《因式分解》基础测试+提高测试

合集下载

因式分解基础测试题含答案

因式分解基础测试题含答案

B、x2-x=x(x-1),故选项正确;
C、x-1=x(1- 1 ),不是分解因式,故选项错误; x
D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.
故选:B.
【点睛】
本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解
因式.掌握提公因式法和公式法是解题的关键.
9.下列各式从左到右的变形中,属于因式分解的是( ) A.m(a+b)=ma+mb B.a2+4a﹣21=a(a+4)﹣21 C.x2﹣1=(x+1)(x﹣1) D.x2+16﹣y2=(x+y)(x﹣y)+16 【答案】C 【解析】 【分析】 根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】 A、是整式的乘法,故 A 不符合题意;
6.将 a3b ab 进行因式分解,正确的是( )
A. a a2b b
B. ab a 12
C. aba 1a 1
D. ab a2 1
【答案】C 【解析】 【分析】
多项式 a3b ab 有公因式 ab ,首先用提公因式法提公因式 ab ,提公因式后,得到多项式
x2 1 ,再利用平方差公式进行分解.
5n),
故选 C.
【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特
征.
13.一次课堂练习,王莉同学做了如下 4 道分解因式题,你认为王莉做得不够完整的一题
是( )
A.x3﹣x=x(x2﹣1)
B.x2﹣2xy+y2=(x﹣y)2
C.x2y﹣xy2=xy(x﹣y)
D.x2﹣y2=(x﹣y)(x+y)

人教版初中数学因式分解基础测试题及答案解析

人教版初中数学因式分解基础测试题及答案解析

人教版初中数学因式分解基础测试题及答案解析一、选择题1.已知a ,b ,c 满足3a b c ++=,2224a b c ++=,则222222222a b b c c a c a b+++++=---( ). A .0B .3C .6D .9【答案】D【解析】【分析】将等式变形可得2224+=-a b c ,2224+=-b c a ,2224+=-a c b ,然后代入分式中,利用平方差公式和整体代入法求值即可.【详解】解:∵2224a b c ++=∴2224+=-a b c ,2224+=-b c a ,2224+=-a c b∵3a b c ++= ∴222222222+++++---a b b c c a c a b=222444222---++---c a b c a b=()()()()()()222222222-+-+-+++---c c a a b b c ab=222+++++c a b=()6+++c a b=6+3=9故选D .【点睛】 此题考查的是分式的化简求值题和平方差公式,掌握分式的基本性质和平方差公式是解决此题的关键.2.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.3.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a +1=(a ﹣1)2B .a (a +1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .mx ﹣my +1=m (x ﹣y )+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a 2﹣2a+1=(a ﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.4.将3a b ab -进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab -有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;5.如图,边长为a,b的矩形的周长为10,面积为6,则a2b+ab2的值为()A.60 B.16 C.30 D.11【答案】C【解析】【分析】先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,∴a2b+ab2=ab(a+b)=30.故选:C.【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.6.下列各式从左到右的变形中,属于因式分解的是()A.m(a+b)=ma+mb B.a2+4a﹣21=a(a+4)﹣21C.x2﹣1=(x+1)(x﹣1) D.x2+16﹣y2=(x+y)(x﹣y)+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、把一个多项式转化成几个整式积的形式,故C符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选C.【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.7.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b ).故选C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B9.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.10.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.下列各式中不能用平方差公式分解的是( )A .22a b -+B .22249x y m -C .22x y --D .421625m n -【答案】C【解析】A 选项-a 2+b 2=b 2-a 2=(b+a )(b-a );B 选项49x 2y 2-m 2=(7xy+m )(7xy-m );C 选项-x 2-y 2是两数的平方和,不能进行分解因式;D 选项16m 4-25n 2=(4m)2-(5n)2=(4m+5n )(4m-5n ),【点睛】本题考查了利用平方差公式进行因式分解,解题的关键是要熟记平方差公式的特征.12.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.13.下列各式中从左到右的变形,是因式分解的是()A.(a+3)(a-3)=a2-9 B.x2+x-5=(x-2)(x+3)+1C.a2b+ab2=ab(a+b)D.x2+1=x(x+1x)【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积的形式,故B错误;C、因式分解是把一个多项式转化成几个整式积的形式,故C正确;D、因式中含有分式,故D错误;故选:C.【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.14.下列因式分解结果正确的是( ).A.10a3+5a2=5a(2a2+a)B.4x2-9=(4x+3)(4x-3)C.a2-2a-1=(a-1)2D.x2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A作出判断;而B符合平方差公式的结构特点,因此可对B作出判断;C不符合完全平方公式的结构特点,因此不能分解,而D可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A、原式=5a2(2a+1),故A不符合题意;B、原式=(2x+3)(2x-3),故B不符合题意;C、a2-2a-1不能利用完全平方公式分解因式,故C不符合题意;D、原式=(x-6)(x+1),故D符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.15.将下列多项式因式分解,结果中不含有因式(a+1)的是()A.a2-1B.a2+aC.a2+a-2D.(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a (a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.考点:因式分解.16.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.17.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.18.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.19.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.20.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C.右边不是乘积的形式,不合题意;D.右边不是几个整式的积的形式,不合题意;故选:B.【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.。

人教版数学八年级上册【因式分解】能力提升专练(含答案)

人教版数学八年级上册【因式分解】能力提升专练(含答案)

【因式分解】能力提升专练一.选择题1.下列从左到右的变形,是分解因式的是()A.y2(x﹣1)=xy2﹣y2B.x2+x﹣5=(x﹣2)(x+3)+1C.(a+3)(a﹣3)=a2﹣9D.a2﹣6a+9=(a﹣3)22.下列多项式能用平方差公式分解因式的是()A.x2﹣xy B.x2+xy C.4x2+y2D.4x2﹣y23.8x m y n﹣1与﹣12x5m y n的公因式是()A.x m y n B.x m y n﹣1C.4x m y n D.4x m y n﹣14.长为a,宽为b的长方形,它的周长为10,面积为5.则a2b+ab2的值为()A.25B.50C.75D.1005.已知三角形的三边a,b,c满足(b﹣a)(b2+c2)=ba2﹣a3,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.等腰三角形或直角三角形6.课堂上老师在黑板上布置了如框所示的题目,小聪马上发现了其中有一道题目错了,你知道是哪道题目吗?()用平方差公式分解下列各式:(1)a2﹣b2(2)49x2﹣y2z2(3)﹣x2﹣y2(4)16m2n2﹣25p2A.第1道题B.第2道题C.第3道题D.第4道题7.若a,b,c是△ABC的三边长,且a2﹣15b2﹣c2+2ab+8bc=0,则下列式子的值为0的是()A.a+5b﹣c B.a﹣5b+c C.a﹣3b+c D.a﹣3b﹣c8.已知m2=4n+a,n2=4m+a,m≠n,则m2+2mn+n2的值为()A.16B.12C.10D.无法确定二.填空题9.把多项式3ax2﹣12a分解因式的结果是.10.若实数a、b满足a+b=5,a2b+ab2=﹣15,则ab的值是.11.设P=x2﹣3xy,Q=3xy﹣9y2,若P=Q,则的值为.12.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2020的值为.13.体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为n2;乙班:全班同学“引体向上”总次数为50n﹣625.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,班的次数多,多次.14.已知多项式:①x2+4y2;②﹣+;③﹣﹣;④3x2﹣4y;其中能运用平方差公式分解因式的是.(填序号即可)三.解答题15.分解因式(1)x2﹣14x+49;(2)2p3﹣8pq2.16.对任意一个三位数m,如果m的百位数字与个位数字相等,则称这个三位数m为“对称数”;对任意一个三位数n,如果n的百位数字与个位数字之和等于十位数字,那么称这个三位数n为“平衡数”.(1)直接写出既是“对称数”又是“平衡数”的所有三位数;(2)若一个三位数x,交换x的百位数字与个位数字得到一个新的三位数y,如果x+y既是“对称数”又是“平衡数”,求出符合条件的三位数x的个数,并说明理由.17.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.小明的解题过程如下:因为a2c2﹣b2c2=a4﹣b4,①所以c2(a2﹣b2)=(a2﹣b2)(a2+b2),②所以c2=a2+b2,③所以△ABC是直角三角形.④请根据上述解题过程回答下列问题:(1)小明的解题过程中,从第(填序号)步开始出现错误;(2)请你将正确的解答过程写下来.18.如图,把一个长方形纸板剪切成图示的9块,其中有2块边长是a的大正方形,2块是b的小正方形,还有5块长、宽分别是a和b的长方形,且a>b.(1)通过观察图形,把多项式2a2+5ab+2b2分解因式.(2)若4个正方形的面积和是58,每块长是a宽是b的小长方形的面积是10,求下面代数式的值.①a+b;②a2b+ab2.参考答案一.选择题1.解:A、y2(x﹣1)=xy2﹣y2,从左到右的变形,是整式的乘法运算,故此选项不合题意;B、x2+x﹣5=(x﹣2)(x+3)+1,不符合题因式分解的定义,不合题意;C、(a+3)(a﹣3)=a2﹣9,从左到右的变形,是整式的乘法运算,故此选项不合题意;D、a2﹣6a+9=(a﹣3)2,从左到右的变形,是分解因式,故此选项符合题意;故选:D.2.解:A、原式=x(x﹣y),不符合题意;B、原式=x(x+y),不符合题意;C、原式不能分解,不符合题意;D、原式=(2x+y)(2x﹣y),符合题意.故选:D.3.解:8x m y n﹣1与﹣12x5m y n的公因式是4x m y n﹣1.故选:D.4.解:∵长为a,宽为b的长方形,它的周长为10,面积为5.∴ab=5,2(a+b)=10,则a+b=5,则a2b+ab2=ab(a+b)=25.故选:A.5.解:(b﹣a)(b2+c2)=ba2﹣a3,(b﹣a)(b2+c2)=a2(b﹣a),(b﹣a)(b2+c2)﹣a2(b﹣a)=0,(b﹣a)(b2+c2﹣a2)=0,则b﹣a=0或b2+c2﹣a2=0,则b=a或b2+c2=a2,故△ABC是等腰三角形或直角三角形.故选:D.6.解:由题意可知:a2﹣b2=(a+b)(a﹣b),49x2﹣y2z2=(7x+yz)(7x﹣yz),﹣x2﹣y2无法用平方差公式因式分解,16m2n2﹣25p2=(4mn+5p)(4mn﹣5p),故第3道题错误.故选:C.7.解:∵a2﹣15b2﹣c2+2ab+8bc=0,∴(a2+2ab+b2)﹣(16b2﹣8bc+c2)=0,∴(a+b)2﹣(4b﹣c)2=0,∴(a+5b﹣c)(a﹣3b+c)=0,∵a,b,c是△ABC的三边长,∴a+b>c,则a+5b>c,∴a+5b﹣c>0,∴a﹣3b+c=0,故选:C.8.解:将m2=4n+a与n2=4m+a相减得m2﹣n2=4n﹣4m,(m+n)(m﹣n)=﹣4(m﹣n),(m﹣n)(m+n+4)=0,∵m≠n,∴m+n+4=0,即m+n=﹣4,∴m2+2mn+n2=(m+n)2=(﹣4)2=16.故选:A.二.填空题9.解:3ax2﹣12a=3a(x2﹣4)=3a(x+2)(x﹣2),故答案为:3a(x+2)(x﹣2).10.解:∵a2b+ab2=﹣15,∴ab(a+b)=﹣15,又∵a+b=5,∴ab=﹣3,故答案为:﹣3.11.解:∵P=x2﹣3xy,Q=3xy﹣9y2,P=Q,∴x2﹣3xy=3xy﹣9y2,∴x2﹣6xy+9y2=0,即(x﹣3y)2=0,开方得:x﹣3y=0,∴x=3y,∴=3,故答案为:3.12.解:∵x2﹣2x﹣1=0∴x2﹣2x=1∴2x3﹣7x2+4x﹣2020=2x3﹣4x2﹣3x2+4x﹣2020=2x(x2﹣2x)﹣3x2+4x﹣2020=6x﹣3x2﹣2020=﹣3(x2﹣2x)﹣2020=﹣3﹣2020=﹣2023.故答案是:﹣2023.13.解:n2﹣(50n﹣625)=n2﹣50n+252=(n﹣25)2≥0,∴n2≥50n﹣625,∴两班学生“引体向上”总次数,甲班的次数多,多(n﹣25)2次,故答案为:甲;(n﹣25)2.14.解:①x2+4y2不能运用平方差公式分解因式;②﹣+能运用平方差公式分解因式;③﹣﹣不能运用平方差公式分解因式;④3x2﹣4y不能运用平方差公式分解因式,则能用平方差公式分解的是②.故答案为:②.三.解答题15.解:(1)x2﹣14x+49=x2﹣2×x×7+72=(x﹣7)2;(2)2p3﹣8pq2=2p(p2﹣4q2)=2p(p+2q)(p﹣2q).16.解答:(1)既是“对称数”又是平衡数的三位数是121,242,363,484;(2)设x的百位上的数字为a,十位上的数字为b,个位上的数字为c,则表示x的三位数字为:100a+10b+c,交换x的百位上的数字与十位上的数字得y,即100c+10b+a,∴x+y=100(a+c)+20b+(a+c),∵x+y既是“对称数”又是“平衡数”,∴,∴b=2a=2c,∵a,b,c为自然数,且0<a<9,0<b<9,0<c<9,分两种情况:①当a=c时,当a=c=1时,b=2,此时x为121,当a=c=2时,b=4,此时x为242,当a=c=3时,b=6,此时x为363,但x+y不是三位数,②当a≠c时,当a=1,c=2时,此时x为132;当a=2,c=1时,此时x为231;当a=1,c=3时,此时x为143;当a=3,c=1时,此时x为341;故满足条件的三位数x有6个.17.解:(1)根据题意可知,∵由c2(a2﹣b2)=(a2﹣b2)(a2+b2),∴通过移项得(a2﹣b)[c2﹣(a2+b2)]=0,故③错误;故答案为:③.(2)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2﹣b2)(a2+b2),∴c2(a2﹣b2)﹣(a2﹣b2)(a2+b2)=0,∴(a2﹣b2)[c2﹣(a2+b2)]=0,∴a2﹣b2=0或c2﹣(a2+b2)=0,∴a=b或c2=a2+b2,∴△ABC是等腰三角形或直角三角形或等腰直角三角形.18.解:(1)2a2+5ab+2b2=(2a+b)(a+2b)(2)由题意知:2a2+2b2=58,ab=10,∵a2+2ab+b2=(a+b)2,∴29+2×10=(a+b)2,又∵a+b>0,∴①a+b=7;②a2b+ab2=ab(a+b)=10×7=70.11 / 11。

第四章《因式分解》测试题(含答案)

第四章《因式分解》测试题(含答案)

第四章因式分解一、选择题(本大题共8小题,每小题4分,共32分)1.下列从左到右的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.m3-mn2=m(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1) D.4yz-2y2z+z=2y(2z-yz)+z2.一次课堂练习,小璇同学做了如下4道因式分解题,你认为小璇做得不正确的一题是()A.a3-a=a(a2-1) B.m2-2mn+n2=(m-n)2C.x2y-xy2=xy(x-y) D.x2-y2=(x-y)(x+y)3.如果多项式4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为()A.2a-b+c B.2a-b-c C.2a+b-c D.2a+b+c4.若a2+8ab+m2是一个完全平方式,则m应是()A.b2B.±2b C.16b2D.±4b5.对于任何整数m,多项式(4m+5)2-9一定能()A.被8整除B.被m整除C.被m-91整除D.被2m-1整除6.若m-n=-1,则(m-n)2-2m+2n的值是()A.3 B.2 C.1 D.-17.因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b 的值,分解的结果是(x-2)(x+1),那么x2+ax+b因式分解的正确结果为() A.(x+2)(x-3) B.(x-2)(x+1) C.(x+6)(x-1) D.无法确定8.若a,b,c是三角形三边的长,则代数式(a2-2ab+b2)-c2的值()A.大于零B.小于零C.大于或等于零D.小于或等于零二、填空题(本大题共6小题,每小题4分,共24分)9.因式分解:3a2-3b2=______________.10.计算:201820192-20172=________.11.请在二项式x2-□y2中的“□”里面添加一个整式,使其能因式分解,你在“□”中添加的整式是________(写出一个即可).12.在半径为R的圆形钢板上,裁去半径为r的四个小圆,当R=7.2 cm,r=1.4 cm时,剩余部分的面积是________cm2(π取3.14,结果精确到个位).13.若△ABC的三边长分别是a,b,c,且a+2ab=c+2bc,则△ABC是____________.14.如图4-Z-1,已知边长为a,b的长方形,若它的周长为24,面积为32,则a2b +ab2的值为________.图4-Z-1三、解答题(本大题共5小题,共44分)15.(9分)将下列各式因式分解:(1)2x3y-2xy3;(2)3x3-27x;(3)(a-b)(3a+b)2+(a+3b)2(b-a).16.(7分)给出三个多项式:12x2+2x-1,12x2+4x+1,12x2-2x,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(8分)阅读材料:若m2-2mn+2n2-8n+16=0,求m,n的值.解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0,∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)若a2+b2-4a+4=0,则a=________,b=________;(2)已知x2+2y2-2xy+6y+9=0,求x y的值;(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.18.(10分)如图4-Z-2①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.图4-Z-2(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).方法一:________________________________________________________________________;方法二:________________________________________________________________________.(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=6,ab=5,求a-b的值.19.(10分)阅读材料:对于多项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式.但对于多项式x2+2ax -3a2就不能直接用公式法了,我们可以根据多项式的特点,在x2+2ax-3a2中先加上一项a2,再减去a2这项,使整个式子的值不变.解题过程如下:x2+2ax-3a2=x2+2ax-3a2+a2-a2(第一步)=x2+2ax+a2-a2-3a2(第二步)=(x+a)2-(2a)2(第三步)=(x+3a)(x-a).(第四步)参照上述材料,回答下列问题:(1)上述因式分解的过程,从第二步到第三步,用到了哪种因式分解的方法()A.提公因式法B.平方差公式法C.完全平方公式法D.没有因式分解(2)从第三步到第四步用到的是哪种因式分解的方法:__________;(3)请你参照上述方法把m2-6mn+8n2因式分解.参考答案1.[答案] B2.[解析] A a 3-a =a (a 2-1)=a (a +1)(a -1).故选A.3.[解析] C 4a 2-(b -c )2=[2a +(b -c )][2a -(b -c )]=(2a +b -c )(2a -b +c ).故选C.4.[答案] D5.[解析] A 因为(4m +5)2-9=(4m +5)2-32=(4m +5+3)(4m +5-3)=(4m +8)(4m +2)=4·(m +2)·2(2m +1)=8(m +2)(2m +1),所以(4m +5)2-9一定能被8整除.6.[解析] A ∵(m -n )2-2m +2n =(m -n )2-2(m -n )=(m -n )(m -n -2),m -n =-1,∴原式=(-1)×(-1-2)=3.故选A.7.[解析] A 因为甲看错了a 的值,分解的结果为(x +6)(x -1),所以b =-6.因为乙看错了b 的值,分解的结果是(x -2)(x +1),所以a =-1.所以x 2+ax +b =x 2-x -6=(x +2)(x -3). 8.[解析] B (a 2-2ab +b 2)-c 2=(a -b )2-c 2=(a -b +c )(a -b -c ).因为a ,b ,c 是三角形三边的长,所以a +c >b ,a <b +c ,即a -b +c >0,a -b -c <0,所以(a -b +c )(a -b -c )<0,即(a 2-2ab +b 2)-c 2<0.故选B.[点评] 本题要充分挖掘题目的隐含条件,即a ,b ,c 是三角形的三边长,则a ,b ,c 应是正数且满足三角形三边的关系.9.[答案] 3(a -b )(a +b )10.[答案] 14[解析] 原式=2018(2019+2017)×(2019-2017)=20184036×2=14. 11.[答案] 答案不唯一,如412.[答案] 138[解析] 剩余部分的面积为πR 2-4πr 2.当R =7.2 cm ,r =1.4 cm 时,πR 2-4πr 2=π(R -2r )(R +2r )=π×(7.2-2.8)×(7.2+2.8)=π×4.4×10≈3.14×44≈138(cm 2).13.[答案] 等腰三角形[解析] ∵a +2ab =c +2bc ,∴a +2ab -c -2bc =0,∴(a -c )+2b (a -c )=0,∴(a -c )(2b +1)=0.∵2b +1≠0,∴a =c.14.[答案] 384[解析] 由题意易得a +b =12,ab =32,∴a 2b +ab 2=ab (a +b )=384.故答案为384.15.[解析] (1)先提取公因式2xy ,再用平方差公式;(2)先提取公因式3x ,再运用平方差公式;(3)先提取公因式(a -b ),再运用平方差公式.无论哪一道题目都需要分解到底.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)3x 3-27x=3x (x 2-9)=3x (x +3)(x -3).(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b )2-(a +3b )2]=(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b )2(a +b ).16.解:(1)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2+4x +1=x 2+6x=x (x +6).(2)⎝⎛⎭⎫12x 2+2x -1+⎝⎛⎭⎫12x 2-2x=x 2-1=(x +1)(x -1).(3)⎝⎛⎭⎫12x 2+4x +1+⎝⎛⎭⎫12x 2-2x=x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:(1)2 0(2)∵x 2+2y 2-2xy +6y +9=0,∴x 2+y 2-2xy +y 2+6y +9=0,即(x -y )2+(y +3)2=0,则x-y=0,y+3=0,解得x=y=-3,∴x y=(-3)-3=-127.(3)∵2a2+b2-4a-6b+11=0,∴2a2-4a+2+b2-6b+9=0,∴2(a-1)2+(b-3)2=0,则a-1=0,b-3=0,解得a=1,b=3,∵a,b,c都是正整数,由三角形三边关系可知,三角形的三边长分别为1,3,3,则△ABC的周长为1+3+3=7.18.解:(1)方法一:(m+n)2-4mn;方法二:(m-n)2.(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16.∴a-b=4或a-b=-4.19.解:(1)C(2)平方差公式法(3)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n)(m-4n).。

因式分解基础测试题及答案解析

因式分解基础测试题及答案解析

因式分解基础测试题及答案解析一、选择题1.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.2.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×1 3=83,故选C.【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.3.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2+b2【答案】A【解析】【分析】本题考查的是因式分解中的平方差公式和完全平方公式【详解】解:A. 4a2+4a+1=(2a+1)2,正确;B. a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C. a2﹣2a+1=(a﹣1)2,故此选项错误;D. (a﹣b)(a+b)=a2﹣b2,故此选项错误;故选A4.下列等式从左边到右边的变形,属于因式分解的是( )A.2ab(a-b)=2a2b-2ab2B.x2+1=x(x+1 x )C.x2-4x+3=(x-2)2-1 D.a2-b2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x是取任意实数,而等式右边的x≠0C.不是因式分解,原式=(x-3)(x-1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.5.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.6.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;7.如图,边长为a ,b 的矩形的周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .16C .30D .11【答案】C【解析】【分析】 先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,∴a 2b+ab 2=ab (a+b )=30.故选:C .【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.8.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.9.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)【答案】C【解析】【分析】【详解】解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.10.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1 D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.11.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.12.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .13.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).14.下列各因式分解正确的是()A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2C.4x2﹣4x+1=(2x﹣1)2D.x3﹣4x=2(x﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A.﹣x2+(﹣2)2=(2+x)(2﹣x),故A错误;B.x2+2x﹣1无法因式分解,故B错误;C.4x2﹣4x+1=(2x﹣1)2,故C正确;D、x3﹣4x= x(x﹣2)(x+2),故D错误.故选:C.【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.15.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.16.把多项式分解因式,正确的结果是( )A .4a 2+4a +1=(2a +1)2B .a 2﹣4b 2=(a ﹣4b )(a +b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a +b )=a 2﹣b 2【答案】A【解析】【分析】直接利用平方差公式和完全平方公式进行分解因式,进而判断得出答案.【详解】A .4a 2+4a +1=(2a +1)2,正确;B .a 2﹣4b 2=(a ﹣2b )(a +2b ),故此选项错误;C .a 2﹣2a ﹣1在有理数范围内无法运用公式分解因式,故此选项错误;D .(a ﹣b )(a +b )=a 2﹣b 2,是多项式乘法,故此选项错误.故选:A .【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.17.已知a 、b 、c 是ABC 的三条边,且满足22a bc b ac +=+,则ABC 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.18.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.19.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。

(易错题精选)初中数学因式分解基础测试题及答案

(易错题精选)初中数学因式分解基础测试题及答案

(易错题精选)初中数学因式分解基础测试题及答案一、选择题1.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B2.下列分解因式错误的是( ).A .()2155531a a a a +=+B .()()22x y x y x y --=-+- C .()()1ax x ay y a x y +++=++D .()()2a bc ab ac a b a c --+=-+ 【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】解:A. ()2155531a a a a +=+,正确; B. ()2222x y x y --=-+,所以此选项符合题意;C. ()()()1ax x ay y a x y x y a x y +++=+++=++ ,正确;D. ()()2()()a bc ab ac a a b c a b a b a c --+=-+-=-+,正确 故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.3.下列等式从左到右的变形,属于因式分解的是( )A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)2【答案】D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.4.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.下列等式从左到右的变形是因式分解的是()A.2x(x+3)=2x2+6x B.24xy2=3x•8y2C.x2+2xy+y2+1=(x+y)2+1 D.x2﹣y2=(x+y)(x﹣y)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定 【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.7.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.8.不论x ,y 为任何实数,22428x y x y +--+ 的值总是( )A .正数B .负数C .非负数D .非正数【答案】A【解析】x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,不论x,y 为任何实数,x²+y²-4x-2y+8的值总是大于等于3,故选A.【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.9.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a +1=(a ﹣1)2B .a (a +1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .mx ﹣my +1=m (x ﹣y )+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a 2﹣2a+1=(a ﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.10.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( ) A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.11.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010- ()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.12.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.13.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.14.把多项式分解因式,正确的结果是( )A .4a 2+4a+1=(2a+1)2B .a 2﹣4b 2=(a ﹣4b )(a+b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a+b )=a 2+b 2【答案】A【解析】【分析】本题考查的是因式分解中的平方差公式和完全平方公式【详解】解:A. 4a 2+4a+1=(2a+1)2,正确;B. a 2﹣4b 2=(a ﹣2b )(a+2b ),故此选项错误;C. a 2﹣2a+1=(a ﹣1)2,故此选项错误;D. (a ﹣b )(a+b )=a 2﹣b 2,故此选项错误;故选A15.如图,矩形的长、宽分别为a、b,周长为10,面积为6,则a2b+ab2的值为()A.60 B.30 C.15 D.16【答案】B【解析】【分析】直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.【详解】∵边长分别为a、b的长方形的周长为10,面积6,∴2(a+b)=10,ab=6,则a+b=5,故ab2+a2b=ab(b+a)=6×5=30.故选:B.【点睛】此题主要考查了提取公因式法以及矩形的性质应用,正确分解因式是解题关键.16.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.17.下列等式从左到右的变形,属于因式分解的是()A .()21x x x x -=- B .()22121x x x x -+=-+ C .()()21323x x x x -+=+- D .()a b c ab ac -=-【答案】A【解析】【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、右边不是整式积的形式,不符合题意;C 、是整式的乘法,不是因式分解,不符合题意;D 、是整式的乘法,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解的意义是解题关键.18.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .2【答案】C【解析】【分析】先将前两项提公因式,然后把a ﹣b =1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C .【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.19.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.20.三角形的三边a 、b 、c 满足a (b ﹣c )+2(b ﹣c )=0,则这个三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】A【解析】【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a (b-c )+2(b-c )=0,∴(a+2)(b-c )=0,∵a 、b 、c 为三角形的三边,∴b-c=0,则b=c ,∴这个三角形的形状是等腰三角形.故选:A .【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.。

人教版初中数学因式分解基础测试题附答案

人教版初中数学因式分解基础测试题附答案

人教版初中数学因式分解基础测试题附答案一、选择题1.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.2.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.3.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.4.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.5.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.6.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.7.已知2021201920102010201020092011x -=⨯⨯,那么x 的值为( )A .2018B .2019C .2020D .2021.【答案】B【解析】【分析】将2021201920102010-进行因式分解为2019201020092011⨯⨯,因为左右两边相等,故可以求出x 得值.【详解】解:2021201920102010- ()()()2019220192019220192019=201020102010=20102010120102010120101201020092011⨯-⨯-=⨯-⨯+=⨯⨯∴2019201020092011201020092011x ⨯⨯=⨯⨯∴x=2019故选:B .【点睛】本题主要考查的是因式分解中提取公因式和平方差公式,正确的掌握因式分解的方法是解题的关键.8.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+【答案】D【解析】【分析】 根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.9.若a 2-b 2=14,a-b=12,则a+b 的值为( ) A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.10.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.11.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.12.下列因式分解中:①32(2)x xy x x x y ++=+;②2244(2)x x x ++=+;③22()()x y x y y x -+=+-;④329(3)x x x x -=-,正确的个数为( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】将各项分解得到结果,即可作出判断.【详解】①322(2+1)x xy x x x y ++=+,故①错误;②2244(2)x x x ++=+,故②正确;③2222()()x y y x x y y x -+=-=+-,故③正确;④39(+3)(3)x x x x x -=-故④错误.则正确的有2个.故选:B.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.14.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.15.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B、把多项式10x2﹣5x变形为5x与2x﹣1的积,是因式分解;C、变形的结果不是几个整式的积,不是因式分解;D、变形的结果不是几个整式的积,不是因式分解;故选:B.【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.16.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.17.下列由左到右边的变形中,是因式分解的是()A .(x +2)(x ﹣2)=x 2﹣4B .x 2﹣1=1()x x x-C .x 2﹣4+3x =(x +2)(x ﹣2)+3xD .x 2﹣4=(x +2)(x ﹣2)【答案】D【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A 、(x+2)(x-2)=x 2-4,是多项式乘法,故此选项错误;B 、x 2-1=(x+1)(x-1),故此选项错误;C 、x 2-4+3x=(x+4)(x-1),故此选项错误;D 、x 2-4=(x+2)(x-2),正确.故选D .【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.18.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .2【答案】C【解析】【分析】先将前两项提公因式,然后把a ﹣b =1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C .【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.19.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.20.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.。

新初中数学因式分解基础测试题及答案解析(1)

新初中数学因式分解基础测试题及答案解析(1)

新初中数学因式分解基础测试题及答案解析(1)一、选择题1.下列从左边到右边的变形,属于因式分解的是( )A .2(1)(1)1x x x +-=-B .221(2)1x x x x -+=-+C .224(4)(4)x y x y x y -=+-D .26(2)(3)x x x x --=+-【答案】D【解析】A. 和因式分解正好相反,故不是分解因式;B. 结果中含有和的形式,故不是分解因式;C. 22x 4y -=(x+2y)(x−2y),解答错误;D. 是分解因式。

故选D.2.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.3.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.4.已知:3a b +=则2225a a b b ab -+-+-的值为( )A .1B .1-C .11D .11- 【答案】A【解析】【分析】将2225a a b b ab -+++-变形为(a+b )2-(a+b )-5,再把a+b=3代入求值即可.【详解】∵a+b=3,∴a 2-a+b 2-b+2ab-5=(a 2+2ab+b 2)-(a+b )-5=(a+b )2-(a+b )-5=32-3-5=9-3-5=1,故选:A .【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式解答.5.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.6.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.7.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a +1=(a ﹣1)2B .a (a +1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .mx ﹣my +1=m (x ﹣y )+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a 2﹣2a+1=(a ﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.8.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.9.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B10.下列变形,属于因式分解的有( )①x 2﹣16=(x +4)(x ﹣4);②x 2+3x ﹣16=x (x +3)﹣16;③(x +4)(x ﹣4)=x 2﹣16;④x 2+x =x (x +1)A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①x 2-16=(x+4)(x-4),是因式分解;②x 2+3x-16=x (x+3)-16,不是因式分解;③(x+4)(x-4)=x 2-16,是整式乘法;④x 2+x =x (x +1)),是因式分解.故选B .11.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.12.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( ) A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.13.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q , ()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.14.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.15.下列分解因式错误的是( ).A .()2155531a a a a +=+B .()()22x y x y x y --=-+-C .()()1ax x ay y a x y +++=++D .()()2a bc ab ac a b a c --+=-+ 【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】解:A. ()2155531a a a a +=+,正确; B. ()2222x y x y --=-+,所以此选项符合题意;C. ()()()1ax x ay y a x y x y a x y +++=+++=++ ,正确;D. ()()2()()a bc ab ac a a b c a b a b a c --+=-+-=-+,正确 故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.16.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( ) A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.17.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.18.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .2【答案】C【解析】【分析】先将前两项提公因式,然后把a ﹣b =1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C .【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.19.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.20.计算(-2)2015+(-2)2016的结果是 ( )A.-2 B.2 C.22015D.-22015【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 《因式分解》基础测试
一 填空题(每小题4分,共16分):
1. 叫做因式分解;
2.因式分解的主要方法有: ;
3.x 2-5x -( )=(x -6)( );
4.0.25x 2-( )y 2=(0.5x +4y )(0.5x - );
答案:1.把一个多项式化成几个整式乘积的形式叫做把这个多项式因式分解;
2.提取公因式法、公式法、分组分解法;
3.6、x +1;
4.16、4y .
二 选择题(每小题6分,共18分):
1.下列多项式的分解因式,正确的是………………………………………………( )
(A )8abx -12a 2x 2=4abx (2-3ax )
(B )-6x 3+6x 2-12x =-6x (x 2-x +2)
(C )4x 2-6xy +2x =2x (2x -3y )
(D )-3a 2y +9ay -6y =-3y (a 2+3a -2)
2.下列4个多项式作因式分解,有
① x 2(m -n )2-xy (n -m )2=(m -n )2(x 2+xy );
② a 2-(b +c )2=(a +b +c )(a -b +c );
③ a 3 +31a =)11
)(1(22+++a a a a ;
④ x 2 y 2+10xy +25=(xy +5)2,
结果正确的个数是…………………………………………………………………(

(A )1个 (B )2个 (C )3个 (D )4个
3.把多项式2x n +2+4x n -6x n -2分解因式,其结果应是……………………………( )
(A )2x n (x 2+2-3x )=2x n (x -1)(x -2)
(B )2x n -2(x 2-3x +2)=2x n -2(x -1)(x -2)
(C )2x n -2(x 4+2x 2-3)=2x n -2(x 2+3)(x 2-1)=2x n -2(x 2+3)(x +1)(x -1)
(D )2x n -2(x 4-2x 2+3)=2x n -2 (x 2+3)(x 2+1)
答案:1.B ; 2.A ; 3.C .
三 把下列各式分解因式(每小题7分,共56分):
1. a 5-a ;
2. -3x 3-12x 2+36x ;
3. 9-x 2+12xy -36y 2;
4. (a 2-b 2)2+3(a 2-b 2)-18;
5. a 2+2ab +b 2-a -b ;
6. (m 2+3m )2-8(m 2+3m )-20;
7. 4a 2bc -3a 2c 2+8abc -6ac 2;
8. (y 2+3y )-(2y +6)2.
四 (本题10分)
设a =21m +1,b =21m +2,c =21m +3,求代数式a 2+2ab +b 2-2ac -2bc +c 2
的值.
答案:

1.a (a 2+1)(a +1)(a -1);
2.-3x (x 2+4x -12);
3.(3+x -6y )(3-x +6y );
4.(a 2-b 2+6)(a 2-b 2-3);
5.(a +b )(a +b -1);
6.(m +5)(m -2)(m +2)(m +1);
7.ac (4b -3c )(a +2)
8.-3(y +3)(y +4).
四 41m 2
《因式分解》提高测试
(100分钟,100分)
一 选择题(每小题4分,共20分):
2 1.下列等式从左到右的变形是因式分解的是…………………………………………( )
(A )(x +2)(x –2)=x 2-4(B )x 2-4+3x =(x +2)(x –2)+3x
(C )x 2-3x -4=(x -4)(x +1)(D )x 2+2x -3=(x +1)2-4
2.分解多项式 bc c b a
2222+--时,分组正确的是……………………………(
) (A )()2()222bc c b a --- (B )bc c b a 2)(222+-- (C ))2()(222bc b c a --- (D ))2(222bc c b a -+-
3.当二次三项式 4x 2 +kx +25=0是完全平方式时,k 的值是…………………( )
(A )20 (B ) 10 (C )-20 (D )绝对值是20的数
4.二项式15++-n n x x
作因式分解的结果,合于要求的选项是………………………( ) (A ))(4n n x x
x -+ (B )n x )(5x x -
(C ))1)(1)(1(21-+++x x x x n (D ))1(41-+x x n 5.若 a =-4b ,则对a 的任何值多项式 a 2+3ab -4b 2 +2 的值………………( )
(A )总是2 (B )总是0 (C )总是1 (D )是不确定的值
答案:1.C;2.D;3.D;4.D;5.A.
二 把下列各式分解因式(每小题8分,共48分):
1.x n +4-169x n +2 (n 是自然数);
解:x n +4-169x n
+2 =x n +2(x 2-169)
=x n +2(x +13)(x -13);
2.(a +2b )2-10(a +2b )+25;
解:(a +2b )2-10(a +2b )+25
=(a +2b -5)2;
3.2xy +9-x 2-y 2;
解:2xy +9-x 2-y
2 =9-x 2+2xy -y
2 =9-(x 2-2xy +y 2)
=32-(x -y )
2 =(
3 +x -y )(3-x +y );
4.322)2()2(x a a a x a -+-;
解:322
)2()2(x a a a x a -+- =322)2()2(a x a a x a ---
=[])2()
2(2a x a a x a --- =)2()
2(2a x a a x a +-- =)3()
2(2x a a x a --; 5.16)3(8)3(222
++-+m m m m ; 解:16)3(8)3(222
++-+m m m m =2222
44)3(2)3(+⨯+-+m m m m =16)3(8)3(222++-+m m m m
=[]224)3(-+m m
=[]2)1)(4(-+m m
=22)1()
4(-+m m ; 6.222222
4)(y x z y x --+. 解:2222224)(y x z y x
--+ =[]xy z y x 2)(222+-+[]xy z y x 2)(222--+
=[][]2222)()(z y x z y x ---+
=))()()((z y x z y x z y x z y x --+--+++
. 三 下列整式是否能作因式分解?如果能,请完成因式分解(每小题10分,共20分):
3 1.xy y x 4)1)(1(22---;
解:展开、整理后能因式分解. xy y x 4)1)(1(22---
=xy y x y x 4)1(2222-+--
=)2()12(2222y xy x xy y x ++-+- =22)()
1(y x xy +--
=)1(y x xy ++-)1(y x xy ---; 2.13322)132(222-+-+-x x x x .
解:能,用换元法. 13322)132(222
-+-+-x x x x =10)132(11)132(222
++--+-x x x x =)932)(32(22---x x x x
=)3)(32)(32(-+-x x x x .
四 (本题12 分)
作乘法:))((22y xy x y x +-+,))((22y xy x y x ++-
1.这两个乘法的结果是什么?所得的这两个等式是否可以作为因式分解的公式使用?用它可以分解有
怎样特点的多项式?
2.用这两个公式把下列各式分解因式:
(1)338b a
+;
(2)16-m . 解:1.结果为
3322))((y x y xy x y x +=+-+
; 3322))((y x y xy x y x -=++-
. 利用它们从右到左的变形,就可以对立方和或立方差的多项式作因式分解; 2.(1)))(2()2(8223333
b ab a b a b a b a +-+=+=+; (2)1)(1326-=-m m
]1))[(1(2222++-=m m m
)1)(1)(1(24++-+=m m m m . 选作题(本题20分):
证明:比4个连续正整数的乘积大1的数一定是某整数的平方.
证明:设n 为一个正整数,
据题意,比4个连续正整数的乘积大1的数可以表示为
A =n (n +1)(n +2)(n +3)+1,
于是,有
A = n (n +1)(n +2)(n +3)+1
=(n 2+3n +2)(n 2+3n )+1
=(n 2+3n )2+2(n 2+3n )+1
=[(n 2+3n )+1]
2 =(n 2+3n +1)2,
这说明A 是(n 2+3n +1)表示的整数的平方.。

相关文档
最新文档