(20.04+0.09y ),括号内也是22a b +的形式,不符;D 中,满足22a b -的形式,符合故选:D【点睛】本题考查平方差公式,注意在利用乘法公式时,一定要先将式子变形成符合乘法公式的形式,我们才可利用乘法公式简化计算.10.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①x 2-16=(x+4)(x-4),是因式分解;②x 2+3x-16=x (x+3)-16,不是因式分解;③(x+4)(x-4)=x 2-16,是整式乘法;④x 2+x =x (x +1)),是因式分解.故选B .11.若实数x 满足2210x x --=,则322742017x x x -+-的值为( )A .2019B .2019-C .2020D .2020-【答案】D【解析】【分析】根据2210x x --=推出x 2-2x=1,然后把-7x 2分解成-4x 2-3x 2,然后把所求代数式整理成用x 2-2x 表示的形式,然后代入数据计算求解即可.【详解】解:∵x 2-2x-1=0,∴x 2-2x=1,2x 3-7x 2+4x-2017=2x 3-4x 2-3x 2+4x-2017,=2x (x 2-2x )-3x 2+4x-2017,=6x-3x 2-2017,=-3(x 2-2x )-2017=-3-2017=-2020故选D.【点睛】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.12.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.13.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A、原式=5a2(2a+1),故A不符合题意;B、原式=(2x+3)(2x-3),故B不符合题意;C、a2-2a-1不能利用完全平方公式分解因式,故C不符合题意;D、原式=(x-6)(x+1),故D符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.14.将下列多项式因式分解,结果中不含有因式(a+1)的是()A.a2-1B.a2+aC.a2+a-2D.(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a (a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.考点:因式分解.15.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.16.将下列多项式因式分解,结果中不含因式x -1的是( )A .x 2-1B .x 2+2x +1C .x 2-2x +1D .x(x -2)+(2-x)【答案】B【解析】【分析】将各选项进行因式分解即可得以选择出正确答案.【详解】A. x 2﹣1=(x+1)(x-1);B. x 2+2x+1=(x+1)2 ;C. x 2﹣2x+1 =(x-1)2;D. x (x ﹣2)﹣(x ﹣2)=(x-2)(x-1);结果中不含因式x-1的是B ;故选B.17.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.18.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.19.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.20.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 【答案】A【解析】 试题分析:把多项式分别进行因式分解,多项式2mx m -=m (x+1)(x-1),多项式221x x -+=()21x -,因此可以求得它们的公因式为(x-1).故选A考点:因式分解。
2020年鲁教版(五四制)八年级数学上册第1章《因式分解》 检测题及答案

第1章《因式分解》测试卷一、选择题(本大题共12小题,共36.0分)1.6x3y2−3x2y3分解因式时,应提取的公因式是()A. 3xyB. 3x2yC. 3x2y3D. 3x2y22.下列各式属于正确分解因式的是()A. 1+4x2=(1+2x)2B. 6a−9−a2=−(a−3)2C. 1+4m−4m2=(1−2m)2D. x2+xy+y2=(x+y)23.下列多项式,能用平方差公式分解的是()A. −x2−4y2B. 9x2+4y2C. −x2+4y2D. x2+(−2y)24.下列四个多项式是完全平方式的是()a2+A. x2+xy+y2B. x2−2xy−y2C. 4m2+2mn+4n2D. 14 ab+b25.若36x2+kx+16是一个完全平方式,则k的值为()A. 48B. 24C. −48D. ±486.计算:1002−2×100×99+992=()A. 0B. 1C. −1D. 396017.把(a+b)2+4(a+b)+4分解因式得()A. (a+b+1)2B. (a+b−1)2C. (a+b+2)2D. (a+b−2)28.把x4−2x2y2+y4分解因式,结果是()A. (x−y)4B. (x2−y2)4C. [(x+y)(x−y)]2D. (x+y)2(x−y)29.多项式x2−3x+a可分解为(x−5)(x−b),则a、b的值分别是()A. 10和−2B. −10和2C. 10和2D. −10和−210.将下列多项式因式分解,结果中不含有因式a+1的是()A. a2−1B. a2+aC. a2+a−2D. (a+2)2−2(a+2)+111.已知n是正整数,则下列数中一定能整除(2n+3)2−25的是()A. 6B. 3C. 4D. 512.设a,b,c是△ABC的三条边,且a3−b3=a2b−ab2+ac2−bc2,则这个三角形是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等腰三角形或直角三角形二、填空题(本大题共10小题,共30.0分)13.分解因式:a3−16a=______.14.22017−22016=______ .15.已知x+y=1,那么12x2+xy+12y2的值为______ .16.在多项式4x2+1中添加______ ,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是______ .17.9a2+(______ )+25b2=(3a−5b)2.18.已知4x2−12xy+9y2=0,则式子xy的值为______ .19.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是______.20.已知x+y=6,xy=4,则x2y+xy2的值为______ .21.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),则a+b=______ .22.若ax2+24x+b=(mx−3)2,则a=______ ,b=______ ,m=______ .三、计算题(本大题共2小题,共14.0分)23.已知x=−19,y=12,求代数式4x2+12xy+9y2的值.24.已知|x−y+1|与x2+8x+16互为相反数,求x2+2xy+y2的值.四、解答题(本大题共2小题,共20.0分)25.因式分解:(1)3a(x−y)+9(y−x)(2)(2m−3n)2−2m+3n(3)16mn4−m(4)(a+2b)2−(2a−b)2(5)ab4−4ab3+4ab2(6)(a−b)(a−4b)+ab.26.下面是某同学对多项式(x2−4x+2)(x2−4x+6)+4进行因式分解的过程.解:设x2−4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2−4x+4)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的______ .A、提取公因式B.平方差公式C、两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底______ .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______ .(3)请你模仿以上方法尝试对多项式(x2−2x)(x2−2x+2)+1进行因式分解.答案1. D2. B3. C4. D5. D6. B7. C8. D9. D10. C11. C12. D13. a(a+4)(a−4)14. 2201615. 1216. +4x;(2x+1)217. −30ab18. 3219. a2+2ab+b2=(a+b)220. 2421. 1522. 16;9;−423. 解:4x2+12xy+9y2=(2x+3y)2=(−38+36)2=(−2)2=4.24. 解:∵|x−y+1|与x2+8x+16互为相反数,∴|x−y+1|与(x+4)2互为相反数,即|x−y+1|+(x+4)2=0,∴x−y+1=0,x+4=0,解得x=−4,y=−3.当x=−4,y=−3时,原式=(−4−3)2=49.25. 解:(1)3a(x−y)+9(y−x)=3(x−y)(a−y+x);(2)(2m−3n)2−2m+3n=(2m−3n)(2m−3n−1);(3)16mn4−m=m(16n4−1)=m(4n2+1)(4n2−1)=m(4n2+1)(2n−1)(2n−1);(4)(a+2b)2−(2a−b)2=(a+2b+2a−b)(a−2b−2a+b)=−(3a+b)(a+b);(5)ab4−4ab3+4ab2=ab2(b2−4b+4)=ab2(b−2)2;(6)(a−b)(a−4b)+ab=a2−4ab−ab+4b2+ab=a2−4ab+4b2=(a−2b)2.26. C;不彻底;(x−2)41、读书破万卷,下笔如有神。
初一年级第一学期因式分解专项训练

因式分解专项训练(一)——提取公因式班级:________ 姓名:________知识要点:如果一个多项式的各项含有公因式,那么可以把该公因式提取出来作为多项式的一个因式,提出公因式后的式子放在括号里,作为另一个因式。
这种分解因式的方法叫提取公因式。
注意:提取的公因式应是各项系数的最大公因数与各项相同字母的最低次幂。
★填空:1、因式分解:6x+10=__________;28-21y ²=__________;2m+3m ²=__________。
2、因式分解:9a ²+12a=__________;15p+12p ²=__________;14m ³n ²-8m ²n ³=__________。
3、因式分解:-12a ²+21a=__________;-3x ²y-6xy=__________;-18xy ²z ³+15x ²y ²=__________。
4、因式分解:8m ²n ²-6m ³n ²+14mn=_____________;-10ab+15b ²+25bc=_____________。
★★填空:1、因式分解:x(a+b)-y(a+b) =_____________;2、因式分解:4x(2x-y)+2y(2x-y)=_______________;4x(2x-y)+2y(y-2x)=_______________. ★★★填空:1、因式分解:(x+y)²+(x+y)³ =_________________;(x+y)²-(x+y)³ =_________________; (x-y)²+(y-x)³ =_________________;(x-y)²-(y-x)³ =_________________。
2021中考数学一轮复习整式及因式分解能力检测题1(附答案详解)

2021中考数学一轮复习整式及因式分解能力检测题1(附答案详解)1.x 2+5 可以写成( )A .x 2.x 5B .x 2.x 5C .2x .x 5D .2x .5x2.下列运算中,结果正确的是( )A .347a a a +=B .24434a a a +=C .32a a a -=D .2244a a -= 3.3x 2y ﹣5yx 2=( )A .﹣2B .﹣2yx 2C .﹣2xyD .不能运算 4.如果多项式6xy 2-7x 3y +Mxy 2-8合并同类项后是四次二项式,那么M 为( ) A .M =7 B .M =8 C .M =6 D .M =-65.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的12)后,得图③,④,…,记第n (n≥3)块纸板的周长为P n ,则P 2018﹣P 2017的值为( )A .20171()4 B .20181()4 C .20171()2 D .20181()26.如果257+513能被n 整除,则n 的值可能是( )A .20B .30C .35D .407.下列概念表述正确的是( )A .单项式x 3yz 4系数是1,次数是4B .单项式232a b π-的系数是12-,次数是6C .多项式2a 2b -ab -1是五次三项式D .x 2y +1是三次二项式8.下列各式:(1)1-34x 2y ;(2)a•30;(3)20%xy ;(4)a-b+c ;(5)2223a b -;(6)t-2℃,其中符合代数式书写要求的个数有( )A .5个B .4个C .3个D .2个9.计算(x 2-3x +n)(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( ) A .m =3,n =1 B .m =0,n =0 C .m =-3,n =-9 D .m =-3,n =8 10.下列计算正确的是( )A .x 4+x 4=x 16B .(﹣2a )2=﹣4a 2C .x 7÷x 5=x 2D .m 2•m 3=m 611.多项式323π215x y xy --+的次数是______ . 12.已知当x =2时,320ax bx +-=,则当2x =时,37ax bx ++__________. 13.下列式子中:①mn +a ;②ax 2+bx +c ;③-6ab ;④2x y +;⑤a b x -;⑥5+7x .整式有________.(填序号)14.已知有理数a 、b 、c 在数轴上的对应点如图所示,那么代数式a b a c c b +--+-的化简结果是__________.15.计算:()23a a ÷-=________.16.化简:2(23)a a ----的结果是___________.17.(-a 3)2(-a 2)3= ________,10m+1×10n+11=________ .18.若(mx -6y )与(x +3y )的积中不含xy 项,则m 的值是________.19.2a 2-a(2a-5b)-b(2a-b)= ___________;20.已知2139108n n -+=,则代数式(22)n n -的值为__________.21.求代数式()()()x y z y z x z x y ---+-的值,其中1x 4=,1y 2=,3z 4=-. 22.把下列各式因式分解:(1)16x 2-25y 2;(2)x 2-4xy +4y 2;(3)(a +2b)2-(2a -b)2;(4)(m 2+4m)2+8(m 2+4m)+16;(5)81x 4-y 4.23.计算: (1)(-3)0+21()3-+(-2)3; (2)(-2a 3)2·3a 3+6a 12÷(-2a 3) ; (3)(x+1)(x ﹣2)﹣(x ﹣2)2 .24.化简:|2x ﹣3|+|3x ﹣5|﹣|5x+1|25.计算:计算:(1)157(36)2612⎛⎫+-⨯- ⎪⎝⎭. (2)()2411336⎡⎤--⨯--⎣⎦. 化简: ①、()()32322312x x x x-+++- ②、22(331)(568)a a a a ---+-26.填表从填好的表中,你能发现什么规律?若发现了请写在下面的横线上:______________________27.先化简,再求值 ()()221362421x y xy xy x y ⎡⎤----+⎣⎦,其中12x =-,1y =. ()()()22222322x y xy xy x y ---,其中1x =-,2y =.28.指出下列各单项式的系数和次数.(1)3x 3;(2)-65xyz ;(3)23mn ;(4)-4x ;(5)-mx ;(6)237x y π. 29.数学老师在黑板上抄写了一道题目:“当a=2,b=﹣2时,求多项式3a 3b 3﹣12a 2b+b ﹣(4a 3b 3﹣14a 2b ﹣b 2)+(a 3b 3+14a 2b )﹣2b 2+3的值”,甲同学做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样,这是怎么回事儿呢? 30.求[4(xy ﹣1)2﹣(xy+2)(2﹣xy )]÷14xy 的值,其中x=(﹣cos60°)﹣1,y=﹣sin30°.参考答案1.A【解析】根据同底数幂的乘法法则可得,x 2.x 5 =x 2+5 ,故选A..2.C【解析】【分析】根据合并同类项法则依次判断即可解答.【详解】选项A ,3a 与4a 不是同类项不能合并,选项A 错误;选项B ,23a 与4a 不是同类项不能合并,选项B 错误;选项C ,根据合并同类项法则可得32a a a -=,选项C 正确;选项D ,根据合并同类项法则可得22243a a a -=,选项D 错误.故选C .【点睛】本题考查了合并同类项,熟知合并同类项法则是解决问题的关键.3.B【解析】【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行计算即可.【详解】原式=3x 2y ﹣5yx 2=﹣2yx 2.故答案为B .【点睛】本题考查了合并同类项的知识,解答本题的关键是熟练掌握合并同类项的法则.4.D【解析】【分析】如果多项式6xy 2-7x 3y +Mxy 2-8合并同类项后是四次二项式,那么6+M=0.【详解】6xy 2-7x 3y +Mxy 2-8=(6+M)xy 2-7x 3y -8,因为多项式合并同类项后是四次二项式, 所以,6+M=0所以,M=-6故选:D【点睛】本题考核知识点:合并同类项.解题关键点:熟练合并同类项.5.C【解析】【分析】根据等边三角形的性质(三边相等)求出等边三角形的周长P 1,P 2,P 3,P 4,根据周长相减的结果能找到规律即可求出答案.【详解】P 1=1+1+1=3,P 2=1+1+12=52, P 3=1+1+14×3=114, P 4=1+1+14×2+18×3=238, …∴p 3-p 2=114-52=14=21()2; P 4-P 3=238-114=18=31()2, 则P n -P n-1=11()2n -, 故P 2018﹣P 2017=20171()2故答案为20171()2 【点睛】本题主要考查对等边三角形的性质的理解和掌握,此题是一个规律型的题目,题型较好. 6.B【解析】试题解析:()71314131313122555555156530+=+=⨯+=⨯=⨯, 则n 的值可能是30;故选B.7.D【解析】【分析】根据单项式的系数和次数,多项式的项数和次数的定义来判断.【详解】解:A :x 3yz 4的系数是1,次数是8,故A 错误;B :232a b π-的系数是2π-,次数是5,故B 错误; C :2a 2b -ab -1是三次三项式,故C 错误;D :x 2y +1是三次二项式,故D 正确.故选D.【点睛】本题考查了单项式和多项式的相关概念.8.B【解析】试题解析:(1) 2314x y -,正确; (2)正确的书写格式是30a ;(3)20%xy ,正确;(4)a −b +c ,正确; (5) 2223a b -,正确; (6)正确的书写格式是(t −2)℃.其中符合代数式书写要求的个数有4个.故选B.9.A【解析】试题解析:(x 2-3x+n )(x 2+mx+8)=x 4+mx 3+8x 2-3x 3-3mx 2-24x+nx 2+nmx+8n=x 4+(m-3)x 3+(8-3m+n )x 2-24x+8n ,∵不含x 2和x 3的项,∴m-3=0,∴m=3.∴8-3m+n=0,∴n=1.故选A .10.C【解析】【分析】根据二次根式运算法则即可解答.【详解】x 4+x 4=2x 4 ,故选项A 错;(﹣2a )2=4a 2,故选项B 错;x 7÷x 5=x 2 ,故选项C 正确;m 2•m 3=m 5,故选项D 错.故选:C【点睛】本题考核知识点:二次根式运算. 解题关键点:熟记二次根式运算法则.11.4【解析】分析:根据多项式次数的定义求解.多项式的次数是多项式中最高次项的次数,可得答案. 详解:多项式﹣335x y π﹣2xy 2+1的次数是 4. 故答案为:4.点睛:本题考查了多项式的次数,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.12.9【解析】由题意得:8a+2b-2=0,所以:8a+2b=2,当x=2时,37ax bx ++=8a+2b+7=2+7=9,故答案为:9.13.①②③④⑥【解析】①mn +a 是多项式也是整式;②ax 2+bx +c 是多项式也是整式;;③-6ab 是单项式也是整式;④x y2+是多项式也是整式;;⑤a bx-是多项式也是整式;;⑥5+7x是多项式也是整式;.故答案为:①②③④⑥14.-2b【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:a<0<b<c,且|b|<|a|,∴a+b<0,a-c<0,c﹣b>0,则原式=-(a+b)+(a-c)+(c-b)=-a-b+a-c+c-b=-2b.故答案为-2b.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.15.a【解析】分析:先化简(﹣a)2,然后再依据同底数幂的除法法则计算即可.详解:原式=a3÷a2=a..故答案为a.点睛:本题主要考查的是同底数幂的除法,熟练掌握相关法则是解题的关键.16.3【解析】()223a a----=223a a-++=3.故答案为:3.17.-a1210m+n+12【解析】分析:第一题先算幂的乘方,再根据同底数幂的乘法计算;第二题直接根据同底数幂的乘法计算.详解:(-a3)2(-a2)3=a6·(-a6) = -a12,10m+1×10n+11=10m+n+12.故答案为:(1) -a12(2) 10m+n+12点睛:本题考查了幂的乘方和同底数幂的乘法运算,熟练掌握同底数幂的运算法则和幂的乘方运算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相乘,底数不变指数相加.18.2【解析】分析:先运用多项式的乘法法则,进行乘法运算,再合并同类项,因积中不含xy 项,所以xy 项的系数为0,得到关于m 的方程,解方程可得m 的值.详解:∵(mx ﹣6y )×(x +3y )=mx 2+(3m ﹣6)xy ﹣18y 2,且积中不含xy 项,∴3m ﹣6=0,解得:m =2.故答案为2.点睛:本题主要考查多项式乘多项式的法则,根据不含某一项就是让这一项的系数等于0列式是解题的关键.19.3ab+b 2【解析】2a 2-a(2a-5b)-b(2a-b)=2a 2-2a 2+5ab-2ab+b 2=3ab+b 2故答案是:3ab+b 2.20.4.【解析】解:∵原式可化为22331083nn += ,∴32n (13+1)=108,∴32n =81,∴32n =34,解得n =2,∴原式=22=4.故答案为:4.点睛:本题考查的是幂的乘方与积的乘方法则,先根据题意得出n 的值是解答此题的关键. 21.原式()2y x z 1=-=【解析】分析:先根据单项式乘多项式的法则计算,合并同类项后提取公因式2y ,然后把14x =,12y =,34z =-代入计算即可., 详解:原式()xy xz yz xy xz yz 2xy 2yz 2y x z =--++-=-=-,当1x 4=,1y 2=,3z 4=-时,原式11321244⎛⎫=⨯⨯+= ⎪⎝⎭. 点睛:本题考查了整式的化简求值,熟练掌握整式的运算法则是解答本题的关键. 22. (1) (4x +5y)(4x -5y);(2)(x -2y)2;(3) (3a +b)(3b -a);(4) (m +2)4.(5)(3x +y)(3x -y)(9x 2+y 2)【解析】试题分析:根据因式分解的方法进行因式分解即可.试题解析:(1)原式()()4545x y x y =+-.(2)原式()22.x y =- (3)原式()()()()()()22?2233a b a b a b a b a b b a ⎡⎤⎡⎤=++-+--=+-⎣⎦⎣⎦.(4)原式()()()222424422.m m m m ⎡⎤⎡⎤=++=+=+⎣⎦⎣⎦ (5)原式()()()()()22222299339x y x y x y x y x y =-+=+-+ 点睛:常用的因式分解的方法:提取公因式法,公式法,十字相乘法,分组分解法. 23.(1)2;(2)9a 9;(3)3x-6【解析】【分析】()1根据有理数的运算顺序进行运算即可;()2根据整式的运算法则进行运算即可;()3根据整式的运算法则进行运算即可.【详解】解:()1原式()2138198 2.=++-=+-= ()2原式()6399994331239.a a a a a a =⋅+-=-=()3原式()22244,x x x x =----+22244,x x x x =---+-3 6.x =-【点睛】考查有理数的混合运算,整式的混合预算,解题的关键是注意运算顺序.24.①9;②﹣10x+7;③﹣6x+1;④﹣9【解析】【分析】根据x的范围分四种情况,利用绝对值的代数意义化简,去括号合并即可得到结果. 【详解】解:①当15x<-时,原式3253519x x x=-+-++=.②当1352x-≤<时,原式325351107x x x x=-+---=-+.③当3523x≤<时,原式23535161x x x x=-+---=-+.④当53x≥时,原式2335519.x x x=-+---=-【点睛】此题考查了整式的加减,以及绝对值,熟练掌握运算法则是解本题的关键.注意分类讨论思想在解题中的应用.25.(1)—27;(2)0;①、21x+;②、2297a a--+;【解析】【分析】(1)先把括号中的每一项分别同-36相乘,再把结果相加减即可;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;①先去括号,再合并同类项即可求解;②先去括号,再合并同类项即可求解.【详解】解:(1)原式=12×(-36)+56×(-36)-712×(-36)=-18-30+21 =-27(2)−14−16×[3−(−3)2]=-1-16×[3-9]=-1-16×[-6] =-1+1=0;①()()32322312x x x x-+++- =323223122x x x x -+++-=21x +②()()22331568a a a a ---+-=2331a a ---2568a a -+=-22a -9a+7【点睛】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:--得+,-+得-,++得+,+-得-.本题还考查了有理数的混合运算,整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.26.x 2-2xy+y 2=(x-y) 2【解析】分析:先根据代数式的求值,把所给的x 、y 的值分别代入x 2-2xy+y 2、(x-y )2,然后根据结果总结规律即可.详解:填表:发现规律:x2-2xy+y2=(x-y)2.点睛:此题主要考查了规律总结题,利用代入法求解即可,解题时注意符号的变化,不要出错.27.(1)-3;(2)22【解析】【分析】(1)先括号,再合并,最后把x、y的值代入计算即可;(2)先括号,再合并,最后把x、y的值代入计算即可.【详解】解:(1)原式=3x2y+2xy﹣4+x2y+1=4x2y+2xy﹣3当x=﹣12,y=1时,原式=4×(﹣12)2×1+2×(﹣12)×1﹣3=﹣3;(2)原式=3x2y﹣2xy2﹣xy2+2x2y=5x2y﹣3xy2当x=﹣1,y=2时,原式=5×(﹣1)2×2﹣3×(﹣1)×22=22.【点睛】本题考查了整式的化简求值,解题的关键是去括号、合并同类项.28.见解析.【解析】【分析】根据单项式的系数和次数的意义进行分析.【详解】解:(1)3x3的系数为3,次数为3.(2)-xyz的系数为-,次数为3.(3)的系数为,次数为2.(4)-的系数为-,次数为1.(5)-mx的系数为-1,次数为2.(6)的系数为,次数为3.【点睛】本题考核知识点:单项式的系数和次数.解题关键点:理解单项式的系数和次数的意义.29.结果一样【解析】试题分析:根据整式的化简,先去括号,合并同类项,化简后,通过结果中没有a可知结果与a的值无关,即可求解.试题解析:原式=3a3b3﹣a2b+b﹣4a3b3+a2b+b2+a3b3+a2b﹣2b2+3=b﹣b2+3,结果与a的值无关,故做题时把a=2抄错成a=﹣2,乙同学没抄错题,但他们得出的结果恰好一样.30.-12【解析】分析:根据三角函数值及负指数幂化简x、y的值,根据完全平方公式及平方差公式化简整式,再将x、y的值代入可得.详解:原式=[4(x2y2﹣2xy+1)﹣(22﹣x2y2)]•4 xy=(4x2y2﹣8xy+4﹣4+x2y2)4 xy ⋅=(5x2y2﹣8xy)4 xy ⋅=20xy﹣32当x=(﹣cos60°)﹣1=(﹣12)﹣1=﹣2,y=﹣sin30°=﹣12时,原式=20×(﹣2)×(﹣12)﹣32=﹣12.点睛:本题主要考查整式的化简求值能力,根据三角函数值及负整数指数幂化简x、y的值是基本,准确化简整式是关键.。
北师大版2020八年级数学下册第四章因式分解单元过关测试题1(附答案)

北师大版2020八年级数学下册第四章因式分解单元过关测试题1(附答案) 1.下列各式从左到右的变形是因式分解的是( ) A .()a b c ab ac -=- B .()222312x x x -+=-+ C .()()2422x x x -=+-D .2(1)(2)32x x x x ++=++2.下列多项式中,可以提取公因式的是( ) A .ab +cd B .mn +m 2 C .x 2-y 2D .x 2+2xy +y 23.若m -n =-6,mn =7,则mn 2-m 2n 的值是( ) A .-13 B .13 C .42 D .-42 4.下列多项式中,不能因式分解的是( ) A .a 2+1B .a 2﹣6a+9C .a 2+5aD .a 2﹣15.下列等式从左到右的变形,属于因式分解的是 A .(a +b )(a ﹣b )=a 2﹣b 2 B .a 2+4a +1=a (a +4)+1 C .x 3﹣x =x (x +1)(x ﹣1)D .2111x x x x x ⎛⎫++=++⎪⎝⎭6.把多项式x 3-4x 因式分解所得的结果是( ) A .x (x 2-4)B .x (x +4)(x -4)C .x (x +2)(x -2)D .(x +2)(x -2)7.下列变形是因式分解是( ) A .211()x x x x+=+B .24(2)(2)am a a m m -=+-C .2221(2)(1)(1)a ab b a a b b b ++-=+++-D .2224(2)x x x ++=+ 8.下列各式中能用完全平方公式分解因式的是( ) A .22a ab b ++B .294y y -C .2414a a +-D .221q q +-9.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形10.已知a 、b 、c 是△ABC 的三边,且满足a 2﹣b 2+ac ﹣bc =0,则△ABC 的形状是( ). A .直角三角形 B .等边三角形 C .等腰三角形 D .无法确定 11.因式分解:a 2﹣b 2=_____.12.已知a 、b 满足2284200a b a b +--+=,则22a b -=________.13.分解因式0.81x 2-16y 2=(0.9x+4y )(__).14.因式分解:n (m ﹣n )(p ﹣q )﹣n (n ﹣m )(p ﹣q )=__. 15.分解因式:23a a +=_______________. 16.分解因式:2x 3﹣6x 2+4x =__________.17.把多项式m 2(a ﹣2)+m (2﹣a )分解因式等于_____. 18.把x 3y ﹣xy 3分解因式的结果是_____________________. 19.分解因式:b 2-9 =_____.20.分解因式:m 2n ﹣4mn ﹣4n=_____. 21.分解因式: (1)8a 3b 2+12ab 3c ; (2)(2x+y )2﹣(x+2y )2.22.分解因式: (1)a 3-a ;(2)8(x 2-2y 2)-x (7x +y )+xy .23.分解因式:(1)323a b 16a - (2)2x 2y-4xy+2y24.若正整数k 满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,我们称这样的数k 为“言唯一数”,交换其首位与个位的数字得到一个新数k',并记F (k )=11127k k k k -'-'++. (1)最大的四位“言唯一数”是 ,最小的三位“言唯一数”是 ; (2)证明:对于任意的四位“言唯一数”m ,m+m'能被11整除;(3)设四位“言唯一数”n=1000x+100y +10y+1(2≤x≤9,0≤y≤9且y≠1,x 、y 均为整数),若F (n )仍然为“言唯一数”,求所有满足条件的四位“言唯一数”n .25.(1)计算:(a ﹣b )(a 2+ab+b 2)(2)利用所学知识以及(1)所得等式,分解因式:m 3﹣n 3﹣3mn (m ﹣n )26.已知x ≠1,计算: (1-x )(1+x )=1-x 2, (1-x )(1+x +x 2)=1-x 3, (1-x )(1+x +x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x +x 2+…+x n )=________(n 为正整数). (2)根据你的猜想计算:①(1-2)×(1+2+22+23+24+25)=________; ②2+22+23+…+2n =________(n 为正整数); ③(x -1)(x 99+x 98+x 97+…+x 2+x +1)=________. (3)通过以上规律请你进行下面的探索: ①(a -b )(a +b )=________; ②(a -b )(a 2+ab +b 2)=________; ③(a -b )(a 3+a 2b +ab 2+b 3)=________.27.将一个三位正整数n 各数位上的数字重新排列(含n 本身)后,得到新的三位数abc (a <c ),在所有重新排列大的数中,当|a+c ﹣2b|最小时,我们称abc 是n 的“天时数”,并规定F (n )=b 2﹣ac .当|a+c ﹣2b|最大时,我们称abc 是n 的“地利数”,并规定G (n )=ac ﹣b 2.并规定M (n )=()()F nG n 是n 的“人和数”,例如:215可以重新排列为125,152,215,因为|1+5﹣2×2|=2,|1+2﹣2×5|=7,|2+5﹣2×1|=5,且2<5<7,所以125是215的“天时数”F (125)=22﹣1×5=﹣1,152是215的“地利数”,G (152)=1×2﹣52=﹣23,M (215)=112323-=-. (1)计算:F (168),G (168);(2)设三位自然数s=100x+50+y (1≤x≤9,1≤y≤9,且x ,y 均为正整数),交换其个位上的数字与百位上的数字得到t ,若s ﹣t=693,那么我们称s 为“厚积薄发数”;请求出所有“厚积薄发数”中M (s )的最大值. 28.把下列多项式因式分解 (l)x 3=4xy 2; (2)(a-1)(a+3)+4 29.把下列各式分解因式:(1)236x y xy - (2)2332525x y x y -(3)3241626m m m -+- (4)22(3)3a a --+(5)23()2()m x y y x --- (6)2318()12()b a b a b ---(7)1532223520x y x y x y +- (8)6x(x+y)-4y(x+y)(9)()()()a x a b a x c x a -+--- (10)()()()()m n p q m n p q ++-+- 30.(1)分解因式:(p+4)(p-1)-3p ; (2)化简:参考答案1.C【解析】试题解析:A. 右边不是整式积的形式,不是因式分解,故本选项错误;B. 右边不是整式积的形式,不是因式分解,故本选项错误;C. 是因式分解,故本选项正确;D. 右边不是整式积的形式,不是因式分解,故本选项错误;故选C.点睛:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 2.B【解析】【分析】直接利用提取公因式法分解因式的步骤分析得出答案.【详解】解:A.ab+cd,没有公因式,故此选项错误;B.mn+m2=m(n+m),故此选项正确;C.x2﹣y2,没有公因式,故此选项错误;D.x2+2xy+y2,没有公因式,故此选项错误.故选B.【点睛】本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.3.C【解析】【分析】首先把mn2+m2n分解因式,然后把已知等式代入其中即可求解.【详解】mn2+m2n=mn(n-m)=- mn(m-n),∵m-n=-6,mn=7,∴原式=6×7=42.故选:C.【点睛】此题考查了因式分解的应用,解题时首先通过因式分解把所求代数式变形,然后代入已知数据计算即可求解. 4.A 【解析】分析:利用因式分解的方法判断即可. 详解:A. 原式不能分解,符合题意; B. 原式2(3)a =-, 不合题意; C. 原式=x (x +5),不合题意; D. 原式(1)(1)a a =+-,不合题意, 故选A.点睛:考查因式分解的方法,常见的因式分解的方法有,提取公因式法,公式法,十字相乘法. 5.C 【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积的形式,故B 错误;C. 把一个多项式转化成几个整式积的形式,故C 正确;D. 没把一个多项式转化成几个整式积的形式,故D 错误; 故选:C. 6.C 【解析】试题解析:()()()324422.x x x x x x x -=-=+-故选C.点睛:先提取公因式,再用公式进行因式分解. 7.B 【解析】解:A .211()x x x x+=+ ,右边不是整式的乘积的形式,不是因式分解,故A 错误;B .24(2)(2)am a a m m -=+-,正确;C .2221(2)(1)(1)a ab b a a b b b ++-=+++-,右边不是整式的乘积的形式,不是因式分解,故C 错误;D .2224(2)x x x ++=+,左右两边不相等,不是恒等变形,故C 错误. 故选B . 8.C 【解析】A 选项中间乘积项不是两底数积的2倍,故本选项错误;B 选项不符合完成平方公式的特点,故本选项错误;C 选项符合完全平方公式的特点;D 选项不符合完成平方公式的特点,故本选项错误, 故选C . 9.C 【解析】 【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状. 【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0, ∵a+b-c≠0, ∴a-b=0,即a=b , 则△ABC 为等腰三角形. 故选C . 【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键. 10.C【解析】a 2−b 2+ac−bc=0, 由平方差公式得: (a+b)(a−b)+c(a−b)=0, (a−b)(a+b+c)=0,∵a 、b 、c 三边是三角形的边, ∴a 、b 、c 都大于0, ∴本方程解为a=b , ∴△ABC 一定是等腰三角形. 故选:C.11.(a+b )(a ﹣b ) 【解析】试题分析:直接应用平方差公式即可:()()22a b a b a b -=+-.12.12 【解析】分析:先根据完全平方公式的特征对等式2284200a b a b +--+=的左边进行因式分解可得:()()22420a b -+-=,再根据非负数的非负性可得:4,2a b ==,然后代入求解即可. 详解:因为2284200a b a b +--+=,所以22816440a a b b -++-+=, 所以()()22420a b -+-=, 所以()()2240,20a b -=-=, 所以4,2a b ==,所以2216412a b -=-=.点睛:本题主要考查利用完全平方公式进行因式分解,解决本题的关键是要熟练掌握利用完全平方公式进行因式分解. 13.0.9x -4y 【解析】试题分析:本题利用的是平方差公式进行因式分解,则原式=()()()()220.940.9x 4y 0.9x 4y x y -=+-. 14.2n (m ﹣n )(p ﹣q ).【解析】解:原式=n (m ﹣n )(p ﹣q )+n (m ﹣n )(p ﹣q )=2n (m ﹣n )(p ﹣q ).故答案为:2n (m ﹣n )(p ﹣q ). 15.(3)a a + 【解析】试题解析:23a a +=a(a+3). 16.2x (x ﹣1)(x ﹣2). 【解析】分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案. 详解:2x 3﹣6x 2+4x =2x (x 2﹣3x+2) =2x (x ﹣1)(x ﹣2). 故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键. 17.:m (a ﹣2)(m ﹣1) 【解析】m 2(a ﹣2)+m (2﹣a )=m 2(a ﹣2)﹣m (a ﹣2)=m (a ﹣2)(m ﹣1). 故答案为m (a ﹣2)(m ﹣1). 18.xy (x +y )(x ﹣y ) 【解析】 【分析】先提公因式3x ,再利用平方差公式分解因式. 【详解】 解:故答案是:【点睛】本题主要利用提公因式法、完全平方公式分解因式,熟记公式结构特点是解题的关键. 19.(b+3)(b-3) 【解析】原式=(3)(3)b b +-. 故答案为:(3)(3)b b +-. 20.n (m 2﹣4m ﹣4) 【解析】 试题解析:244,m n mn n --()244n m m =--.故答案为:()244n m m --.21.(1)4ab 2(2a 2+3bc );(2)3(x+y )(x ﹣y ). 【解析】 【分析】(1)直接提取公因式4ab 2,进而分解因式即可; (2)直接利用平方差公式分解因式得出答案. 【详解】解:(1)8a 3b 2+12ab 3c =4ab 2(2a 2+3bc ); (2)(2x+y )2-(x+2y )2 =(2x+y+x+2y )(2x+y-x-2y ) =3(x+y )(x-y ).22.(1)a (a -1)(a +1);(2)(x +4y )(x -4y ).【解析】试题分析:(1)首先提取公因式,进而利用平方差公式分解因式即可; (2)首先去括号,进而合并同类项,再利用平方差公式分解因式即可. 试题解析:解:(1)原式=a (a 2-1)=a (a -1)(a +1).(2)原式=8x 2-16y 2-7x 2-xy +xy =x 2-16y 2=(x +4y )(x -4y ). 23.(1)a 3(b+4)(b-4) (2)2y 2(1)x - 【解析】试题分析:(1)(2)利用提取公因式和公式法因式分解.试题解析:(1)3233216(16a b a a b -=-)=a 3(b +4)(b -4) .(2)2x 2y -4xy +2y =2y (x 2-2x +1)=2y (x-1)2.24.(1)9991;221;(2)详见解析;(3)满足条件的所有的四位“言唯一数”为3221和8551【解析】【分析】根据题目给出的新定义,正整数k 满足个位数字为1,其他数位上的数字均不为1且十位与百位上的数字相等,称这样的数k 为“言唯一数”,解答即可.【详解】(1)最大的四位“言唯一数”是 9991 ,最小的三位“言唯一数”是 221 ;(2)证明:设1000100101m a b b =+++,则'100010010m b b a =+++()'1001220100111912091m m a b a b ∴+=++=++,a b Q 都为正整数,则912091a b ++也是正整数∴对于任意的四位“言唯一数”m ,'m m +能被11整除.(3) Q 1000100101n x y y =+++(29x ≤≤,09y ≤≤且1y ≠,x 、y 均为整数) '1000110n y x ∴=++.则()()11912091''9999991111271127x y n n n n x F n +++--=-+=-+ 91109137371x y x =++-++5420129x y =++()F n Q 仍然为言唯一数, 20y 末尾数字为0,129末尾数字为9则54x 的末尾数字为2,3x ∴=或8x =①当3x =时,542012920291x y y ++=+,2y =时,()331F n =,此时3221n =②当8x =时,542012920561x y y ++=+,5y =时,()661F n =,此时8551n =满足条件的所有的四位“言唯一数”为3221和8551【点睛】本题主要考查了对因式分解的应用,对新定义的理解程度时解答本题的关键.25.(1)a3﹣b3;(2)(m﹣n)3.【解析】【分析】(1)根据多项式乘以多项式的法则进行计算即可;(2)利用分组分解法,先将前两项分为一组,根据(1)的立方差公式分解因式,再提公因式即可.【详解】解:(1)原式=a3+a2b+ab2﹣a2b﹣ab2﹣b3=a3﹣b3;(2)原式=(m﹣n)(m2+mn+n2)﹣3mn(m﹣n)=(m﹣n)(m2﹣2mn+n2)=(m﹣n)3【点睛】本题考查了多项式乘以多项式和因式分解,熟练掌握立方差公式是关键.26.(1)①-63;②2n+1-2;③x100-1.(2)①a2-b2;②a3-b3;③a4-b4【解析】试题分析:(1)根据题意易得(1-x)(1+x+x2+…+x n)=1-x n+1;利用猜想的结论得到①(1-2)(1+2+22+23+24+25)=1-26=1-64=-63;②先变形2+22+23+24+…+2n=2(1+2+22+23+24+…+2n-1)=-2(1-2)(1+2+22+23+24+…+2n-1),然后利用上述结论写出结果;③先变形得到(x-1)(x99+x98+x97+…+x2+x+1)=-(1-x)(1+x+x2+…+x99),然后利用上述结论写出结果;(2)根据规律易得①(a-b)(a+b)=a2-b2;②(a-b)(a2+ab+b2)=a3-b3;③(a-b)(a3+a2b+ab2+b3)=a4-b4.试题解析:(1)由题意知(1−x)(1+x+x2+…+x n)=1−x n+1;所以①(1−2)(1+2+22+23+24+25)=1−26=1−64=−63;②2+22+23+24+…+2n=2(1+2+22+23+24+…+2n−1)=−2(1−2)(1+2+22+23+24+…+2n−1)=−2(1−2n)=2n+1−2;③(x−1)(x99+x98+x97+…+x2+x+1)=−(1−x)(1+x+x2+…+x99)=−(1−x100)=x100−1,(3)①(a−b)(a+b)=a2−b2;②(a−b)(a2+ab+b2)=a3−b3;③(a−b)(a3+a2b+ab2+b3)=a4−b4.故答案为:(1)①-63;②2n+1-2;③x100-1.(2)①a2-b2;②a3-b3;③a4-b4点睛:此题考查了平方差公式,规律型:数字的变化类以及多项式乘多项式,熟练掌握运算法则及公式是解本题的关键.27.(1)28,47;(2)17 39【解析】【分析】(1)将168重新排列为168、186,618,计算出|1+8﹣2×6|=3、|1+6﹣2×8|=98+6﹣2×1|=12,且3<9<12,可得168的天时数与地利数,再根据天时数和地利数的定义计算可得;(2)由s=100x+50+y,t=100y+50+x,根据s﹣t=693可得81xy=⎧⎨=⎩或92xy=⎧⎨=⎩,据此得出s的“厚积薄发数”为851或952,再分别求出这两个数的“人和数”,比较大小即可得.【详解】(1)168重新排列为168、186、618.∵|1+8﹣2×6|=3、|1+6﹣2×8|=9、|8+6﹣2×1|=12,且3<9<12,∴168是168的天时数,F (168)=62﹣1×8=28;618是168的地利数,G(618)=6×8﹣12=47.(2)s=100x+50+y,t=100y+50+x.∵s﹣t=99x﹣99y=693,∴99(x﹣y)=693,x﹣y=7,x=y+7,∴1≤x≤9,1≤y≤9,∴1≤y+7≤9,∴1≤y≤2,∴81xy=⎧⎨=⎩或92xy=⎧⎨=⎩,∴s的“厚积薄发数”为851或952,当s=851时,可以重新排列为158,185,518.∵|1+8﹣2×5|=1,|1+5﹣2×8|=10,|5+8﹣2×1|=11,∴158为851的“天时数”,F(851)=52﹣1×8=17;518为851的“地利数”G(851)=5×8﹣12=39;则M (851)=1739; 当s =952时,可以重新排列为529、295、259.∵|5+9﹣2×2|=10,|2+5﹣2×9|=11,|2+9﹣2×5|=1,∴259为952的“天时数”,F (952)=52﹣2×9=7; 295为952的“地利数”,G (952)=2×5﹣92=﹣71,则M (952)=﹣771; 综上,知所有“厚积薄发数”中M (s )的最大值为1739. 【点睛】本题考查了因式分解的应用,解题的关键是理解题意,灵活运用所学知识解决问题,解题的突破点是学会应用枚举法求出满足条件的天时数、地利数及人和数. 28.(1)()() x x 2y x 2y +- ;(2) ()2a 1+ 【解析】试题分析:(1)先提取公因式,然后再利用平方差公式进行分解即可;(2)先进行乘法运算,合并同类项后利用完全平方公式进行分解即可.试题解析:(1)()3222x 4xy x x 4y-=- ()()x x 2y x 2y =+- ; (2)()()2a 1a 34a 2a 34-++=+-+ 2a 2a 1=++ ()2a 1=+.29.(1)3xy(x-2); (2)225(5)x y y x -; (3)22(2813m m m --+); (4)3)(27)a a --(; (5)()(322)x y m x y --+; (6)26()(52a b b a --);(7) 225314)x y xy y +-(; (8)2(x+y)(3x-2y); (9)()()x a a b c ---; (10)2()q m n +.【解析】试题分析:都利用提公因式法分解因式即可.试题解析:(1)原式=3xy(x-2);(2)原式=()2255x y y x -;(3)原式=22(2813m m m --+);(4)()3)27a a =--原式(;(5)原式=()()322x y m x y --+;(6)原式=()26(52a b b a --);(7)原式= 225314)x y xy y +-(;(8)原式=2(x+y)(3x-2y);(9)原式=()()x a a b c ---;(10)原式=()2q m n +.30.(1)原式=p+2)(p-2);(2)原式=a+6.【解析】试题分析:(1)先计算多项式乘多项式,将原式转化为多项式的形式,然后利用平方差公式进行分解即可;(2)先利用完全平方公式计算乘方,然后计算单项式乘多项式和多项式除单项式,最后合并同类项即可.试题解析:解:(1)原式=p 2+3p -4-3p=p 2-4=(p +2)(p -2);(2)原式=a 2 +4a +4-a 2-2a -a +2=a +6.。
浙教版2022-2023学年七下数学第四章 因式分解 培优测试卷1(解析版)

浙教版2022-2023学年七下数学第四章因式分解培优测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列添括号正确的是()A.−b−c=−(b−c)B.−2x+6y=−2(x−6y)C.a−b=+(a−b)D.x−y−1=x−(y−1)【答案】C【解析】A.−b−c=−(b+c),故此选项不合题意;B.−2x+6y=−2(x−3y),故此选项不合题意;C.a−b=+(a−b),故此选项符合题意;D.x−y−1=x−(y+1),故此选项不合题意;故答案为:C.2.下列各式从左到右变形是因式分解,并分解正确的是()A.(a−b)2+(a−b)=(a−b)(a−b+1)B.(x+2)(x+3)=x2+5x+6C.4a2−b2=(4a−b)(4a+b)D.m2−n2+2mn=(m−n)2【答案】A【解析】A、(a−b)2+(a−b)=(a−b)(a−b+1),从左到右的变形属于因式分解,故本选项符合题意;B、(x+2)(x+3)=x2+5x+6,从左到右的变形是整式的乘法,不属于因式分解,故本选项不符合题意;C、4a2−b2=(2a−b)(2a+b),原式从左到右的变形错误,故本选项不符合题意;D、两边不相等,从左到右的变形不属于因式分解,故本选项不符合题意;故答案为:A3.下列各式中,没有公因式的是()A.3x−2与6x2−4x B.ab−ac与ab−bcC.2(a−b)2与3(b−a)3D.mx−my与ny−nx【答案】B【解析】A、∵6x2-4x=2x(3x-2),∴3x-2与6x2-4x的公因式是3x-2,故A不符合题意;B、∵ab-ac=a(b-c),ab-bc=b(a-c),∴ab-ac与ab-bc没有公因式,故B符合题意;C、∵2(a-b)2=(b-a)2,∴2(a-b)2与3(b-a)3的公因式是(b-a)2,故C不符合题意;D、∵mx-my=m(x-y),ny-nx=-n(x-y),∴mx-my与ny-nx的公因式是x-y,故D不符合题意.故答案为:B.4.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m【答案】A【解析】(a−b)+m(b−a)=(a−b)(1−m),∴另一个因式为(1-m),故答案为:A.5.课堂上老师在黑板上布置了如框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?()道题D.第4道题【答案】C【解析】(1)a2-b2=(a+b)(a-b),可以用平方差公式因式分解,不符合题意;(2)49x2-y2z2=(7x-yz)(7x+yz),可以用平方差公式因式分解,不符合题意;(3)-x2-y2,前后项同号,不符合平方差公式特点,不可以用平方差公式分解,符合题意;(4)16m2n2-25p2=(4mn+5p)(4mn-5p),可以用平方差公式因式分解,不符合题意.故答案为:C.6.已知2x−y=1,xy=2,则4x3y−4x2y2+xy3的俼为()A.-2B.1C.-1D.2【答案】D【解析】原式=xy(4x2−4xy+y2)=xy(2x−y)2,∵2x−y=1,xy=2,∴原式=2×12=2.故答案为:D.7.若要使4x2+mx+164成为一个两数差的完全平方式,则m的值应为()A.±12B.-12C.±14D.-14【答案】A【解析】∵(2x-18)2=4x2-12x+164或[2x−(−18)]2=4x2+12x+164,∴m=-12或12.故答案为:A.8.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x﹣1,a﹣b,3,x2+1,a,x+1分别对应下列六个字:中,爱,我,数,学,五,现将3a(x2﹣1)﹣3b(x2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱五中C.我爱五中D.五中数学【答案】C【解析】∵3a(x2﹣1)﹣3b(x2﹣1)=3(x2﹣1)(a-b)=3(x+1)(x-1)(a-b),∴结果呈现的密码信息可能是:我爱五中.故答案为:C.9.将多项式16m2+1加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是()A.-2B.−15m2C.8m D.−8m【答案】B【解析】A、16m2+1−2=16m2−1=(4m+1)(4m−1),A不符合题意;B、16m2+1−15m2=m2+1,不能因式分解,B符合题意;C、16m2+1+8m=(4m+1)2,C不符合题意;D、16m2+1−8m=(4m−1)2,D不符合题意.故答案为:B.10.在√0,√1,√2,√3,√4,……,√364,√365中,有理数的个数是()A.18B.19C.20D.21【答案】C【解析】∵192=361<365<202=400,∴19<√365<20∴√0,√1,√2,√3,√4,……,√364,√365中正好有20个完全平方数,即20个有理数.故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.分解因式:3a 2−12= .【答案】3(a +2)(a −2)【解析】3a 2−12=3(a 2−4)=3(a +2)(a −2)故答案为:3(a +2)(a −2).12.因式分解:a 3−6a 2+9a = .【答案】a (a -3)2【解析】原式=a(a 2−6a +9)=a(a −3)2,故答案为:a (a -3)2.13.已知长方形的面积为3a 2−3b 2,如果它的一边长为a +b ,则它的周长为 (结果应化简).【答案】8a −4b【解析】∵3a 2−3b 2=3(a 2−b 2)=3(a +b)(a −b),长方形的一边长为a+b∴长方形的另一边长为3(a -b )=3a -3b∴该长方形的周长为:(3a -3b+a+b )×2=8a −4b ,故答案为:8a −4b .14.若 m −n =8 ,则 m 2−n 2−16n 的值是 .【答案】64【解析】∵m −n =8 ,∴m 2−n 2−16n = (m +n)(m −n)−16n = 8(m +n)−16n = 8m +8n −16n = 8m −8n = 8(m −n) = 8×8=64故答案为:64. 15.设 P =x 2−3xy , Q =3xy −9y 2 ,若 P =Q ,则 x y 的值为 .【答案】3【解析】∵P =Q , P =x 2−3xy , Q =3xy −9y 2 ,∴x 2−3xy =3xy −9y 2 ,即 x 2−6xy +9y 2=(x −3y)2 =0,∴x=3y ∴x y =3.故答案为:316.若a=2018x+2019,b=2018x+2020,c=2018x+ 2021,则多项式a 2+b 2+c 2-ab -ac -bc 的值为【答案】3 【解析】 a 2+b 2+c 2-ab -ac -bc =12(2a 2+2b 2+2c 2-2ab -2ac -2bc ) =12(a 2+b 2-2ab+b 2-2bc+c 2-2ac+a 2-2ac+c 2) =12[(a -b )2+(b -c )2+(a -c )2] =12[(2018x+2019-2018x -2020)2+(2018x+2020-2018x - 2021)2+(2018x+2019-2018x -2021)2] =12[1+1+4]=3, 故答案为:3.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.分解因式:(1)x 2﹣4x(2)﹣2x 2+2(3)4x 5﹣4x 4+x 3(4)4(x+2y )2﹣25(x ﹣y )2.【答案】(1)解:原式=x (x ﹣4)(2)解:原式=﹣2(x+1)(x ﹣1)(3)解:原式=x 3(2x ﹣1)2(4)解:原式=[2(x+2y )+5(x ﹣y )][2(x+2y )﹣5(x ﹣y )]=3(7x ﹣y )(3y ﹣x )18.已知 x 2+x +1=0 ,求 x 3−x 2−x +7 的值.【答案】解:由 x 2+x +1=0 得 x 2+x =−1 ,∴x 3−x 2−x +7=x 3+x 2−2x 2−x +7=x(x 2+x)−2x 2−x +7=−x −2x 2−x +7=−2x 2−2x +7=−2(x 2+x)+7=2+7=919.阅读下列材料,并解答相关问题.对于二次三项式x 2+2ax+a 2这样的完全平方式,我们可以用公式法将它分解因式成(x+a)2的形式,但是,对于二次三项式x 2+2ax -3a 2,就不能直接用完全平方公式进行分解因式了,我们可以在二次三项式x 2+2ax -3a 2中先加上一项a 2,将其配成完全平方式,再减去a 2这项,使整个式子的大小不变,于是有x 2+2ax -3a 2=x 2+2ax+a 2-a 2-3a 2=(x+a)2-4a 2=(x+a+2a)(x+a -2a)=(x+3a)(x -a).利用上述方法把m 2-6m+8分解因式.【答案】解:m 2-6m+8=m 2-6m+9-9+8=(m -3)2-1=(m -3+1)(m -3-1)=(m -2)(m -4)20.若a+b=﹣3,ab=1.求12a 3b+a 2b 2+12ab 3的值. 【答案】解:∵a+b=﹣3,ab=1∴12a 3b+a 2b 2+12ab 3=12ab (a 2+2ab+b 2)=12ab (a+b )2=12×1×(﹣3)2=92.21.(1)学习“完全平方公式”时,小明遇到课本上一道题目“计算(a +b +c)2”,他联系所学过的知识和方法,想到两种解决思路:①可以用“整体思想”把三项式转化为两部分:[(a +b)+c]2或[a +(b +c)]2,然后可以利用完全平方公式解决,请你选择一种变形方法写出计算过程;②可以用“数形结合”的方法,画出表示(a +b +c)2的图形,根据面积关系得到结果.请你在下面正方形中画出图形,并作适当标注;(2)利用(1)的结论分解因式:x 2+y 2+4−2xy +4x −4y = ;(3)小明根据“任意一个实数的平方不小于0”,利用配方法求出了一些二次多项式的最大值或最①x 2+y 2+2xy −6x −6y +20;②2x 2+y 2−2xy −4x +2y +10.【答案】(1)解:①方法一:(a +b +c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+2ab+b2+2ac+2bc+c2=a2+b2+c2+2ab+2ac+2bc;方法二:(a+b+c)2=[a+(b+c)]2=a2+2a(b+c)+(b+c)2=a2+2ab+2ac+b2+2bc+c2=a2+b2+c2+2ab+2ac+2bc;②如图,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,(2)(x−y+2)2(3)解:①x2+y2+2xy−6x−6y+20=(x2+2xy+y2)−6(x+y)+20=(x+y)2−6(x+y)+20=(x+y)2−6(x+y)+9+11=(x+y−3)2+11∵(x+y−3)2≥0∴x2+y2+2xy−6x−6y+20≥11即当x+y=3时,x2+y2+2xy−6x−6y+20有最小值为11;②2x2+y2−2xy−4x+2y+10=x2−2xy+y2−2x+2y+x2−2x+1+9=(x−y)2−2(x−y)+(x−1)2+9=(x−y−1)2+(x−1)2+8∵(x−y−1)2≥0,(x−1)2≥0,∴当x−y−1=0,x−1=0,即x=1,y=0时,2x2+y2−2xy−4x+2y+10有最小值,为8.【解析】(2)x2+y2+4−2xy+4x−4y=x2+y2−2xy+4x−4y+4=(x−y)2−4(x−y)+4=(x−y+2)2故答案为:(x−y+2)2.22.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的_______.A.提取公因式;B.平方差公式;C.两数和的完全平方公式;D.两数差的完全平方公式.(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【答案】(1)C(2)不彻底;(x−2)4(3)解:设x2+2x=y,原式= y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【解析】(1)由y2+8y+16=(y+4)2是利用了两数和的完全平方公式,故答案为:C;(2)∵(x2﹣4x+4)2= (x−2)4,∴该同学因式分解的结果不彻底,最后结果为(x−2)4,故答案为:不彻底,(x−2)4;23.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是“和谐数”.(1)36和2020这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【答案】(1)∵36=102﹣82,2020=5062﹣5042,∴36和2020是“和谐数”;(2)这两个连续偶数构成的“和谐数”是4的倍数.理由如下:∵(2k+2)2−(2k)2=4(2k+1);∴两个连续偶数构成的“和谐数”是4的倍数.24.(1)分解因式:①(1+x)+x(1+x)=()+x()=()2②(1+x)+x(1+x)+x(1+x)2=③(1+x)+x(1+x)+x(1+x)2+x(1+x)3=(2)根据(1)的规律,直接写出多项式:(1+x)+x(1+x)+x(1+x)2+…+x(1+x)2017分解因式的结果:.(3)变式:(1﹣x)(1+x)(1+x2)(1+x4)…(1+x2n)=.【答案】(1)1+x;1+x;1+x;(1+x)3;(1+x)4(2)(1+x)2018(3)1-x4n【解析】(1)①1+x+x(1+x)=(1+x)+x(1+x)=(1+x)2;②1+x+x(1+x)+x(1+x)2=(1+x)+x(1+x)+x(1+x)2=(1+x)[1+x+x(1+x)]=(1+x)3;③1+x+x (1+x)+x(1+x)2+x(1+x)3=(1+x)4;看等号左右的变化,即都是先提公因式,或再运用提公因式,或依次提公因式分解所得;等号右边括号内的数据不变,2,3,4依次增大,故可推理出:( 2 )1+x+x(1+x)+x(1+x)2+…+x(1+x)2017=(1+x)2018;( 3 )(1-x)(1+x)(1+x2)(1+x4)…(1+x2n)=(1-x2)(1+x2)(1+x4)…(1+x2n)=(1-x4)(1+x4)…(1+x2n)=1-x4n.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因式分解》测试题(1)
姓名: 班次:
一、精心选一选
1、下列从左边到右边的变形,是因式分解的是( )
A.29)3)(3(x x x -=+- ;
B.))((23n m n m m mn m -+=-;
C.)1)(3()3)(1(+--=-+y y y y ;
D.z yz z y z z y yz +-=+-)2(2242; 2、下列多项式中能用平方差公式分解因式的是( )
A.22)(b a -+;
B.mn m 2052-;
C.22y x --;
D.92+-x ; 3、多项式3222315520m n m n m n +-的公因式是( )
A.5mn ;
B.225m n ;
C.25m n ;
D.25mn ;
4、y x xy xyz 2
2
936-+-的公因式是 ( ) A.x 3- B.xz 3 C.yz 3 D.xy 3-
5、如果2592
++kx x 是一个完全平方式,那么k 的值是( )
A. 15 ;
B. ±5;
C. 30;
D. ±30; 6、下列多项式能分解因式的是 ( )
A.a 2-b ;
B.a 2+1;
C.a 2+ab+b 2;
D.a 2-4a+4; 7、若E p q p q q p ⋅-=---232)()()(,则E 是( )
A.p q --1;
B.p q -;
C.q p -+1;
D.p q -+1; 8、下列各式中不是完全平方式的是( )
A.21664m m -+;
B.2242025m mn n ++;
C.2224m n mn -+;
D.221124964mn m n ++; 9、把多项式)2()2(2a m a m -+-分解因式等于(
)
A.))(2(2m m a +-;
B.))(2(2m m a --;
C.m(a-2)(m-1);
D.m(a-2)(m+1); 10、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为(
)
A.1,3-==c b ;
B.2,6=-=c b ;
C.4,6-=-=c b ;
D.6,4-=-=c b
二、细心填一填
11、24m 2n +18n 的公因式是________________; 12、若22210b a b b a -+-+==,则。
13、分解因式(1)22)()(y x x y -=
-; (2)x (2-x )+6(x -2)=_________________;
14、甲、乙两个同学分解因式2x ax b ++时,甲看错了b ,分解结果为()()24x x ++;乙看错了
a ,分解结果为()()19x x ++,则a
b +=________, 15、223x xy y -+加上 可以得到2()x y -; 三、耐心做一做: 16、分解因式
①9632
a a
b a -+ ②16x 2-25y 2
③()()x y y y x x --- ④()()742
2
a x y
b y x ---
⑤2
2
44y xy x +- ⑥1)2(22
-+-y xy x
222()2a b a ab b +=++也可
23、观察下列各式:(8分)
)1)(1(12+-=-x x x )1)(1(123++-=-x x x x )1)(1(1234+++-=-x x x x x
(1)根据前面的规律可得)1(1-=-x x n 。
(2)请按以上规律分解因式:20081x - 。
分解因式单元练习(1)答案
一、精心选一选(每小题4分,共40分)
1、B ;
2、D ;
3、C ;
4、D ;
5、D ;
6、C ;
7、C ;
8、C ;
9、D ;10、A 二、细心填一填(每空3分,满分30分)
11、6n 12、2 13、(1)+,(2)(x -2)(6-x );(3)(x -y )2(x +y )2; 14、
2
5
x y - 15、15 16、xy 17、 0,10,1002- 18、2222()a ab b a b ++=+( ) 19、2008 20、4.03
三、耐心做一做:(本大题共3题,共40分)
21、3(321)a a b -+;(1112)(1112)x y x y -+;()()x y x y -+;2()(74)x y a b -- 2、2005,—102005;
22、四根钢立柱的总质量为()22227.847.8 3.140.50.21847.822D d h π⎡⎤
⎛⎫⎛⎫-⨯⨯=⨯-⨯⨯=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣
⎦
23.140.21184 3.710⨯⨯⨯⨯≈⨯(吨)
23、(1)123(1)n n n x n n n ---+++++
(2) 200720062005(22221)+++++。