光纤通信实验三 光接收器实验
光纤通信实验报告

光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。
光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。
本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。
一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。
它主要包括光信号的产生、调制、传输和接收等过程。
光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。
2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。
光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。
二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。
2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。
3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。
4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。
三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。
2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。
3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。
4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。
光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。
光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。
光通讯实验报告

一、实验目的1. 理解光通讯的基本原理和光传输的特性。
2. 掌握光通讯系统的基本组成和功能。
3. 通过实验验证光通讯系统中的信号调制、传输和接收过程。
4. 分析光通讯系统中的噪声影响及降低噪声的方法。
二、实验原理光通讯是利用光波作为信息载体,通过光纤传输信息的一种通信方式。
其基本原理是利用激光作为光源,将电信号调制到光波上,通过光纤传输,然后在接收端将光信号解调为电信号。
三、实验器材1. 光源:激光二极管2. 发射器:光发射模块3. 接收器:光接收模块4. 光纤:单模光纤5. 光纤连接器:SC型光纤连接器6. 光功率计7. 光衰减器8. 光耦合器9. 光纤测试仪10. 计算机及实验软件四、实验步骤1. 光源调制实验:(1)将激光二极管连接到光发射模块。
(2)将光发射模块连接到光纤。
(3)利用实验软件设置调制信号,观察光功率计的输出变化,验证调制效果。
2. 光纤传输实验:(1)将光发射模块和光接收模块分别连接到光纤的两端。
(2)将光衰减器连接到光发射模块和光接收模块之间。
(3)调整光衰减器,观察光功率计的输出变化,验证光纤传输效果。
3. 噪声分析实验:(1)将光接收模块连接到光纤。
(2)在光接收模块前加入噪声源,观察光功率计的输出变化,分析噪声对传输效果的影响。
(3)采用滤波器等方法降低噪声,观察光功率计的输出变化,验证降低噪声的效果。
4. 光耦合器实验:(1)将光发射模块和光接收模块分别连接到光耦合器的两个端口。
(2)调整光耦合器,观察光功率计的输出变化,验证光耦合器的性能。
5. 光纤测试实验:(1)将光纤连接器连接到光纤。
(2)利用光纤测试仪测量光纤的长度、损耗等参数。
五、实验结果与分析1. 光源调制实验:通过实验,验证了调制信号成功调制到光波上,并观察到光功率计的输出变化。
2. 光纤传输实验:通过实验,验证了光纤传输效果,并观察到光衰减器对传输效果的影响。
3. 噪声分析实验:通过实验,分析了噪声对传输效果的影响,并验证了降低噪声的方法。
光纤通信_实验3实验报告 接收机灵敏度和动态范围测量实验

课程名称:光纤通信实验名称:实验3 接收机灵敏度和动态范围测量实验姓名:班级:学号:实验时间:指导教师:得分:一、实验目的1、了解和掌握光收端机灵敏度的指标要求和测试方法。
2、掌握误码仪的使用方法。
二、实验器材主控&信号源模块25 号光收发模块23 号光功率计&误码仪模块三、实验原理光接收机的性能指标主要包括灵敏度和动态范围。
(1)灵敏度灵敏度是光端机的重要特性指标之一,它表示了光接收机接收微弱信号的能力,是系统设计的重要依据。
光接收机灵敏度的定义是:在给定误码率或信噪比条件下,光接收机所能接收的最小平均光功率。
在测灵敏度时应注意 3 点:1、在测量光接收机灵敏度时,首先要确定系统所要求的误码率指标。
对不同长度和不同应用的光纤数字通信系统,其误码率指标是不一样的。
例如,在短距离光纤数字通信系统中,要求误码率一般为,而在420km 数字段中,则要求每个中继器的误码率为。
对同一个光接收机来说,当要求的误码率指标不同时,其接收机的灵敏度也就不同。
要求误码率越小,则灵敏度就越低,即要求接收的光功率就越大。
因此,必须明确,对某一接收机来说,灵敏度不是一个固定不变的值,它与误码率的要求有关。
测量时,首先要确定系统设计要求的误码率,然后再测该误码率条件下的光接收机灵敏度的数值。
2、要注意光接收机灵敏度定义中的光功率是指最小平均光功率,而不是指任何一个在达到系统要求的误码率时所对应的光功率。
因此,要特别注意“最小”的概念。
所谓“最小”,就是指当接收的光功率只要小于此值,误码率立即增加而达不到要求。
应该指出,对某一接收机来说,光功率只要在它的动态范围内变化,都能保证系统要求的误码率。
但灵敏度只有一个,即接收机所能接收的最小光功率。
3、灵敏度指的是平均光功率,而不是光脉冲的峰值功率。
这样,光接收机的灵敏度就与传输信号的码型有关。
码型不同,占空比不同,平均光功率也不同,即灵敏度不同。
在光纤数字传输系统中常用的 2 种码型NRZ 码和RZ 码的占空比分别为100%和50%。
光纤通信实验报告

光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。
在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。
实验一: 光的传播特性我们首先对光的传播特性进行了研究。
选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。
通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。
实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。
我们通过实验对光纤中损耗和色散的影响进行了测试。
损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。
这是由于光纤中存在材料吸收和散射等因素造成的。
为了减小损耗,优化光纤的材料和结构是很重要的。
色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。
实验结果显示,不同波长的光信号到达时间存在差异。
这是由于光纤中折射率随波长变化而引起的色散效应。
为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。
实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。
通过实验,我们对这两种光纤的传输特性进行了研究。
我们首先测试了单模光纤。
结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。
然后我们进行了多模光纤的实验。
实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。
因此,多模光纤适用于近距离传输和低速通信。
结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。
我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。
然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。
光纤通信实验

光纤通信实验简介光纤通信是一种利用光纤作为传输介质的通信方式,它具有高带宽、低损耗、抗干扰等优点。
在光纤通信实验中,我们将了解光纤通信的原理、组成部分以及实验步骤。
实验目的本实验旨在让学生了解光纤通信的原理,掌握光纤通信的基本操作。
实验材料•光纤通信实验箱•光纤通信模块•光源•接收器•光纤缆实验步骤第一步:准备工作1.将光纤通信模块安装在实验箱上。
2.将光纤缆连接到光纤通信模块的发光端口和接收端口。
第二步:设置光源和接收器1.将光源连接到发光端口。
2.将接收器连接到接收端口。
第三步:传输数据1.在电脑上打开串口通信软件。
2.将光纤通信模块连接到电脑的串口。
3.输入要传输的数据,并发送给光纤通信模块。
4.在串口通信软件中接收光纤通信模块发送的数据。
第四步:观察实验结果1.观察光纤通信模块发出的光信号。
2.观察接收器接收到的光信号。
3.比较发送的数据和接收到的数据,判断是否传输成功。
实验注意事项1.在操作光纤通信模块时,要注意避免弯折光纤,以免造成光信号的损失。
2.在调试光纤通信模块时,要注意调节光源和接收器的位置,以获取较好的信号接收效果。
3.在传输数据时,要确保光纤通信模块的参数与串口通信软件的参数相匹配,以确保数据传输的正确性。
实验结果分析根据观察到的实验结果,我们可以判断光纤通信模块的性能和传输质量。
如果发送的数据与接收到的数据完全一致,说明光纤通信正常工作。
如果有数据传输错误或丢失,可能需要检查光纤连接是否良好或调整光源和接收器的位置。
结论通过本次实验,我对光纤通信的原理和操作有了更深入的了解。
光纤通信技术具有很多优势,可以应用在许多领域,如通信网络、数据传输等。
同时,我也体会到了在实验中需要仔细操作和严密观察实验结果的重要性。
参考文献参考文献可以列举光纤通信实验的相关教材、学术论文等信息。
光纤通信实训报告

光纤通信实训报告
一、实训目的
光纤通信是一种高速、高带宽的通信方式,具有传输速度快、抗干扰能力强等优点。
本次实训旨在通过实际操作,掌握光纤通信的基本原理和实验操作技能,提高学生对光纤通信的理论知识的理解和应用能力。
二、实训内容
1. 光纤通信系统的组成和工作原理;
2. 光纤的制备和连接;
3. 光纤通信系统的性能测试和故障排除。
三、实训过程
1. 光纤通信系统的组成和工作原理
光纤通信系统主要由光源、光纤、光接收器和信号处理器四部分组成。
其中,光源产生光信号,光纤用来传输光信号,光接收器接收光信号并转换为电信号,信号处理器对电信号进行处理。
2. 光纤的制备和连接
光纤通信系统中的光纤需要进行制备和连接。
制备光纤的过程包括拉制、拉伸和涂覆等步骤。
连接光纤的方法有光纤对接、光纤接头
等。
3. 光纤通信系统的性能测试和故障排除
为了确保光纤通信系统的正常工作,需要对其性能进行测试和故障排除。
性能测试包括光损耗测试、插入损耗测试等;故障排除包括光纤切断、光纤接头损坏等情况的排查和修复。
四、实训成果
通过本次实训,学生们掌握了光纤通信系统的组成和工作原理,了解了光纤的制备和连接方法,学会了对光纤通信系统进行性能测试和故障排除。
同时,实训过程中培养了学生们的动手能力和团队合作精神。
五、实训总结
光纤通信是当今通信领域的重要技术,具有广阔的应用前景。
通过本次实训,学生们不仅增加了对光纤通信的理论知识的掌握,还提高了实际操作的能力。
希望学生们能够继续深入学习光纤通信技术,为我国通信事业的发展做出贡献。
基本光纤系统实验报告

一、实验目的1. 理解光纤通信的基本原理和系统组成。
2. 掌握光纤的传输特性,如损耗、色散等。
3. 学习光纤连接器、耦合器等无源器件的使用方法。
4. 通过实验验证光纤通信系统的性能。
二、实验原理光纤通信是利用光波在光纤中传输信息的一种通信方式。
其基本原理是:将电信号转换为光信号,通过光纤传输,再由光接收器将光信号转换回电信号。
光纤通信系统主要由以下几部分组成:1. 光源:产生光信号,如激光二极管(LED)或发光二极管(LED)。
2. 光纤:传输光信号的介质,具有低损耗、宽带宽、抗干扰等优点。
3. 光耦合器:将光信号从光源耦合到光纤中。
4. 光接收器:将光信号转换为电信号。
5. 无源器件:如连接器、耦合器、衰减器等,用于连接和调节光信号。
三、实验仪器与设备1. 光纤通信实验系统2. 激光二极管(LED)光源3. 光纤4. 光耦合器5. 光接收器6. 双踪示波器7. 光功率计8. 光纤连接器9. 光纤耦合器10. 光衰减器四、实验内容与步骤1. 光纤连接与测试(1) 将激光二极管(LED)光源、光纤、光耦合器、光接收器等设备连接成光纤通信系统。
(2) 使用光纤连接器将光纤连接到光耦合器上,确保连接牢固。
(3) 使用光功率计测量光信号的输入功率和输出功率,记录数据。
2. 光纤传输特性测试(1) 测试不同长度光纤的传输损耗,记录数据。
(2) 测试不同波长光信号的传输损耗,记录数据。
(3) 测试光纤的色散特性,记录数据。
3. 无源器件测试(1) 测试光耦合器的插入损耗和隔离度。
(2) 测试光纤连接器的插入损耗和回波损耗。
(3) 测试光衰减器的衰减量。
4. 系统性能测试(1) 测试系统的误码率,记录数据。
(2) 测试系统的信噪比,记录数据。
五、实验结果与分析1. 光纤连接与测试光纤连接成功,光信号传输正常。
光功率计测得的输入功率和输出功率符合预期。
2. 光纤传输特性测试(1) 随着光纤长度的增加,传输损耗逐渐增加。
光纤传输实验报告

光纤传输实验报告光纤传输实验报告引言在现代科技的快速发展中,光纤传输技术成为了信息传输领域的重要组成部分。
光纤传输具有高速、大容量、低损耗等优势,被广泛应用于通信、数据传输、医疗设备等领域。
本实验旨在通过实际操作,验证光纤传输的原理和性能,并了解其在实际应用中的局限性。
实验一:光纤传输原理验证实验目的:验证光纤传输的原理,了解光纤的基本结构和工作原理。
实验步骤:1. 准备一根光纤,将其两端分别连接到光源和接收器。
2. 打开光源,观察接收器是否能够接收到光信号。
3. 通过改变光源的强度和频率,观察接收器对光信号的响应情况。
实验结果与分析:在实验中,我们观察到当光源工作时,接收器能够接收到光信号,并且随着光源强度和频率的变化,接收器对光信号的响应也相应变化。
这说明光纤传输是通过光信号的传输来实现的。
光信号在光纤中以全内反射的方式传播,通过光纤的折射和反射,实现信号的传输。
实验二:光纤传输性能测试实验目的:测试光纤传输的带宽、传输距离和传输速率。
实验步骤:1. 准备一根长度为100米的光纤,将其两端分别连接到光源和接收器。
2. 设置测试仪器,记录光纤传输的带宽、传输距离和传输速率。
3. 通过改变光源的强度和频率,观察带宽、传输距离和传输速率的变化情况。
实验结果与分析:在实验中,我们测试了光纤传输的带宽、传输距离和传输速率。
结果显示,光纤传输具有较大的带宽,能够支持高速数据传输。
传输距离方面,光纤传输的损耗较小,可以支持较长的传输距离。
传输速率方面,光纤传输速率高,能够满足大容量数据传输的需求。
实验三:光纤传输的局限性实验目的:了解光纤传输在实际应用中的局限性。
实验步骤:1. 将光纤连接到一个强光源和一个接收器。
2. 改变光纤的弯曲程度,观察光信号的传输情况。
3. 改变光纤连接的角度,观察光信号的传输情况。
实验结果与分析:在实验中,我们观察到当光纤被弯曲或连接角度改变时,光信号的传输会受到影响。
光纤传输需要保持较小的弯曲半径和恰当的连接角度,以确保光信号的传输质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信实验三光接收器试验
1 实验目的
1.1 学习P-N光电二极管的光电转换原理,了解它的缺点
1.2 学习了解PIN光电二极管光电转换的优点
1.3 测试HFBR2416T PIN光接收器组件的光电转换效率。
作出输入光功率与电信号输
出幅度关系曲线图,即响应度曲线图。
图中横坐标是输入光功率的值,纵坐标是电信号的输出幅度。
2 实验内容
2.1 测试光源采用上一次实验中的光源,试验报告中要注明光源是数字调制的还是模拟
调制的。
注入给PIN组件的光功率范围5μw —50μw ,以5μw为分隔点。
3P-N光电转换原理
试验讲义只能对P-N光电二极管的工作原理作简单的回忆,要想深入了解它的工作原理,同学们可以找相关的书籍去阅读。
图1是P-N 光电二极管工作原理图。
-
图3.1 P-N 光电二极管工作原理
外界的光子(也就是光)射入光电二极管的PN结上,分离出电子和空穴,这些自由的载流子的流动形成电流,外部的反相偏压会增强这种效果。
我们关注光电二极管几个特性:1输入输出特性,2响应度
光电二极管的输入是光功率(P)输出是电流,由于该电流是光产生的,因此又称为光电流(Ip)它所遵循的工作原理是:射入光电二极管激活区的光子越多,产生的载流子越多,电流就越大。
因此Ip与P成正比:
Ip=R P
其中R是常量,这种关系如图2所示。
I P(mA)
图3.2 光功率与光电流之间的关系图
图的斜率是光电二极管的一个重要参数称为响应度,即R(A/W)。
它的定义如下: R(A/W)=Ip/p
R 的典型值的范围是从0.5A 到1.0A/W 。
该特性表明光电二极管将光信号转换为电信号的效率。
图3.2看出当光功率继续增加到一定值光电流并不跟随作线性增长,而进入饱和状态。
通过深入分析我们可以了解到,P-N 光电二极管 它的稳定性较不高,难以提高它的响应度,它的频率特性也很差。
现代光通信中都使用P-I-N 光电二极管作光检测器。
与P-N 光电二极管比较,它的稳定性、响应度都远远超过了P-N 光电二极管,而且,它的噪声低,特别是带款可以达到110GHz 以上。
本次实验所用的HFBR-2416T 就是一只P-I-N 光接收器组件。
所谓P-I-N 接收器组件就是将P-I-N 光电二极管和前置互阻抗放大器做在一块基片上。
前置放大器不仅需要放大信号,而且还要将光电流转化为电压。
后一功能是通过一个带负反馈的放大器实现的。
这样,在光前端的光电二极管与前置放大器之间使用了另一个连接——互阻抗设计。
带负反馈的放大器的输入阻抗称为互阻抗。
HFBR-2416T 是惠普公司生产的P-I-N 光接收器组件。
工作带宽125MHz 。
工作波长850nm 。
其他一些特性见下面图表,供同学们参考。
底视图
第一脚标记
图3.3 HFBR-2416T 外形图与管脚功能
表3.1 PIN 接收组件HFBR-2416T 绝对参数:
表3.2 PIN接收组件HFBR-2416T性能参数:
图3.4 波长与响应度关系曲线
图3.5 HFBR-2416T内部电原理图
4实验中要注意的几个问题
注入给P-I-N组件的光功率是按5μw分隔的,而光源的光功率输出是恒定的,要想完成光功率的强弱调整,标准的做法是在光源与接收组件之间串接一个连续的可调的光衰减器来实现的,实验室目前尚不具备这个条件。
解决这个问题可以采用在光源与接收组件之间串接一个活动光纤连接器,通过改变两根尾纤在连接器中的连接距离,从而达到改变输出光功率强弱变化的目的。
图3.6是我们做实验示意图,通过分析可知光接收组件的输出端是一个射极跟随器,射极e与外部没有接电容,电路设计成直流耦合输出,一旦在实验中不小心将组件的输出端(2脚)与电路地短路,组件的输出三极管必烧毁无疑,而且不可修复。
无论LED 还是P-I-N组件都是价格昂贵的器件,为了避免事故的发生,实验中规定不允许用仪表直接测试光器件的引脚,具体做法在组件2脚焊接一个电容器作隔离输出,供示波器测量。
图3.6 光接收器响应度测试原理图
5 试验中使用的仪表:万用表、光功率计、直流稳压电源、示波器、自制的光源。
6 安全注意事项:不要用眼睛直视光纤的末端,这一点非常重要,否则,眼睛可能永久
损伤。
不要用眼睛看光源的输出孔,这一点非常重要。
否则,眼睛可能
永久损伤。
必须记住,我们工作中接触的光大多数是不可见光。
从光
谱与颜色对应关系可知850nm波长的光呈现红色。
观察LED输出的光
可用一块小镜子通过看反射光的办法进行。
焊接元器件的时候必须关闭电路板上的电源。
7实验报告要求
7.1 通过实验画出给定光接收器响应度曲线。
测试之前,拟定实施步骤。
7.2 自己设计方波发生器、光源驱动电路。
7.3 更换不同波长的光源重测7.1内容,记录结果,体会光接收器件,波长与响应度
关系。