原子的磁性及物质的顺磁性
二 物质的磁性(1)

物质的磁性
-物质磁性的机理:原子磁矩,抗磁性和顺磁性机理,铁磁性、反铁磁性和亚铁磁性理论.
2.1 原子磁 -物质由原子组成,原子磁矩主要来自电子-电子的轨道磁矩和自旋磁矩. 矩
(1)原子核外电子排布规律 )
●
量子力学用4个量子数描写电子的状态:主量子数n、角量子数 l、
磁量子数ml 和自旋量子数ms , (n, l, ml , ms) 一组量子数代表一个状态 -根据泡利不相容原理和能量最低原理,多电子原子中电子的分布规 律为:
v v v 在L-S 耦合中,总角量子数是总轨道角量子数和总自旋量子数的矢量和 J = L + S .
确定量子数 L、S、J 的一个经验规则是洪德 (Hund) 定则: ① 各电子自旋 si 的排 列,是使总自旋 S 取 最大值.
泡利原理要求自旋同向电子分开, 而自旋同向排列的库仑相互作用使 系统能量较低-先同向排列,再反 向排列(右图-容纳14个电子的4f 壳层由9个电子占据) 电子同方向绕核旋转可以避免相互靠 近而增大库仑能.
( ps )H = msh = ±(1 2)h
实验表明,与自旋角动量相联系的自旋磁矩 s 在外场方
s
(
)
s
H
=
±
B
r
向的投影大小等于一个玻尔磁子,但方向有正有负,即
+B
v v H H
( s ) H = ± B
0
s
r
根据以上两式并考虑到 (s )H 和 ( ps )H 方向相反,得 e ( s ) H = ( p s ) H ,因此
原子磁矩的矢量合成
r
r
r
(J )H = gJ mJ B
式中,mJ = J ,J +1,L, J ,取2L+1个可能值.
物理磁现象知识点总结

物理磁现象知识点总结磁现象是研究物质在磁场中的行为规律和特点的一门学科,它是固态物理学中的一个重要研究方向。
在磁现象中,人们主要研究磁材料的磁性、磁场对物质的影响和相互作用等内容。
磁现象不仅在物理学中有着重要的地位,同时也在工程技术、材料科学、信息技术等领域有着广泛的应用。
磁现象的基本概念磁现象是研究物质在磁场中的行为规律和特点的一门学科,它是固态物理学的一个重要分支。
磁现象的研究对象是磁材料,主要是研究磁材料的磁性、磁场对物质的影响、磁场作用下的物质相互作用等内容。
磁现象的基本概念主要包括以下几个方面:1.原子磁矩在无外磁场的情况下,原子内部存在着自旋磁矩和轨道磁矩,这两种磁矩所产生的磁场分别称为自旋磁场和轨道磁场。
2.磁性物质的分类根据磁性的强弱,磁物质可以分为铁磁性物质、铁氧体磁性物质、顺磁性物质和抗磁性物质。
3.磁化过程当一个物质被置于外磁场中时,原子的磁矩会发生重新排列,从而使整个物质产生磁化现象。
磁化过程包括顺磁性、铁磁性和抗磁性。
4.磁场对物质的作用当物质置于外磁场中时,它会受到磁场的作用,表现出一系列特定的磁性响应,包括磁化、铁磁共振、磁变形、磁滞等现象。
磁性的基本概念磁性是指物质表现出的对外部磁场的相互作用的特性。
磁性是物质内部微观结构和原子磁矩的表现。
在磁现象中,磁性物质根据其相互作用的强弱和性质的不同,可以分为铁磁性、顺磁性、抗磁性和铁氧体磁性。
1.铁磁性物质铁磁性物质是一种直径变化明显的物质,其分子、原子或离子中的磁矩在外磁场作用下会有明显的改变。
在外磁场作用下,铁磁性物质会发生磁化,形成明亮的磁极。
2.顺磁性物质顺磁性物质是指在外磁场作用下,其分子、原子或离子中的磁矩会呈线性增加的物质。
顺磁性物质在外磁场作用下,表现出明显的磁场增强效应。
3.抗磁性物质抗磁性物质是指在外磁场作用下,其分子、原子或离子中的磁矩会呈线性减小的物质。
抗磁性物质在外磁场作用下,表现出明显的磁场减弱效应。
原子的磁性及物质的顺磁性

P S S S 1
在外场方向分量:
P s H
m
s
2
(自旋磁量子数:
1
m
s
) 2
自旋磁矩与自旋角动量
的关系为:
μ
s
H
=-
e m Ps H
方向相反
μs
e m
P
=-
s
sP s
其中: s me ,为自旋磁力比:, s 且 2l s的绝对值:
s
SS1 e 2
m
SS1B
SmS
晶体中的晶体场效应 a、晶体场对磁性离子轨道的直接作用
引起能级分裂使简并度部分或完全解除,导致 轨
道角动量的取向处于被冻结状态。 b、晶体场对磁性离子自旋角动量的间接作用。
通过轨道与自旋耦合来实现。常温下,晶体中 自
旋是自由的,但轨道运动受晶体场控制,由于 自
旋-轨道耦合和晶体场作用的联合效应,导致 单
L= ∑ml III. 次壳层未半满时,
J=|L-S|;
IV.
次壳层半满或超过半满时,J=L+S
第三节 稀土及过渡元素的有效波 尔磁子
一、稀土离子的顺磁性 1、稀土元素的特征: 1s22s22p63s23p63d104s24p64d104f0~145s25p65d0~16s2 最外层电子壳层基本相同,而内层的4f轨道从La到
Cu2+(3d9),置于正八面体晶体中,电子组态为:
t2g6eg3 考虑d10电子组态,其电子云分布为球形对称。去
掉一个dx2-y2电子 (t2g6)(dz2)2(dx2-y2)1 (这种状态在x 与y轴方向,电子出现几率小)导致Cu2+原子核内正 电荷在x-y轴方向所受屏蔽较小从而Cu2+原子核吸
【原子物理 大连理工】第6节 抗磁性、顺磁性和铁磁性

铁磁性
铁磁性物质:Fe、Co、Ni,以及某些稀土元素和一些氧化物。 铁磁性:在受外磁场磁化时,显示比顺磁性强很多的磁性,而且去了磁场之后 ,还保留了磁性。
为什么铁磁质有这么大的磁性?因为它存在磁畴。
磁畴是铁磁质中已经存在的许多自发的均匀磁化小区域。
未加外磁场之前,各个磁畴有各不相同的取向,对 外的效果相互抵消;加外磁场之后,各磁畴的磁矩 方向向外磁场转动,对外就显示较强的宏观磁性。
平均磁矩
J
eE / KT z
Mg M J
eMgB / KT
B
eE / KT
J
eMgB / KT
M J
可算出平均磁矩为
J (J 1)g2B2B
3kT
磁化率:
o J (J 1)g2B2
H
3KT
o J 2 (一个原子磁化率)
3KT
磁化率与绝对温度成反比,与实验得到的居里定律一致。
综合(1)(2),得到一个原子的磁化率:
0Ze2
r2
0
2 J
6m
3kT
对于 J0 的原子在磁场作用下有顺磁性也有抗磁性。在室温下,顺磁性磁 化率比抗磁性磁化率大2或3个数量级,物体表现出顺磁性。
对于J=0的原子,上式第二项为0,就只有抗磁性了。 物体的宏观磁性不仅取决于原子的磁性,而且取决于分子的构成。如JN=3/2, JO=2,但是N2的总角动量为零,因而表现为抗磁性;而O2的总角动量却不为零, 为顺磁性。
铁磁质中起主要作用的是电子的自旋磁矩。电子自旋磁矩可以不靠外磁场、在小 范围内取得一致方向而形成磁畴。
(1)电子轨道在磁场中旋进产生的宏观磁性
M
dPl dt
Pl sin d
dt
物质顺磁性和抗磁性的产生原因

物质顺磁性和抗磁性的产生原因顺磁性和抗磁性的原因磁性是物质的一种基本属性。
物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。
铁磁性和亚铁磁性物质为强磁性物质~抗磁性和顺磁性物质为弱磁性物质 ( 参考文献1 )。
从上面的介绍看出,任何物质都会显示磁性,并且物质从顺磁性到反磁性、磁性从强到弱是逐渐变化的,没有一个明显的界限。
物质的磁性到底是怎么产生的,本文就此观点提出我自己的看法。
一、现在的理论给人们带来的疑惑1、顺磁性:现在人们认为,电子磁矩由电子的轨道磁矩和自旋磁矩组成。
在晶体中~电子的轨道磁矩受晶格的作用~其方向是变化的~不能形成一个联合磁矩~对外没有磁性作用。
因此~物质的磁性不是由电子的轨道磁矩引起~而是主要由自旋磁矩引起。
每个电子自旋磁矩的近似值等于一个波尔磁子。
是原子磁矩的单位。
因为原子核比电子重2000倍左右~其运动速度仅为电子速度的几千分之一~故原子核的磁矩仅为电子的千分之几~可以忽略不计。
( 参考文献2 ) 我认为上面这段论述是不合理的,我们都知道,原子是由原子核和核外电子组成,原子核又是由质子和中子组成,原子核的体积约为原子体积的几千万亿分之一,(半径约为原子的十万分之一 ).打个比方,原子相当于足球场那么大,而原子核则只有一只蚂蚁那么大。
,参考文献 3,。
电子的质量约为质子质量的1/1836 ( 参考文献4 )。
中子能够通过β衰变过程变成质子、电子和反中微子~ (参考文献5 )。
从这些论述可想而知,电子的体积会有多大,电子的体积不会超过质子和中子体积的千分子一。
即从电子的角度来看原子,原子就象是一个非常巨大的宇宙一样。
由于电子的体积很小很小,即使电子自旋产生的磁场较强,它影响的范围必然很小很小,不可能影响到原子以外,因此电子自旋产生的磁场在宏观上是显示不出来的,如果能显示出来,电子产生的磁场就强大的无法想象了。
上面还提到原子核的磁矩很小,可以忽略,这个观点我觉得也是错误的,人们现在只是从质量上去考虑对磁矩的影响,而把其它因素忽略了,比方说原子核的体积。
什么是顺磁性材料

什么是顺磁性材料
顺磁性材料是指在外加磁场作用下,材料中的磁矩方向与外磁场方向相同,即
与外磁场方向一致,这种材料叫做顺磁性材料。
顺磁性材料是一种特殊的磁性材料,它在外加磁场下会产生磁化现象。
这种磁
化是由材料内部的原子或分子的磁矩在外加磁场下重新排列而产生的。
顺磁性材料的磁化方向与外磁场方向一致,而且磁化强度随外磁场的增加而增加,随外磁场的减小而减小。
这种磁性特性使得顺磁性材料在许多领域都有着重要的应用价值。
顺磁性材料主要包括一些金属、合金和化合物,比如铝、铜、银、金等金属,
以及氧化铁、氧化铝、氧化铜等化合物。
这些材料在外加磁场下都会表现出顺磁性。
顺磁性材料在生活和工业中有着广泛的应用。
比如在医学领域,顺磁性材料被
用于磁共振成像(MRI)中,利用其在外磁场下的磁化特性来获取人体内部的影像信息。
在电子领域,顺磁性材料被用于制造电子元器件和磁存储材料,以及在磁记录和磁传感器中也有着重要的应用。
此外,在矿产勘探、环境监测、材料制备等领域,顺磁性材料也都发挥着重要的作用。
总的来说,顺磁性材料是一类在外加磁场下表现出磁化特性的材料,具有重要
的应用价值。
它们在医学、电子、矿产勘探等领域都有着广泛的应用前景,对于推动科学技术的发展和社会的进步起着重要的作用。
希望通过对顺磁性材料的研究和应用,能够进一步拓展其在各个领域的应用,为人类社会的发展做出更大的贡献。
原子的磁矩、顺磁性和抗磁性

,
如果
,
二 J有 J l
L
一
S
,
如 果 电 子 个数 超过 次 壳层 满额 的 半数
。
就有
J
二
I 十 S
J
。
据 此 可 以 直 接 计 算 出原 子 基 态 的 磁 矩
,
在 附表 中 列 举 了 常 见 的稀 上 族 离 子 和 铁 族 离 子 的 电子 壳 层填充 倩 况 和 洪特 定则 计 算 出来 的 以 自 然 单位表 示 的原 子 磁矩 值
1
:
_ 一
`
f
I
_ 一
U才
0
「
扭
丫
一、
)
—
1
Z m )
L
}M
:
}d t
_
2 m
T
IM I
,
按 照右手娜旋 规 则 以 垂直轨道 平 面 的矢 量 来表 示 此 面 积
_
则有
:
寸
才飞
l
。
t Q l
=
另外
,
电子 轨道运 动形 成一个闭 合 电 流
一
几
—
=
2
价 止
U
:
,
O
几
下犷
。
式 中负号表示 电子 电荷 为 负
,
M 与 B 的 作用 大 当 求 平 均值 时
,
M
M , 迅速地 绕着 M , 旋 动
, , ;
,
而 M 本 身则 以 较慢 的速 度 绕 着 对能 里 △ E 有 贡献
△E
,
`
B旋 动
,
只有M
:
M 沿 M 方 向 的 分 凰才 会
磁性物理学第一章物质磁性概述-磁性物理

如氧、铝、铂等金属,以及某些非金属如氮、氧等。
顺磁性特点
顺磁性物质的磁化率比抗磁性物质大,但仍然是微弱的。它们同样 不会自发磁化,且在外磁场撤去后无剩磁。
铁磁性物质
01
铁磁性定义
铁磁性是指物质在外磁场作用下,能产生很强磁化现象,且可以自发磁
化形成磁畴。
02
铁磁性物质举例
如铁、钴、镍及其合金等。
物质磁性影响因素分
04
析
温度对物质磁性影响
居里温度
物质磁性随温度变化的重要参数,当温度高于居里温度时,铁磁性物质转变为顺 磁性。
磁化率与温度关系
对于顺磁性物质,磁化率随温度升高而降低;对于铁磁性物质,在居里温度以下 磁化率随温度升高而降低,在居里温度以上转变为顺磁性。
压力对物质磁性影响
压力效应
磁性分类
根据物质在磁场中的表现,可分为铁 磁性、亚铁磁性、反铁磁性、顺磁性 和抗磁性等。
物质磁性来源
电子自旋磁矩
电子自旋产生的磁矩是物质磁性的主要来源。
电子轨道磁矩
电子绕原子核运动时产生的磁矩,对物质磁性有 贡献但通常较小。
原子核自旋磁矩
原子核自旋产生的磁矩,对物质磁性的贡献极小, 通常可忽略不计。
尔元件等,实现非接触式测量和自动控制。
磁记录材料应用领域
硬盘驱动器
磁记录材料用于制造硬盘驱动器的存储介质,实现数据的长期可 靠存储。
磁带
利用磁记录材料的磁化特性,制造磁带等线性存储设备,用于数 据的备份和归档。
磁卡
磁记录材料用于制造各种磁卡,如信用卡、门禁卡等,实现身份 识别和交易安全。
总结与展望
物质在压力作用下,原子间距减小,电子云重叠增加,导致 交换作用增强,从而影响物质的磁性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★无论那种耦合, J=g J J ( J 1) B 均成立。 4、组成分子或宏观物体的原子的平均磁矩一般不等 于孤立原子的磁矩。这说明原子组成物质后,原 子之间的相互作用引起了磁矩的变化。因此计算 宏观物质的原子磁矩时,必须考虑相互作用引起 的变化。 5、决定多电子原子基态的量子数L、S与J,可依照 Hund’s Rule计算如下: I. 在Pauli原则允许下,S取最大值,S= ∑ms II. 总轨道量子数L在上述条件下可能的最大值, L= ∑ml III. 次壳层未半满时, J=|L-S|; 次壳层半满或超过半满时,J=L+S
μL
μJ μL-S
μS
3 J ( J 1) S ( S 1) L( L 1) J J ( J 1) B 2 J ( J 1)
3J ( J 1) S ( S 1) L( L 1) 令:g J 2 J ( J 1) 则: J=g J J ( J 1) B
e , 为自旋磁力比,且: s 2 l m s的绝对值: 其中: s
s
e S S 1 2 S S 1 B m
S mS
1. 总自旋磁矩在外场方向的分量为:
μ s H =2ms B , ms 1/ 2, 最大分量: [μ s H ] max 2S B
晶体中的晶体场效应 a、晶体场对磁性离子轨道的直接作用 引起能级分裂使简并度部分或完全解除,导致轨 道角动量的取向处于被冻结状态。 b、晶体场对磁性离子自旋角动量的间接作用。 通过轨道与自旋耦合来实现。常温下,晶体中自 旋是自由的,但轨道运动受晶体场控制,由于自 旋-轨道耦合和晶体场作用的联合效应,导致单 离子的磁各向异性。
第二章
第一节 第二节 第三节
原子的磁性及物质的顺磁性
电子的轨道磁矩和自旋磁矩 原子磁矩 稀土及过渡元素的有效玻尔磁子
第四节
第五节
轨道角动量的冻结(晶体场效应)
朗之万顺磁性理论 返回 结束放映
第一节
电子的轨道磁矩和自旋磁矩
物质的磁性来源于原子的磁性,研究原子磁性是研究 物质磁性的基础。 原子的磁性来源于原子中电子及原子核的磁矩。 原子核磁矩很小,在我们所考虑的问题中可以忽略。 电子磁矩(轨道磁矩、自旋磁矩) ——→原子的磁矩。 即: 电子轨道运动产 生电子轨道磁矩 电子自旋产生电 子自旋磁矩
一、晶体场劈裂作用 考虑到晶体场与L-S 耦合作用,晶体系统的哈密 顿量为: 2 h Ze 2 e2 2 L i Si eV (r )
2me
i
i
ri
r
i j ij i
0 1
等式中间第一项为第i个电子的动能,第二项为电子 势能,第三项为原子内电子的库仑相互作用,第四项为 自旋-轨道相互作用,第五项为中心离子与周围配离子 产生的晶场间相互作用。
e l l (l 1) 2m
令 B
e 9.27310 24 [ A m 2 ] 10 23 [ A m 2 ] 2m
(波尔磁子,电子磁矩 的基本单位) l l (l 1) B
对于多电子系统: l L( L 1)
B
L ml
角量子数 l=0,1,2…n-1 (n个取值)
磁量子数 ml=0、 ± 1、 ± 2、 ± 3 ∙ ∙ ∙ ∙ ∙ ∙ ±l (2l+1个取值) 在填充满电子的次壳层中,各电子的轨道运动分 别占了所有可能的方向,形成一个球体,因此合 成的总角动量等于零,所以计算原子的轨道磁矩 时,只考虑未填满的那些次壳层中的电子——这 些壳层称为磁性电子壳层。
J max g J J B
∴原子磁矩的大小取决于原子总角量子数J。 3、原子中电子的结合大体分三类: a) L-S耦合:各电子的轨道运动间有较强的相互作用 ∑li → L,∑si →S , J=S+L 发生与原子序数较小的原子中(Z<32)。
b)
c)
j-j耦合:各电子轨道运动与本身的自旋相互作 用较强,∑(li+si) → ji,∑ji →J ,Z>82 LS+jj耦合: 32<Z<82
因为受外面 5s25p66s2电子的屏蔽作用,稀土离子 中的4f电子受到外界影响小,离子磁矩与孤立原子相似。
与 =g J3+ J ( J 1) B Sm3+J Eu 除外,原因是他们不能满足hv>>kBT。
二、过渡族元素离子的顺磁性 3d(铁族)、4d(钯族)、5d(铂族)、6d(锕族) 1、结构特征: 过渡元素的磁性来源于d电子,且d电子受外界影 响较大。) 2、有效玻尔磁子
第四节 轨道角动量的冻结 (晶体场效应)
晶体场理论是计算离子能级的一种有效方法,在 物理、化学、矿物学、激光光谱学以及顺磁共振中有 广泛应用。 晶体场理论的基本思想: 认为中心离子的电子波函数与周围离子(配位子) 的电子波函数不相重叠,因而把组成晶体的离子分为 两部分:基本部分是中心离子,将其磁性壳层的电子 作量子化处理;非基本部分是周围配位离子,将其作 为产生静电场的经典处理。配位子所产生的静电场等 价为一个势场——晶体场。
2 Ze 2 0 ri i 2me 0 微扰哈密顿量 1
采用简并态微扰法可计算系统的微扰能量,为此, 须求解方程:
r 1 s E rs 0
1. 弱晶场
e2 L i பைடு நூலகம்i V (r ) rij
第三节
稀土及过渡元素的有效 波尔磁子
一、稀土离子的顺磁性 1、稀土元素的特征: 1s22s22p63s23p63d104s24p64d104f0~145s25p65d0~16s2 最外层电子壳层基本相同,而内层的4f轨道从La到 Lu逐一填充。相同的外层电子决定了他们的共性,但4f电 子数的不同导致稀土元素磁性不同。 2、La系收缩:指La系元素的原子与离子半径随原子序 数的增加而逐渐缩小。 3、稀土离子的有效波尔磁子
构成原子 的总磁矩
物质磁性 的起源
一、电子轨道磁矩(由电子绕核的运动所产生) 由量子力学知:轨道角动量 P l l (l 1)
l e e l Pl Pl 2m 2m e 令 l ,轨道磁力比 2m 则: l l Pl
说明:电子轨道运动产生的磁矩与角动量在数值上成正 比,方向相反。 其中l=0,1,2…n-1 , h 2
不满足洪特规则,导致低自旋态。 发生于共价键晶体和4d,5d,6d等过渡族化合物。 ☆讨论中等晶场情形: 对于3d电子,l=2,角动量可有2l+1 =5个不同取 向,由此形成五重简并能级如下(能量由n决定):
15 xy R r dxy 2 4 r 15 yz t 2 g 项(三重简并) R r d yz 2 4 r 15 zx Rr d zx 2 4 r 15 3 z 2 r 2 R r d z 2 x 2 y 2 2 4 r eg 2 项 2 2 15 x y d R r 2 x2 y2 4 r
注:1、兰德因子gJ的物理意义: 当L=0时,J=S,gJ=2, J=2 S (S 1) B 均来源 于自旋运动。 J= L(L 1) B 均来源于轨 当S=0时, J=L,gJ=1, 道运动。 当1<gJ<2,原子磁矩由轨道磁矩与自旋磁矩共同 贡献。 ∴gJ反映了在原子中轨道磁矩与自旋磁矩对总磁 矩贡献的大小。
R(r)为归一化的径向波函数
选用Richardson等人的近似,Hartfree-Fock解析波函数:
R3d r r 1e
2
1r
2e
2r
其对应的电子轨道波函数形态为:P73 Fig2-8 使3d电子的简并能级分裂的方法: 1. 外加磁场 不同取向的角动量对应不同的磁矩(大小、方向) 不同的磁矩对确定方向的H有不同的位能( u= μJH)磁场使原来简并的能级分裂为五个不同的能 d x2 y 2 级。 3d 五重简并能级
2. 计算原子总自旋角动量时,只考虑未填满次壳层中 的电子。 3. 电子总磁矩可写为: e g P P,g : Lande因子 2m g 1,来源于轨道运动;
g 2,来源于自旋; 1 g 2, 来源于二者
第二节
原子磁矩
由上面的讨论可知,原子磁矩总是与电子的角动 量联系的。 根据原子的矢量模型,原子总角动量PJ是总轨道 角动量PL与总自旋角动量PS的矢量和: PJ PL PS J J 1 总角量子数:J=L+S, L+S-1,…… |L-S|。 原子总角动量在外场方向的分量:
PJ H
mJ
总磁量子数:mJ =J,J-1,……-J 按原子矢量模型,角动量PL与PS绕PJ 进动。故μL与 μS也绕PJ进动。
μL与μS在垂直于PJ方向的分量(μL)┴与(μS)┴在一个进 动周期中平均值为零。 ∴ 原子的有效磁矩等于μL与μS 平行于PJ的分量和,即:
J L cos PL PJ s cos Ps PJ PL L( L 1), PS S ( S 1),
与自由原子(离子)一样,满足洪特规则。 稀土金属及其离子属于此 2. 中等晶场
、
e2 V (r ) L i Si rij
仍满足洪特规则,但晶体场V(r)首先对轨道能量产 生影响,即能级分裂,简并部分或完全消除。 含3d电子组态的离子的盐类属于此 3. 强晶场
e2 V (r ) L i Si rij
2、原子磁矩μJ 在磁场中的取向是量子化的; μJ在H方向的分量为: PJ H J H J cos J H J PJ mJ J g J mJ B J J 1 原子总磁量子数:mJ =J,J-1,……-J,(2J+1个取值) 当mJ取最大值J 时, μJ在H方向最大分量为: