最新人教版七年级数学上册4.3.2《角的比较与运算》课时练习(含答案)

合集下载

人教版七年级上册《4.3.2角的比较与运算》课后练习(含答案)

人教版七年级上册《4.3.2角的比较与运算》课后练习(含答案)

4.3.2 角的比较与运算一、填空题:请将答案填在题中横线上.1.从点O引出四条射线OA,OB,OC,OD,如果∠AOB∶∠BOC∶∠COD∶∠DOA=1∶2∶3∶4,那么这四个角的度数是∠AOB=_________,∠BOC=_________,∠COD=_________,∠DOA=_________.【答案】36°,72°,108°,144°2.如果∠1=∠2,∠2=∠3,则∠1_____∠3;如果∠1>∠2,∠2>∠3,则∠1_____∠3.【答案】=,>二、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.3.点C在∠AOB内部,现有四个等式∠COA=∠BOC,∠BOC=12∠AOB,12∠AOB=2∠COA,∠AOB=2∠AOC,其中能表示OC是角平分线的等式的个数为A.1 B.2 C.3 D.4【答案】C4.在同一平面上.∠AOB=60°,∠BOC=40°,则∠AOC等于A.100°B.20°C.100°或20°D.不能确定【答案】C5.如图,O是直线AB上一点,OC为任意一条射线,∠BOC=40°,OE平分∠AOC,OD平分∠BOC,则∠DOE的度数为A.70°B.80°C.90°D.100°【答案】C6.如果∠α=3∠β,∠α=2∠θ,则必有A.∠β=12∠θB.∠β=32∠θC.∠β=23∠θD.∠β=34∠θ【答案】C7.两个锐角的和A.一定是锐角B.一定是直角C.一定是钝角D.可能是锐角【答案】D三、解答题:解答应写出文字说明、证明过程或演算步骤.8.计算:(1)49°38′+66°22′;(2)180°–79°19′;(3)22°16′×5;(4)182°36′÷4.【解析】(1)116O(2)100O41’(3)111O20’(4)45O39’9.如图,OM平分∠AOB、ON平分∠COD,若∠AOD=84°,∠MON=68°,求∠BOC.【解析】设∠AOM=∠BOM=x,∠CON=∠DON=y,则∠BOC=68°–(x+y).所以2x+68°–(x+y)+2y=84°,x+y=16°,所以∠BOC=68°–16°=52°.10.将一副三角板如图1摆放.∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB.(1)∠MON=__________;(2)将图1中的三角板OCD绕点O旋转到图2的位置,求∠MON;(3)将图1中的三角板OCD绕点O旋转到图3的位置,求∠MON.【解析】(1)∠MON=52.5°(2)∠MON=52.5°(3)∠MON=52.5°。

最新人教版七年级数学上册 4.3.2角的比较与运算 课时练习

最新人教版七年级数学上册 4.3.2角的比较与运算 课时练习

4.3.2 角的比较与运算一. 选择题(共10小题)1.将一副直角三角尺按如图所示的不同方式摆放,则图中与相等的是( )A.B.C.D.【答案】C【详解】解:A.由图形得:α+β=90°,不符合题意;B.由图形得:β+γ=90°,α+γ=60°,可得β≠α,不符合题意;C.由图形可得:α=β=180°-45°=135°,符合题意;D.由图形得:α+45°=90°,β+30°=90°,可得α=45°,β=60°,不符合题意.故选C.2. 4点10分,时针与分针所夹的小于平角的角为()A.55°B.65°C.70°D.以上结论都不对【答案】B【解析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,4点10分时,分针从12到2转动两个格转动角度为:30°×2=60°,时针转动×30°=5°,4点10分时,分针与时针的夹角是2×30°+5°=65°.故选:B.3.如图,∠AOB=70°,射线OC是可绕点O旋转的射线,当∠BOC=15°时,则∠AOC的度数是()A.55°B.85°C.55°或85°D.不能确定【答案】C【解析】试题解析:当OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=70°-15°=55°;当OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=70°+15°=85°,所以∠AOC的度数为55°或85°.故选C.4.已知∠AOB=60°,∠BOC=30°,则∠AOC等于()A.90°B.45°或30°C.30°D.90°或30°【答案】D【详解】如图1,∠BOC的边OC在∠AOB的内部时,∠AOC=∠AOB-∠BOC=60°-30°=30°,如图2,∠BOC的边OC在∠AOB的外部时,∠AOC=∠AOB+∠BOC=60°+30°=90°,综上所述,∠AOC等于90°或30°.故选:D.5.长方形如图折叠,D点折叠到的位置,已知∠FC=40°,则∠EFC=()A.120°B.110°C.105°D.115°【答案】B【详解】根据翻折不变性得出,∠DFE=∠EFD′,∵∠D′FC=40°,∠DFE+∠EFD′+∠D′FC=180°,∴2∠EFD′=180°-40°=140°,∴∠EFD′=70°,∴∠EFC=∠EFD′+∠D′FC=70°+40°=110°.故选:B.的度数为( ) 6.如图,已知,,则AODA.B.C.D.【答案】B【解析】详解:∵∠AOC=70°,∠BOC=30°,∴∠AOB=70°-30°=40°,∴∠AOD=∠AOB+∠BOD=40°+70°=110°,故选B.7.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35°B.70°C.110°D.145°【答案】C【详解】∵OC平分∠DOB,∠COB=35°,∴∠BOD=2∠COB=2×35°=70°,∴∠AOD=180°-70°=110°.故选C.8.如图,点O为直线AB上一点,OC⊥OD.如果∠1=35°,那么∠2的度数是()A.35°B.45°C.55°D.65°【答案】C【详解】∵OC⊥OD,∴∠COD=90°.∴∠2=180°−∠COD−∠1=180°−90°−35°=55°,故选:C.9.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°【答案】D【详解】解:如图所示,∵△GEF是含30°角的直角三角板,∴∠FGE=30°,∵∠2=60°,∴∠FHE=∠2=60°,∴∠1=∠FHE-∠G=30°,故选D.10.如图,将一张长方形纸片ABCD沿EF折叠,点A、B分别落在点A’B’处,若,则的度数是()A.B.C.D.【答案】C【解析】由翻折可得:∠1=∠FEA'=55°,∴∠A'ED=180-55×2=70°.故选C.二. 填空题(共5小题)11.如图,射线OA⊥OC,射线OB⊥OD,若∠AOB=40°,则∠COD=____°.【答案】40【详解】解:∵OA⊥OC,OB⊥OD,∴∠AOC=90°,∠BOD=90°,∴∠AOB与∠BOC互余,∠COD与∠BOC互余,∴∠AOB=∠COD =40°,故答案为:40°.12.如图,点A、O、C在同一直线上,OE平分∠AOB,OF平分∠BOC,则∠EOF= _________.【答案】90°【解析】试题解析:∵OE、OF分别是∠AOB和∠BOC的平分线,∴∠AOE=∠EOB,∠BOF=∠FOC,∵∠AOE+∠EOB+∠BOF+∠FOC=180°,∴∠EOB+∠BOF=90°,即∠EOF=90°,故答案为90°.13.如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为_____.【答案】150°42′【解析】详解:∵∠BOC=29°18′,∴∠AOC的度数为:180°-29°18′=150°42′.故答案为:150°42′.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=_____.【答案】180°【解析】∵∠AOC=∠AOB+∠BOC,∴∠AOC+∠DOB=∠AOB+∠BOC+∠BOD,又∵∠BOC+∠BOD=∠COD,且∠AOB=∠COD=90°,∠AOC+∠DOB=∠AOB+∠COD=90°+90°=180°.15.如图,已知∠AOB=90°.若∠1=35°,则∠2的度数是_______.【答案】55°【解析】∵∠AOB=90°,∠1=35°,∴∠2=∠AOB-∠AOB=90°-35°=55°.三. 解答题(共2小题)16.如图,以直线 AB 上一点 O 为端点作射线 OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点 O 处.(注:∠DOE=90°)(1)如图①,若直角三角板 DOE 的一边 OD 放在射线 OB 上,则∠COE= °;(2)如图②,将直角三角板 DOE 绕点 O 逆时针方向转动到某个位置,若 OC 恰好平分∠BOE,求∠COD 的度数;(3)如图③,将直角三角板 DOE 绕点 O 转动,如果 OD 始终在∠BOC 的内部,试猜想∠BOD 和∠COE 有怎样的数量关系?并说明理由.【答案】(1)20;(2)20 º;(3)∠COE﹣∠BOD=20°.【解析】试题分析:(1)根据图形得出∠COE=∠DOE-∠BOC,代入求出即可;(2)根据角平分线定义求出∠EOB=2∠BOC=140°,代入∠BOD=∠BOE-∠DOE,求出∠BOD,代入∠COD=∠BOC-∠BOD求出即可;(3)根据图形得出∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,相减即可求出答案.试题解析:(1)如图①,∠COE=∠DOE﹣∠BOC=90°﹣70°=20°;(2)如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE﹣∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC﹣∠BOD=20°;(3)∠COE﹣∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)﹣(∠BOD+∠COD)=∠COE+∠COD﹣∠BOD﹣∠COD=∠COE﹣∠BOD=90°﹣70°=20°,即∠COE﹣∠BOD=20°.17.如图,已知AOB是一条直线,OC是∠AOD的平分线,OE 是∠BOD的平分线.(1)若∠AOE=140°,求∠AOC的度数;(2)若∠EOD :∠COD=2 : 3,求∠COD的度数.【答案】(1)50°(2)54°【解析】试题分析:(1)根据角平分线的性质,由角的和差关系求解即可;(2)根据比例关系,设出未知数,然后根据和为90°,列方程求解即可. 试题解析:(1)OC是∠AOD的平分线,OE是∠BOD的平分线,∠DOE=∠BOD,∠COD=∠AOD,∠AOB=180°,∠COE=∠DOE+∠COD=∠BOD+∠AOD=∠AOB=90°,∠AOC=∠AOE-∠EOC=140°-90°=50°.(2)∠COE=90°,∠EOD :∠COD=2 : 3,设∠EOD=2x°,∠COD=3x°,2x+3x=90,x=18,∠COD=54°.。

七年级数学上册4.3.2角的比较与运算课时练习(含解析)(新版)新人教版

七年级数学上册4.3.2角的比较与运算课时练习(含解析)(新版)新人教版

角的比较与运算(时间:40分钟,满分68分)班级:___________姓名:___________得分:___________一、选择题(每题3分)1.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40°B.35°C.30°D.20°【答案】B【解析】试题分析:根据角平分线的性质可得∠AOC=35°,根据对顶角的性质可得∠BOD=∠AOC=35°.考点:角平分线的性质.2.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140° B.160° C.170° D.150°【答案】B.【解析】试题分析:根据题意可知,;又=90°∠=∠-∠=︒-︒=︒BOC AOB CODCOD COD AOD902070∠=∠+∠+70°=160°.考点:直角三角形的性质.3.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A.52° B.38° C.64° D.26°【答案】C【解析】试题分析:先求得∠BOC的度数,然后由角平分线的定义可求得∠BOD的度数,最后根据∠AOD=∠AOB﹣∠BOD求解即可.解:∠BOC=∠AOB﹣∠AOC=90°﹣38°=52°,∵OD平分∠BOC,∴∠BOD=∠BOC=26°.∴∠AOD=∠AOB﹣∠BOD=90°﹣26°=64°.故选:C .考点:角平分线的定义.4.如图,已知OC 是∠AOB 内部的一条射线,∠AOC=30°,OE 是∠COB 的平分线.当∠BOE=40°时,∠AOB 的度数是A .70°B .80°C .100°D .110°【答案】D.【解析】试题分析:OE 是的平分线,COB ∠2,BOC BOE ∴∠=∠AOB BOC AOC∠=∠+∠故选C .24030110.=⨯+= 考点:角的比较大小.5.(2015秋•常州期末)已知∠AOB=80°,OM 是∠AOB 的平分线,∠BOC=20°,ON 是∠BOC 的平分线,则∠MON 的度数为( )A .30°B .40°C .50°D .30°或50°【答案】D【解析】试题分析:由于OA 与∠BOC 的位置关系不能确定,故应分OA 在∠BOC 内和在∠BOC 外两种情况进行讨论.解:当OA 与∠BOC 的位置关系如图1所示时,∵OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA 与∠BOC 的位置关系如图2所示时,∵OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D .考点:角平分线的定义.6.(2010秋•抚州期末)已知∠MON=30°,∠NOP=15°,则∠MOP=( )A .45°B .15°C .45°或15°D .无法确定【答案】C【解析】试题分析:根据题意先画出图形,再利用角的和差关系分别进行计算即可,注意此题要分两种情况.解:分为两种情况:如图1,当射线OP 在∠MON 内部时,∵∠MON=30°,∠NOP=15°,∴MOP=∠MON﹣∠NOP=30°﹣15°=15°;如图2,当射线OP 在∠MON 外部时,∵∠MON=30°,∠NOP=34°,∴∠MOP=∠MON+∠NOP=30°+15°=45°;故选C.考点:角的计算.7.如图,O 是直线AB 上的一点,OD 平分∠AOC,OE 平分∠BOC,则∠DOE 的度数是 ( ).αO A .90180α<<B .090α<<C .90α=D .随OC 位置的变化而变化α【答案】C.【解析】试题分析:因为OD 平分∠AOC,OE 平分∠BOC,所以,,因为12COD AOC ∠=∠12COE BOC ∠=∠,所以=90°,即α的度数为90°.180AOC BOC ∠+∠=︒11802DOE COD COD ∠=∠+∠=⨯︒故选:C.考点:1、角平分线的定义;2、角的计算.8.若∠A = 20°18′,∠B = 20°15′30″,∠C = 20.25°,则( )A .∠A>∠B>∠CB .∠B>∠A>∠CC .∠A>∠C>∠BD .∠C>∠A>∠B【答案】A【解析】试题分析:因为∠C = 20.25°= 20°15′,∠A = 20°18′,∠B = 20°15′30″,所以∠A>∠B>∠C,故选:A.考点:角的度数换算.9.已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON ,则∠MON 的大小为A .20°B .40°C .20°或40°D .10°或30°【答案】C【解析】试题分析:本题需要分两种情况进行讨论,当射线OC 在∠AOB 外部时,∠MON=∠BOM+∠BON=30°+10°=40°;当射线OC 在∠AOB 内部时,∠MON=∠BOM-∠BON=30°-10°=20°.考点:角平分线的性质、角度的计算10.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°【答案】B.【解析】试题分析:利用直角和角的组成即角的和差关系计算.解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD 等于25°.故选B .考点:角的计算.11.利用一副三角板上已知度数的角,不能画出的角是( )A .15°B .135°C .165°D .100°【答案】D【解析】试题分析:用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.解:A 、15°的角,45°﹣30°=15°;B 、135°的角,45°+90°=135°;C 、165°的角,90°+45°+30°=165°;D 、100°的角,无法用三角板中角的度数拼出.故选D .考点:角的计算.二、填空题(每题3分)12.如图,点A 、O 、B 在一条直线上,且∠BOC=120°,OD 平分∠AOC,则图中∠AOD= °.【答案】30°【解析】试题分析:∵∠AOC+∠BOC=180°,∠BOC=120°,∴∠AOC=180°-120°=60° ∵OD 平分∠AOC ∴∠AOD=∠AOC=×60°=30°.1212考点:角平分线的性质.13.(2015秋•双柏县期末)如图,OC 平分∠AOB,若∠AOC=27°32′,则∠AOB= .【答案】55°4′.【解析】试题分析:直接利用角平分线的性质得出∠AOC=∠BOC,进而得出答案.解:∵OC 平分∠AOB,∴∠AOC=∠BOC,∵∠AOC=27°32′,∴∠AOB=27°32′×2=54°64′=55°4′.故答案为:55°4′.考点:角平分线的定义;度分秒的换算.14.在同一平面内,已知,,、分别是和的平分线,80AOB ∠=︒20BOC ∠=︒OM ON AOB ∠BOC ∠则的度数是 .MON ∠【答案】或.50︒30︒【解析】试题分析:分两种情况:射线OC 在∠AOB 的内部和外部,当在内部时,∠MON=∠MOB-∠BON=∠AOB-12∠BOC=(80-20)=30º,当在外部时,∠MON=∠MOB+∠BON=∠AOB+∠BOC=(80+20)=50º,故1212121212∠MON 的度数是50º或30º.考点:角平分线的运用.15.如图,OE 平分∠AOC,OF 平分∠BOC,∠AOE=25°,∠COF=40°,∠AOB=【答案】130°【解析】试题分析:根据角平分线的性质可得:∠AOC=2∠AOE=50°,∠BOC=2∠COF=80°,则∠AOB=∠AOC+∠BOC=130°.考点:角平分线的性质.16.OC 是∠AOB 内部的一条射线,若∠AOC=21 ,则OC 平分∠AOB;若OC 是∠AOB 的角平分线,则 =2∠AOC.【答案】∠AOB, ∠AOB.【解析】试题分析:∵角平分线定义是:从一个角的顶点出发的一条射线,如果把这个角分成两个相等的角,这条射线就叫这个角的平分线,∴满足OC 平分∠AOB 的条件是:∠AOC=21∠AOB,同理:若OC 是∠AOB 的角平分线,则∠AOB=2∠AOC,故答案为:∠AOB、∠AOB.考点:角平分线的定义.17.如图,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为 度,∠COD 的度数为 度.【答案】60、20.【解析】试题分析:根据角平分线的定义求得∠AOC 的度数,再利用差的关系求∠COD 的度数.解:∵∠AOB=30°,OB 是∠AOC 的平分线,∴∠AOC=2∠AOB=60°,∴∠COD=∠AOD﹣∠AOC=80°﹣60°=20°.故答案为:60、20.考点:角平分线的定义.三解答题18.(8分)如图,已知∠AOC=∠BOD=900,若∠BOC=550,求∠AOB 与∠COD 的度数,并比较这两个角的大小.【答案】∠AOB=∠COD=350【解析】解:∵∠AOC=∠BOD=900∵∠AOC=∠BOC+∠AOB∵∠BOC=550∴∠AOB=350同解:∠BOD=∠BOC+∠COD∴∠COD=350∴∠AOB=∠COD=35019.(9分)如图,O 为直线AB 上一点,,OD 平分,。

人教版数学七年级上册:4.3.2《角的比较与运算》习题课件(附答案)

人教版数学七年级上册:4.3.2《角的比较与运算》习题课件(附答案)

3.用“>”“=”或“<”填空. (1)若∠1=∠2,∠2=∠3,则∠1 = ∠3;
(2)若∠α+∠β=70°,∠β+∠γ=100°,则∠α < ∠γ.
知识点二 角的运算
4.如图,下列各式运算结果不等于∠AOC 的是
A.∠AOD-∠COD B.∠AOB+∠BOC C.∠BOD-∠COD D.∠BOD+∠AOB-∠COD
∴∠A′BE=β-α. 由折叠可得∠ABE=∠A′BE=β-α. ∵∠ABC=∠ABE+∠EBD+∠CBD=90°, ∴β-α+β+β=90°. 解得 β=30°+1 α,
3 即∠CBD 的度数为 30°+1 α.
3
17.如图,图①是一副三角尺拼成的图案(所涉及角 度均小于或等于 180°). (1)∠EBC 的度数为 150 °;
(C)
5.如图,OC 为∠AOB 内部的一条射线.若∠AOB= 100°,∠1=25°,则∠2 的度数为 75° .
6.计算下列各题: (1)98°45′36″+71°22′34″; 解:原式=170°8′10″.
(2)52°37′-31°45′12″; 解:原式=20°51′48″.
(3)13°24′15″×5; 解:原式=67°1′15″.
9.如图,∠AOB=150°,OD 平分∠BOC,且∠BOD =30°,则∠AOC= 90 °.
10.如图,∠AOB=90°,OM 是∠AOC 的平分线, ON 是∠BOC 的平分线,求∠MON 的度数. 解:∵OM 是∠AOC 的平分线,ON 是∠BOC 的平 分线, ∴∠COM= 1 ∠AOC,
2 ∠CON= 1 ∠BOC.
2
∴∠MON=∠COM+∠CON= 1 ∠AOC+ 1 ∠BOC

人教版七年级数学上册 第四章 几何图形初步 4.3.2 角的比较与运算 【有答案】

人教版七年级数学上册 第四章 几何图形初步 4.3.2 角的比较与运算 【有答案】

人教版七年级数学上册 第四章 几何图形初步4.3.2 角的比较与运算 课后练习一、选择题1.已知α=76°5′,β=76.5°,则α与β的大小关系是( )A .α>βB .α=βC .α<βD .以上都不对2.如图,∠AOB=∠COD,若∠AOD=110°,∠BOC=70°,则以下结论正确的有( )①∠AOC=∠BOD=90°;②∠AOB=20°;③∠AOB=∠AOD-∠AOC;④∠AOB=211∠BOD . A .1个 B .2个 C .3个 D .4个3.如图所示,OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式正确的是( )A .∠COD=12∠AOB B .∠AOD=23∠AOB C .∠BOD=13∠AOB D .∠BOC=23∠AOD 4.如图,已知OA ⊥OB ,OC ⊥OD ,∠BOA ∶∠AOD =3∶4,则∠BOD 的度数为( )A .120°B .125°C .150°D .157.5°5.将一副直角三角尺按如图所示的不同方式摆放,则图中α∠与β∠相等的是( )A .B .C .D . 6.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( ) A .4个B .3个C .2个D .1个 7.射线OC 在AOB ∠内部,下列条件不能说明OC 是AOB ∠的平分线的是( )A .12AOC AOB ∠=∠ B .1BOC AOB 2∠=∠ C .AOC BOC AOB ∠+∠=∠ D .AOC BOC ∠=∠8.在∠AOB 的内部任取一点C ,作射线OC ,则一定有( )A .∠AOC =∠BOCB .∠BOC >∠AOC C .∠AOC >∠BOCD .∠AOB >∠AOC9.如图,AOB ∠,以OB 为边作BOC ∠,使2BOC AOB ∠=∠,那么下列说法正确的是( )A . 3AOC AOB ∠=∠B .AOB AOC ∠=∠或3AOC AOB ∠=∠ C .AOC BOC ∠>∠D . AOC AOB ∠=∠10.已知∠AOB =20°,∠AOC =4∠AOB ,OD 平分∠AOB ,OM 平分∠AOC ,则∠MOD 的度数是( ) A .20°或50°B .20°或60°C .30°或50°D .30°或60°二、填空题11.如图,在OB 边上取一点C ,过C 作直线MN 交OA 于D ,图中所有角(平角除外有_______个,其中∠BCN 和_______∠BCM 或∠DCO 构成平角.12.如图,A ,O ,B 三点在一条直线上,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.若∠1:∠2=1:2,则∠1=_______°.13.如图所示,∠AOB 是平角,∠AOC=30°,∠BOD=60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠MON 等于_____度.14.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠BOE=36°.求∠AOC 的度数.15.如图所示,OC 是AOE ∠的平分线,OB 是AOC ∠的平分线,OD 是COE ∠的平分线,那么AOD ∠=∠_______.三、解答题16.已知OC 是AOB ∠内部的一条射线,M ,N 分别为OA ,OC 上的点,线段OM ,ON 同时分别以30/s ︒,10/s ︒的速度绕点O 逆时针转动,设转动时间为s t .(1)如图(1),若120AOB ∠=︒,OM ,ON 逆时针转动到OM ',ON '处.①若OM ,ON 的转动时间t 为2,则BON COM ''∠+∠=________;②若OM '平分AOC ∠,ON '平分BOC ∠,求M ON ''∠的值.(2)如图(2),若4AOB BOC ∠=∠,当OM ,ON 分别在AOC ∠,BOC ∠内部转动时,请猜想COM ∠与BON ∠的数量关系,并说明理由.17.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.(1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.18.一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.(发现猜想)(1)如图①,已知∠AOB =70°,∠AOD =100°,OC 为∠BOD 的角平分线,则∠AOC 的度数为 ;.(探索归纳)(2)如图①,∠AOB =m ,∠AOD =n ,OC 为∠BOD 的角平分线. 猜想∠AOC 的度数(用含m 、n 的代数式表示),并说明理由.(问题解决)(3)如图②,若∠AOB =20°,∠AOC =90°,∠AOD =120°.若射线OB 绕点O 以每秒20°逆时针旋转,射线OC 绕点O 以每秒10°顺时针旋转,射线OD 绕点O 每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA 重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?19.如图,已知90AOB ∠=︒,AOC ∠为锐角,OD 平分AOC ∠,OE 平分BOC ∠.(1)求DOE ∠的度数;(2)当AOB m ∠=°时,求DOE ∠的度数.20.点A ,O ,B 依次在直线MN 上,如图1,现将射线OA 绕点O 顺时针方向以每秒10°的速度旋转,同时射线OB 绕着点O 按逆时针方向以每秒15°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t 秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB 的度数.(2)在旋转过程中,当∠AOB=105°时,求t 的值.(3)在旋转过程中,当OA 或OB 是某一个角(小于180°)的角平分线时,求t 的值.21.如图,∠EOD =70°,射线OC ,OB 分别是∠AOE ,∠AOD 的平分线. (1)若∠AOB =20°,求∠BOC 的度数;(2)若∠AOB =α,求∠BOC 的度数;(3)若以OB 为钟表上的时针,OC 为分针,再过多长时间由B ,O ,C 三点构成的三角形的面积第一次达到最大值?22.如图,直线CD 与EF 相交于点O .60COE ∠=︒,将一直角三角尺AOB 的直角顶点与点O 重合.OA 平分COE ∠.(1)求BOD ∠的度数.(2)将三角尺AOB 以每秒3º的速度绕点O 顺时针旋转.同时直线EF 也以每秒9º的速度绕点O 顺时针旋转,设运动时间为t s(040t ≤≤).①当t 为何值时,直线EF 平分AOB ∠?②若直线EF 平分BOD ∠,直接写出t 的值.23.如图,已知AOB 是一条直线,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.(1)若∠AOE=140°,求∠AOC 的度数;。

七年级数学上册4.3角4.3.2角的比较与运算练习新人教版(new)

七年级数学上册4.3角4.3.2角的比较与运算练习新人教版(new)

4.3.2 角的比较与运算1.如图所示,射线OC平分∠AOD,射线OD平分∠COB,则下列结论错误的是()A。

∠AOC=∠BODB。

∠AOD=2∠BODC。

∠BOC=2∠CODD。

∠AOB=2∠AOD2.如图所示,如果∠AOB=∠COD,那么()A。

∠α>∠βB.∠α<∠βC。

∠α=∠βD。

∠α+∠β=∠COD3。

如图所示,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠BFE=()A.70°B.65°C。

60°D。

50°4。

如图所示,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于()A。

35°B。

70°C.130°D.110°5.如图所示,∠AOC= + = - ;∠AOD-∠AOB= = + .(第5题图)6.如图所示,∠AOB=60°,OC是∠AOB的一条三等分线,则∠AOC= 。

(第6题图)7。

如图所示,已知OE平分∠AOB,OD平分∠BOC,∠AOB为直角,∠EOD=70°,则∠BOC= .(第7题图)8。

如图所示,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是.(第8题图)9。

如图所示,∠AOB=170°,∠AOC=∠BOD=90°,求∠COD的度数。

10。

若∠AOB=30°,∠BOC=45°,则∠AOC=()A.15°B。

75°C.15°或75°D。

不能确定11。

如图所示,∠AOC=40°,∠BOD=50°,OM,ON分别是∠AOC,∠BOD的角平分线,则∠MON= .★12。

(43114144)如图所示,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.★13.(43114145)如图所示,∠1∶∠2∶∠3∶∠4=1∶1∶3∶4,求∠1,∠2,∠3,∠4的度数.14。

最新部编版人教初中数学七年级上册《4.3.2角的比较与运算 同步课时练习题及答案》精品优秀测试题

最新部编版人教初中数学七年级上册《4.3.2角的比较与运算 同步课时练习题及答案》精品优秀测试题

前言:
该同步课时练习题由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。

以高质量的同步课时练习题助力考生查漏补缺,在原有基础上更进一步。

(最新精品同步课时练习题)
4.3 角(2)
角的比较与运算
1.点C在∠AOB的内部,下列等式中,能表示OC是∠AOB的平分线的有()
①∠AOC=∠BOC;②∠AOB=2∠AOC;③∠AOC=1
2
∠AOB;④∠
BOC=
1
2
∠AOB. A.1个 B.2个 C.3个 D.4个
2.已知∠AOB=120°,OC在它的内部,且把∠AOB分成1:3的两个角,那么∠AOC的度数为( )
A.40° B.40°或80° C.30° D.30°或90°
3.已知∠AOB=45°,OC是∠AOB的一条三等分线,则AOC
∠的度数是.4.已知∠AOB是直角,OM平分∠BOC,ON平分∠AOC,那么∠MON= .
5.如图所示,已知∠1∶∠2∶∠3∶∠4=1∶2∶3∶4,则∠1= °,∠2= °,∠3= °,∠4= °.
6.计算:
(1)48°39′+67°41′;
(2)46°35′×3.
7.如图所示,已知0
0110
,
55
,
145=

=

=
∠BOD
AOC
AOB,求COD
∠的度数.
1。

人教版初中数学七年级上册《4.3.2 角的比较与运算》同步练习卷(含答案解析

人教版初中数学七年级上册《4.3.2 角的比较与运算》同步练习卷(含答案解析

人教新版七年级上学期《4.3.2 角的比较与运算》同步练习卷一.选择题(共9小题)1.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4B.3C.2D.12.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.3.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE 平分∠BOC,则∠DOE()A.一定是钝角B.一定是锐角C.一定是直角D.都有可能4.下列说法中正确的是()A.若∠AOB=2∠AOC,则OC平分∠AOBB.延长∠AOB的平分线OCC.若射线OC、OD三等分∠AOB,则∠AOC=∠DOCD.若OC平分∠AOB,则∠AOC=∠BOC5.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB6.用一个放大镜去观察一个角的大小,正确的说法是()A.角的度数扩大了B.角的度数缩小了C.角的度数没有变化D.以上都不对7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较8.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则()A.∠A>∠B>∠C B.∠A>∠B=∠C C.∠B>∠C>∠A D.∠B=∠C>∠A 9.已知∠AOB和∠DEF,如果移动∠DEF使得顶点O与顶点E重合,边ED与边OA叠合,边EF在∠AOB内部,那么∠AOB和∠DEF大小关系是()A.∠AOB>∠DEF B.∠AOB<∠DEF C.∠AOB=∠DEF D.不能确定二.填空题(共6小题)10.已知:如图,AOB是直线,∠1:∠2:∠3=1:3:2,则∠DOB=.11.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17°,∠AOP的度数为.12.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD度数为.13.比较大小:52°52′52.52°.(填“>”、“<”或“=”)14.比较:28°15′28.15°(填“>”、“<”或“=”).15.若∠A=∠B,∠B=2∠C,则∠A2∠C(填<,>或=).三.解答题(共18小题)16.如图,O为直线AB上一点,∠AOC=60°,OD平分∠OC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明OE是否平分∠BOC.17.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数?18.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.19.如图1,点O为直线AB上的一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针旋转一周,在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转至图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.20.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为(直接写出结果).21.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC 的内部,当OM平分∠BOC时,∠BON=;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)22.已知,∠AOD=160°,OB、OM、ON 是∠AOD内的射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,则∠MON=°(2)如图2,OC是∠AOD内的射线,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当射线OB在∠AOC内时,求∠MON的大小;(3)如图2,在(2)的条件下,当∠AOB=2t°时,∠AOM:∠DON=2:3,求t 的值.23.如图,已知∠AOB=108°,OE是∠AOB的平分线,OC在∠AOE内.(1)若∠COE=∠AOE,求∠AOC的度数;(2)若∠BOC﹣∠AOC=72°,则OB与OC有怎样的位置关系?为什么?24.如图,已知∠BOC=2∠AOC,OD平分∠AOB且∠AOC=50°,求∠COD的度数.25.如图,∠AOB等于∠COD,请判断∠AOC和∠BOD的大小关系并说明理由.26.如图,∠BOD=90°,∠COE=90°,解答下列问题:(1)图中有哪些小于平角的角?用适当的方法表示出它们.(2)比较∠AOC、∠AOD、∠AOE、∠AOB的大小,并指出其中的锐角、钝角、直角、平角.(3)找出图中所有相等的角.27.如图所示,比较∠α与∠β的大小.28.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.29.已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD 内旋转时,∠MON=度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD绕O点以每秒2°的速度逆时针旋转t秒,如图3,若∠AOM:∠DON=2:3,求t的值.30.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=;若∠AOC=120°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.31.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).32.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.33.如图①,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=40°,求∠DOE的度数;(2)如图①,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,OE平分∠BOC.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF与∠DOE的度数之间的关系,说明理由.人教新版七年级上学期《4.3.2 角的比较与运算》同步练习卷参考答案与试题解析一.选择题(共9小题)1.如图,点O为直线AB上一点,∠COD=90°,OE平分∠AOD.有下列四种结论,其中一定正确的个数有()个①∠AOE=∠EOD②∠AOC=∠EOD③∠AOC+∠BOD=90°④∠BOD=2∠COEA..4B.3C.2D.1【分析】根据角平分线定义即可判断①②;根据邻补角即可判断③,根据∠COD=90°和∠AOD=2∠AOE求出∠BOD=2∠BOD﹣2∠COE,即可判断④.【解答】解:∵OE平分∠AOD,∴∠AOE=∠EOD,故①正确;∵∠AOE=∠EOD,∠AOC<∠AOE,∴∠AOC<∠EOD,故②错误;∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,故③正确;∵∠BOD=180°﹣∠AOD=180°﹣2∠AOE=180°﹣2(∠AOC+∠COE)=2(90°﹣∠AOC)﹣2∠COE=2∠BOD﹣2∠COE,∴∠BOD=2∠BOD﹣2∠COE,∴∠BOD=2∠COE,故④正确;即正确的有3个,故选:B.【点评】本题考查了角平分线的定义,邻补角等知识点,能根据知识点进行推理是解此题的关键.2.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.【分析】直接利用角平分线的性质分别分析得出答案.【解答】解:A、∠AOC=∠BOC能确定OC平分∠AOB,故此选项不合题意;B、∠AOB=2∠AOC能确定OC平分∠AOB,故此选项不合题意;C、∠AOC+∠COB=∠AOB不能确定OC平分∠AOB,故此选项符合题意;D、∠BOC=∠AOB,能确定OC平分∠AOB,故此选项不合题意.故选:C.【点评】此题主要考查了角平分线的性质,正确把握角平分线的定义是解题关键.3.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE 平分∠BOC,则∠DOE()A.一定是钝角B.一定是锐角C.一定是直角D.都有可能【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.【解答】解:∵OD平分∠AOC,OE平分∠BOC,∴∠AOD=∠DOC,∠BOE=∠COE,∴∠DOE=×180°=90°,故选:C.【点评】此题主要考查了角平分线的定义,正确把握角平分线的定义是解题关键.4.下列说法中正确的是()A.若∠AOB=2∠AOC,则OC平分∠AOBB.延长∠AOB的平分线OCC.若射线OC、OD三等分∠AOB,则∠AOC=∠DOCD.若OC平分∠AOB,则∠AOC=∠BOC【分析】画出反例图形,即可判断A、C;根据延长线的意义和射线的意义即可判断B;根据角平分线定义即可判断D.【解答】解:A、如图,符合条件,但是OC不是∠AOB平分线,故本选项错误;B、反向延长∠AOB的角平分线OC,故本选项错误;C、如图,∠AOC=2∠DOC,故本选项错误;D、∵OC平分∠AOB,∴∠AOC=∠BOC,故本选项正确;故选:D.【点评】本题考查了角平分线的定义,射线的应用,主要考查学生的理解能力和辨析能力.5.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB【分析】利用角平分的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.可知B不一定正确.【解答】解:A、正确;B、不一定正确;C、正确;D、正确;故选:B.【点评】此题主要考查了从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.6.用一个放大镜去观察一个角的大小,正确的说法是()A.角的度数扩大了B.角的度数缩小了C.角的度数没有变化D.以上都不对【分析】角的大小只与两边叉开的大小有关,放大镜不能改变角的大小.【解答】解:用放大镜看一个角的大小时,角的度数不会发生变化,故选:C.【点评】本题主要考查角的大小,明确角的大小只与两边叉开的大小有关,与其他无关是解决此类问题的关键.7.如图.∠AOB=∠COD,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2的大小无法比较【分析】根据∠AOB=∠COD,再在等式的两边同时减去∠BOD,即可得出答案.【解答】解:∵∠AOB=∠COD,∴∠AOB﹣∠BOD=∠COD﹣∠BOD,∴∠1=∠2;故选:B.【点评】本题考查了角的大小比较,此题较简单,培养了学生的推理能力.8.已知∠A=60°24′,∠B=60.24°,∠C=60°14′24″,则()A.∠A>∠B>∠C B.∠A>∠B=∠C C.∠B>∠C>∠A D.∠B=∠C>∠A 【分析】将∠A、∠B、∠C统一单位后比较即可.【解答】解:∵∠A=60°24′=60.4°,∠B=60.24°,∠C=60°14′24″=60.24°,∴∠A>∠B=∠C.故选:B.【点评】此类题是进行度、分、秒的转化计算,相对比较简单,注意以60为进制即可.9.已知∠AOB和∠DEF,如果移动∠DEF使得顶点O与顶点E重合,边ED与边OA叠合,边EF在∠AOB内部,那么∠AOB和∠DEF大小关系是()A.∠AOB>∠DEF B.∠AOB<∠DEF C.∠AOB=∠DEF D.不能确定【分析】依据叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置.【解答】解:如图,由叠合法可得,∠AOB>∠DEF,故选:A.【点评】本题主要考查了角的大小的比较,将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置即可.二.填空题(共6小题)10.已知:如图,AOB是直线,∠1:∠2:∠3=1:3:2,则∠DOB=120°.【分析】先设∠1为x°,则∠2=3x°,∠3=2x°,根据∠1+∠2+∠3=180°,列出方程,求出x的值,即可得出答案.【解答】解:设∠1为x°,则∠2=3x°,∠3=2x°,依题意有x+3x+2x=180,解得x=30,则∠DOB=x°+3x°=120°.故答案为:120°.【点评】本题考查了角的计算,关键是根据题意列出方程,求出x的值,用到的知识点是角的和、差.11.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17°,∠AOP的度数为10.2°或51°.【分析】分射线OP在∠AOB的内部和外部两种情况进行讨论求解即可.【解答】解:如图1,当射线OP在∠AOB的内部时,设∠AOP=3x,则∠BOP=2x,∵∠AOB=∠AOP+∠BOP=5x=17°,解得:x=3.4°,则∠AOP=10.2°,如图2,当射线OP在∠AOB的外部时,设∠AOP=3x,则∠BOP=2x,∵∠AOP=∠AOB+∠BOP,又∵∠AOB=17°,∴3x=17°+2x,解得:x=17°,则∠AOP=51°.故∠AOP的度数为10.2°或51°.故答案为:10.2°或51°.【点评】本题考查了角的计算,关键是分两种情况进行讨论.12.已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD平分∠AOC,则∠BOD度数为30°或50°.【分析】根据∠BOC的位置,先得出∠AOC的大小,当∠BOC的一边OC在∠AOB 外部时,两角相加,当∠BOC的一边OC在∠AOB内部时,两角相减即可,再利用角平分线的定义可得结果.【解答】解:以O为顶点,OB为一边作∠BOC=20°有两种情况:如图1,当∠BOC的一边OC在∠AOB外部时,则∠AOC=∠AOB+∠BOC=80°+20°=100°,∵OD平分∠AOC,∴∠DOC=∠AOC=50°,则∠BOD=50°﹣20°=30°;如图2,当∠BOC的一边OC在∠AOB内部时,则∠AOC=∠AOB﹣∠BOC=80°﹣20°=60°,则∠DOC=∠AOC=30°,故∠BOD=∠BOC+∠DOC=50°.故答案是:30°或50°.【点评】本题主要考查学生角的计算及角平分线的定义,采用分类讨论的思想是解答此题的关键.13.比较大小:52°52′>52.52°.(填“>”、“<”或“=”)【分析】将角的度数换算成度分秒的形式,再进行比较即可得出结论、【解答】解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.【点评】本题考查的度分秒的换算以及角的大小比较,解题的关键是将角的度数换算成度分秒的形式,再进行比较.14.比较:28°15′>28.15°(填“>”、“<”或“=”).【分析】首先利用度分秒换算法则进行转化,再比较大小.【解答】解:∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为:>.【点评】此题主要考查了角的比较大小以及度分秒转化,正确掌握度分秒转化是解题关键.15.若∠A=∠B,∠B=2∠C,则∠A=2∠C(填<,>或=).【分析】把∠B=2∠C代入∠A=∠B即可.【解答】解:∵∠A=∠B,∠B=2∠C,∴∠A=2∠C,故答案为:=.【点评】本题考查了角的大小比较的应用,主要考查学生的理解能力.三.解答题(共18小题)16.如图,O为直线AB上一点,∠AOC=60°,OD平分∠OC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明OE是否平分∠BOC.【分析】(1)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(2)根据∠DOC与∠COE互余即可得出∠COE的度数,由(1)可知∠BOC=120°,那么∠BOE=∠BOC﹣∠COE=60°,进而可得出结论,从而求解.【解答】解:(1)因为∠AOC=60°,OD平分∠AOC,所以∠DOC=∠AOC=30°,∠BOC=180°﹣∠AOC=120°,所以∠BOD=∠DOC+∠BOC=150°;(2)OE平分∠BOC.理由如下:∵∠DOE=90°,∠DOC=30°,∴∠COE=90°﹣30°=60°,∵∠BOC=120°,∴∠BOE=∠BOC﹣∠COE=120°﹣60°=60°,∴∠COE=∠BOE,∴OE平分∠BOC.【点评】本题主要考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.17.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数?【分析】先根据角平分线定义得:∠AOM=×120°=60°,同理得:∠CON=∠BOC==15°,最后利用角的差可得结论.【解答】解:∵∠AOB=90°,∠BOC=30°,∴∠AOC=90°+30°=120°,∵OM平分∠AOC,∴∠AOM=∠AOC=×120°=60°,∵ON平分∠BOC,∴∠CON=∠BOC==15°,∴∠MON=∠AOC﹣∠AOM﹣∠CON=120°﹣60°﹣15°=45°.【点评】本题考查了角平分线的定义和角的和与差,熟练掌握角平分线的定义是关键.18.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.【分析】(1)①根据角平分线的定义求出∠AOD的度数,再根据平角的定义求出∠BOD的度数;②根据角的和差求出∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,根据角平分线的定义即可求解;(2)设∠BOE=2x,则∠AOE=7x,根据平角的定义列出方程求出x,进一步求出∠AOD的度数.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.【点评】主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系进一步解决问题.19.如图1,点O为直线AB上的一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按每秒10°的速度沿逆时针旋转一周,在旋转的过程中,假如第t秒时,OA、OC、ON三条射线构成相等的角,求此时t的值为多少?(2)将图1中的三角板绕点O顺时针旋转至图2,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.【分析】(1)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值;(2)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.【解答】解:(1)∵三角板绕点O按每秒10°的速度沿逆时针方向旋转,∴第t秒时,三角板转过的角度为10°t,当三角板转到如图①所示时,∠AON=∠CON∵∠AON=90°+10°t,∠CON=∠BOC+∠BON=120°+90°﹣10°t=210°﹣10°t∴90°+10°t=210°﹣10°t即t=6;当三角板转到如图②所示时,∠AOC=∠CON=180°﹣120°=60°∵∠CON=∠BOC﹣∠BON=120°﹣(10°t﹣90°)=210°﹣10°t∴210°﹣10°t=60°即t=15;当三角板转到如图③所示时,∠AON=∠CON=,∵∠CON=∠BON﹣∠BOC=(10°t﹣90°)﹣120°=10°t﹣210°∴10°t﹣210°=30°即t=24;当三角板转到如图④所示时,∠AON=∠AOC=60°∵∠AON=10°t﹣180°﹣90°=10°t﹣270°∴10°t﹣270°=60°即t=33.故t的值为6、15、24、33.(2)∵∠MON=90°,∠AOC=60°,∴∠AOM=90°﹣∠AON,∠NOC=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.【点评】本题主要考查角的和、差关系,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.20.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM= 90°;在图2中,OM是否平分∠CON?请说明理由;(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为 4.5秒或40.5秒(直接写出结果).【分析】(1)利用旋转的性质可得∠BOM的度数,然后计算∠MOC的度数判断OM是否平分∠CON;(2)利用∠AOM=45°﹣∠AON和∠NOC=45°﹣∠AON可判断∠AOM与∠CON之间的数量关系;(3)ON旋转22.5度和202.5度时,ON平分∠AOC,然后利用速度公式计算t 的值.【解答】解:(1)如图2,∠BOM=90°,OM平分∠CON.理由如下:∵∠BOC=135°,∴∠MOC=135°﹣90°=45°,而∠MON=45°,∴∠MOC=∠MON;故答案为90°;(2)∠AOM=∠CON.理由如下:如图3,∵∠MON=45°,∴∠AOM=45°﹣∠AON,∵∠AOC=45°,∴∠NOC=45°﹣∠AON,∴∠AOM=∠CON;(3)T=×45°÷5°=4.5(秒)或t=(180°+22.5°)÷5°=40.5(秒).故答案为90°;4.5秒或40.5秒.【点评】本题考查了角的计算:熟练掌握度、分、秒的加减运算.在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60.21.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC 的内部,当OM平分∠BOC时,∠BON=60°;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【分析】(1)依据∠AOC=120°,可得∠BOC=180°﹣120°=60°,再根据OM平分∠BOC,可得∠BOM=30°,最后依据∠NOM=90°,即可得出∠BOM=90°﹣30°=60°;(2)依据∠AOP=∠BOM=60°,∠AOC=120°,即可得到∠AOP=∠AOC,进而得到射线OP是∠AOC的平分线;(3)依据∠AOC=120°,∠MON=90°,即可得到∠AON=120°﹣∠NOC,∠AON=90°﹣∠AOM,进而得到120°﹣∠NOC=90°﹣∠AOM,据此可得∠NOC与∠AOM 之间的数量关系.【解答】解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为:60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.【点评】本题主要考查了角的计算以及角平分线的定义的运用,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.解决问题的关键是利用角的和差关系进行计算.22.已知,∠AOD=160°,OB、OM、ON 是∠AOD内的射线(1)如图1,若OM平分∠AOB,ON平分∠BOD,则∠MON=80°(2)如图2,OC是∠AOD内的射线,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当射线OB在∠AOC内时,求∠MON的大小;(3)如图2,在(2)的条件下,当∠AOB=2t°时,∠AOM:∠DON=2:3,求t 的值.【分析】(1)根据角平分线的定义求出∠BOM和∠BON,然后根据∠MON=∠BOM+∠BON代入数据进行计算即可得解;(2)设∠AOB=x,表示出∠BOD=160°﹣x,根据角平分线的定义表示出∠COM和∠BON,然后根据∠MON=∠COM+∠BON﹣∠BOC列式计算即可得解;(3)由∠AOB=2t°,∠BOC=20°,则∠AOM=∠AOC=t°+10°,∠DON=∠BOD=80°﹣t°,列式计算即可.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠BOM+∠BON=(∠AOB+∠BOD),∵∠AOD=∠AOB+∠BOD=160°,∴∠MON=×160°=80°;故答案为:80;(2)设∠AOB=x,则∠BOD=160°﹣x,∵OM平分∠AOC,ON平分∠BOD,∴∠COM=∠AOC=(x+20°),∠BON=∠BOD=(160°﹣x),∴∠MON=∠COM+∠BON﹣∠BOC=(x+20°)+(160°﹣x)﹣20°=70°;(3)由∠AOB=2t°,∠BOC=20°,则∠AOC=2t°+20°,∠BOD=160°﹣2t°,∴∠AOM=∠AOC=t°+10°,∠DON=∠BOD=80°﹣t°,∵∠AOM:∠DON=2:3,∴=,解得:t=26.【点评】本题考查了角的计算,角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.23.如图,已知∠AOB=108°,OE是∠AOB的平分线,OC在∠AOE内.(1)若∠COE=∠AOE,求∠AOC的度数;(2)若∠BOC﹣∠AOC=72°,则OB与OC有怎样的位置关系?为什么?【分析】(1)根据角平分线的定义和角的和差即可得到结论;(2)根据角的和差和垂直的定义即可得到结论.【解答】解:(1)∵∠COE=∠AOE,∴∠AOE=3∠COE,∵OE是∠AOB的平分线,∴∠AOB=2∠AOE=6∠COE,∵∠AOB=180°,∴∠COE=18°,∴∠AOC=2∠COE=2×18°=36°;(2)OB⊥OC,设∠BOC=x°,则∠AOC=108°﹣x°,∵∠BOC﹣∠AOC=72°,∴x﹣(108﹣x)=72,解得x=90,∴∠BOC=90°,∴OB⊥OC.【点评】本题主要考查角的比较与运算,还考查了角平分线的定义等知识点,熟练掌握角平分线的定义是解题的关键.24.如图,已知∠BOC=2∠AOC,OD平分∠AOB且∠AOC=50°,求∠COD的度数.【分析】求出∠BOC,求出∠AOB,根据角平分线求出∠AOD,代入∠COD=∠AOD ﹣∠AOC求出即可.【解答】解:∵∠BOC=2∠AOC,∠AOC=50°,∴∠BOC=2×50°=100°,∴∠AOB=∠BOC+∠AOC=100°+50°=150°,∵OD平分∠AOB,∴∠AOD=∠AOB=×150°=75°,∴∠COD=∠AOD﹣∠AOC=75°﹣50°=25°.【点评】本题考查了角的平分线定义和角的计算,关键是求出∠AOD的度数和得出∠COD=∠AOD﹣∠AOC.25.如图,∠AOB等于∠COD,请判断∠AOC和∠BOD的大小关系并说明理由.【分析】∠AOC=∠BOD.根据图形得到:∠AOB﹣∠BOC=∠COD﹣∠BOC,即∠AOC=∠BOD.【解答】解:∠AOC=∠BOD.理由如下:∵∠AOB=∠COD,∴∠AOB﹣∠BOC=∠COD﹣∠BOC,即∠AOC=∠BOD.【点评】本题考查了角的大小比较.注意数形结合数学思想在解题中的应用.26.如图,∠BOD=90°,∠COE=90°,解答下列问题:(1)图中有哪些小于平角的角?用适当的方法表示出它们.(2)比较∠AOC、∠AOD、∠AOE、∠AOB的大小,并指出其中的锐角、钝角、直角、平角.(3)找出图中所有相等的角.【分析】根据题中所给条件,结合图形:(1)找出途中锐角、直角、钝角即可;(2)直接比较,并且分类即可;(3)利用直角都相等,等角的余角相等列出即可.【解答】解:(1)图中小于平角的角有∠AOC、∠AOD、∠AOE、∠COD、∠COE、∠DOE、∠DOB、∠EOB;(2)由图可知,∠AOC<∠AOD<∠AOE<∠AOB,其中∠AOC为锐角,∠AOD为直角,∠AOE为钝角,∠AOB为平角;(3)∠AOC=∠DOE,∠COD=∠BOE,∠AOD=∠BOD=∠COE.【点评】此题考查对角的分类以及角的大小比较,注意找角要从一个点出发,按一定的顺序数.27.如图所示,比较∠α与∠β的大小.【分析】根据度量法或叠合法即可得出结论.【解答】解:方法一:∵用量角器∠α=60°,∠β=46°,∴∠α>∠β.方法二:①作∠AOB=∠α;②用点O作顶点,一边为射线OA,在与OB同侧的方向作∠AOC=∠β,∵射线OC在∠AOB的内部,∴∠α>∠β.【点评】本题考查的是角的大小比较,熟知比较角的大小的两种方法是解答此题的关键.28.∠AOB与∠COD有共同的顶点O,其中∠AOB=∠COD=60°.(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由;(2)如图①,若∠BOC=10°,求∠AOD的度数;(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;(4)若改变∠AOB,∠COD的位置,如图②,则(3)的结论还成立吗?若成立,请证明;若不成立,请直接写出你的猜想.【分析】(1)利用角的和差定义证明即可;(2)求出∠AOC即可解决问题;(3)结论:∠AOD+∠COB=120°.利用角的和差定义证明即可;(4)不成立.猜想:∠AOD+∠BOC=240°,根据周角的性质证明即可;【解答】解:(1)结论:∠AOC=∠BOD.理由:∵∠AOB=∠COD=60°,∴∠AOC+∠BOC=∠BOD+∠BOC,∴∠AOC=∠BOD.(2)∵∠BCO=10°,∠AOB=60°,∴∠AOC=50°,∴∠AOD=∠AOC+∠COD=50°+60°=110°.(3)猜想:∠AOD+∠COB=120°.理由:∵∠AOB=∠COD=60°.∴∠AOD=∠AOB+∠COD﹣∠COB=120°﹣∠COB,∴∠AOD+∠COB=120°.(4)不成立.猜想:∠AOD+∠BOC=240°,理由:∵∠AOB=∠COD=60°.∴∠AOD+∠BOC=360°﹣60°﹣60°=240°.【点评】本题考查角的计算,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.29.已知:∠AOD=160°,OB,OM,ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当射线OB绕点O在∠AOD 内旋转时,∠MON=80度.(2)OC也是∠AOD内的射线,如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD,当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小.(3)在(2)的条件下,若∠AOB=10°,当∠BOC在∠AOD绕O点以每秒2°的速度逆时针旋转t秒,如图3,若∠AOM:∠DON=2:3,求t的值.【分析】(1)依据OM平分∠AOB,ON平分∠BOD,即可得到∠MON=∠BOM+∠BON=(∠AOB+∠BOD)=∠AOD;(2)依据OM平分∠AOC,ON平分∠BOD,即可得到∠MOC=∠AOC,∠BON=∠BOD,再根据∠MON=∠MOC+∠BON﹣∠BOC进行计算即可;(3)依据∠AOM=(10°+2t+20°),∠DON=(160°﹣10°﹣2t),∠AOM:∠DON=2:3,即可得到3(30°+2t)=2(150°﹣2t),进而得出t的值.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=∠AOB,∠BON=∠BOD,∴∠MON=∠BOM+∠BON=(∠AOB+∠BOD)=∠AOD=80°,故答案为:80;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=∠AOC,∠BON=∠BOD,即∠MON=∠MOC+∠BON﹣∠BOC=∠AOC+∠BOD﹣∠BOC=(∠AOC+∠BOD)﹣∠BOC=(∠AOB+∠BOC+∠BOD)﹣∠BOC=(∠AOD+∠BOC)﹣∠BOC=×180°﹣20°=70°;(3)∵∠AOM=(10°+2t+20°),∠DON=(160°﹣10°﹣2t),又∵∠AOM:∠DON=2:3,∴3(30°+2t)=2(150°﹣2t),得t=21.答:t为21秒.【点评】本题考查的是角平分线的定义,从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.30.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=100°,则∠DOE=50°;若∠AOC=120°,则∠DOE=60°;(2)若∠AOC=α,则∠DOE=α(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣2∠BOE=4∠AOF,试确定∠AOF与∠DOE的度数之间的关系,并说明理由.【分析】(1)先根据平角的定义求出∠BOC,再根据角平分线的定义求得∠COE,再根据直角的定义可求∠DOE;(2)先根据平角的定义求出∠BOC,再根据角平分线的定义求得∠COE,再根据直角的定义可求∠DOE;(3)设∠DOE=x,∠AOF=y,根据已知和(2)的结论可得出x﹣y=45°,从而得出结论.【解答】解:(1)∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∵OE平分∠BOC,∴∠COE=∠BOC=×80°=40°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣40°=50°;∵∠AOC=120°,∴∠BOC=180°﹣120°=60°,∵OE平分∠BOC,∴∠COE=∠BOC=×60°=30°,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣30°=60°;故答案为:50°;60°;(2)∠DOE=α;∵∠AOC=α,∴∠BOC=180°﹣α,∵OE平分∠BOC,∴∠COE=∠BOC=90°﹣α,∵∠COD=90°,∴∠DOE=∠COD﹣∠COE=90°﹣(90°﹣α)=α;故答案为:α;(3)∠DOE﹣∠AOF=45°.理由:∵∠AOC﹣2∠BOE=4∠AOF,∴∠AOC﹣3∠AOF=2∠BOE+∠AOF,设∠DOE=x,∠AOF=y,左边=∠AOC﹣3∠AOF=2∠DOE﹣3∠AOF=2x﹣3y,右边=2∠BOE+∠AOF=2(90°﹣x)+y=180°﹣2 x+y,∴2x﹣3y=180﹣2 x+y 即4x﹣4y=180°,∴x﹣y=45°∴∠DOE﹣∠AOF=45°.【点评】此题考查的知识点是角平分线的性质及角的计算,关键是正确运用好有关性质准确计算角的和差倍分.31.已知∠AOB是一个定角,记为α,在∠AOB的内部作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当α=120°,∠AOC=40°时,求∠DOE的度数;(2)如图①,当射线OC在∠AOB内绕点O旋转时,∠DOE的度数是否发生变化?若变化,请说明理由;若不变,猜想∠DOE与α的关系,并证明;(3)当射线OC在∠AOB外绕点O旋转到图②位置时,直接写出∠DOE的度数(用含a的代数式表示).【分析】(1)根据角平分线的定义,OD、OE分别平分∠AOC和∠BOC,则可求得∠COE、∠COD的值,∠DOE=∠COE+∠COD;(2)结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算;(3)根据周角的定义,结合角的特点∠DOE=∠DOC+∠COE,求得结果进行判断和计算.【解答】解:(1)∵α=120°,∠AOC=40°,∴∠BOC=80°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=40°,∠COD=∠AOC=20°,∴∠DOE=60°;(2)∵∠BOC=α﹣∠AOC,OD、OE分别平分∠AOC和∠BOC,∴∠COE=∠BOC=α﹣∠AOC,∠COD=∠AOC,∴∠DOE=∠COE+∠COD=α;(3)∠DOE=(360°﹣α)=180°﹣α.【点评】考查了角的计算,熟记角的特点与角平分线的定义是解决此题的关键.32.已知:∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠DOB,求∠MON的大小.(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠DOB,求∠MON的大小.【分析】(1)根据角平分线的定义、结合图形计算;(2)根据角平分线的定义得到∠MOC=∠AOC,∠NOB=∠DOB,计算即可.【解答】解:(1)∵OM平分∠AOB,ON平分∠DOB,∴∠MOB=∠AOB,∠NOB=∠DOB,∴∠MON=∠MOB+∠BON=(∠AOB+∠DOB)=∠AOD=80°;(2)OM平分∠AOC,ON平分∠DOB,∴∠MOC=∠AOC,∠NOB=∠DOB,∴∠MON=∠MOC+∠BON﹣∠BOC=(∠AOC+∠DOB)﹣∠BOC=70°.【点评】本题考查的是角的计算、角平分线的定义,正确进行角的计算、掌握角平分线的定义是解题的关键.33.如图①,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=40°,求∠DOE的度数;(2)如图①,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置,OE平分∠BOC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3.2角的比较与运算
能力提升
1.如图,如果∠AOB=∠COD,那么()
A.∠α>∠β
B.∠α<∠β
C.∠α=∠β
D.∠α+∠β=∠COD
2.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,则下列各式中正确的是()
A.∠COD=∠AOC
B.∠AOD=∠AOB
C.∠BOD=∠AOB
D.∠BOC=∠AOB
3.
如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠BFE=()
A.70°
B.65°
C.60°
D.50°
4.用一副三角板,不可能画出的角度是()
A.15°
B.75°
C.165°
D.145°
5.已知∠AOB=30°,∠BOC=45°,则∠AOC=()
A.15°
B.75°
C.15°或75°
D.不能确定
6.
如图,将一副三角尺折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠
DOB=.
7.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是.
8.如图,∠AOC=40°,∠BOD=50°,OM,ON分别是∠AOC,∠BOD的角平分线,则∠MON=.
9.计算:
(1)153°19'42″+26°40'28″;
(2)90°3″-57°21'44″;
(3)33°15'16″×5.
★10.如图,OD是∠AOB的平分线,OE是∠BOC的平分线,且∠AOC=130°,求∠DOE的度数.
★11.如图,∠1∶∠2∶∠3∶∠4=1∶1∶3∶4,求∠1,∠2,∠3,∠4的度数.
创新应用
★12.在飞机飞行时,飞行的方向是用飞行路线与实际的南北方向线之间的夹角大小来表示的.如图,用AN(南北线)与飞行线之间顺时针方向夹角作为飞行方向角,从A到达B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D的飞行方向角为145°,试求AB与AC之间夹角及AD与AC之间夹角的大小.
参考答案
能力提升
1.C
2.A由角平分线的定义可知,∠BOC=∠AOC=∠AOB,∠BOD=∠COD=∠BOC,所以选项A 中,∠COD=∠BOC=∠AOC正确.
3.B根据折叠后的两个角相等,可知∠BFE=(180°-∠1)÷2=65°.
4.D用三角板只能画出度数是15的整数倍的角,因为145不是15的整数倍,所以用三角板不能画出145°的角.
5.C本题没有给出图形,所以∠AOB和∠BOC的位置不确定,有两种情况.
6.180°由图可知,∠AOC+∠DOB=∠AOB+∠COD=90°+90°=180°.
7.70°由OE平分∠COB,得∠BOC=2∠EOB=2×55°=110°,所以∠BOD=180°-∠BOC=180°-110°=70°.
8.135°由角平分线的定义,得∠COM=∠AOC=×40°=20°,∠DON=∠BOD=×50°=25°,所以∠MON=180°-∠COM-∠DON=180°-20°-25°=135°.
9.解:(1)153°19'42″+26°40'28″=179°59'70″
=179°60'10″=180°10″.
(2)90°3″-57°21'44″=89°59'63″-57°21'44″
=32°38'19″.
(3)33°15'16″×5=165°75'80″
=165°76'20″=166°16'20″.
10.分析:OD,OE分别是∠AOB,∠BOC的平分线,而∠DOE刚好是∠AOB与∠BOC和的一半.
解:因为OD是∠AOB的平分线,OE是∠BOC的平分线,
所以∠DOB=∠AOB,∠EOB=∠BOC.
因为∠DOE=∠DOB+∠EOB,
所以∠DOE=∠AOB+∠BOC
=(∠AOB+∠BOC)
=∠AOC=×130°=65°.
11.分析:∠1,∠2,∠3,∠4构成一个周角为360°,再根据题目中∠1∶∠2∶∠3∶∠4=1∶1∶3∶4,所以可以用代数方法解决本题.
解:设∠1=x°,
则∠2=x°,∠3=3x°,∠4=4x°.
依题意,得x°+x°+3x°+4x°=360°,
9x°=360°,则x°=40°.
故∠1=40°,∠2=40°,∠3=120°,∠4=160°.
创新应用
12.解:由题意,知∠NAB=35°,∠NAC=60°,
所以∠BAC=∠NAC-∠NAB=60°-35°=25°.
因为∠NAC=60°,∠NAD=145°,
所以∠DAC=∠NAD-∠NAC=145°-60°=85°.
答:AB与AC之间的夹角为25°,AD与AC之间的夹角为85°.。

相关文档
最新文档