第二章 原子的磁性及物质的顺磁性
第二章 磁学性能

电子的自旋运动产生自旋磁矩,电子自旋磁矩大小为
eh s s 2s B 2mc
式中,s为电子自旋磁矩角动量。
电子自旋磁矩在外磁场方向上的分量恰为一个玻 尔磁子,即 sz=B
式中,符号取决于电子自旋方向,一般取与外磁 场方向z一致的为正,反之为负。
原子中电子的轨道磁矩和电子的自旋磁矩构成了 原子固有磁矩,即本征磁矩。理论计算证明,如
反映磁化强度随磁场变化的速率。 量纲为1,其值可正、 可负,它表征物质本身的磁化特性。
将磁矩p放入磁感应强度为B的磁场中,它将受到磁场力的 作用而产生转矩,其所受力矩为L=p×B
此转矩力图使磁矩 p处于势能最低的方向。磁矩与外加磁场 的作用能称为静磁能。处于磁场中某方向的磁矩,所具有的 静磁能为 E= -p · B 在讨论材料的磁化过程和微观磁结构时,经常要考虑磁 体中存在的几种物理作用及其所对应的 能量,其中包括静磁 能。单位体积中的静磁能,即静磁能密度EH EH = -M· B = -MHcos 式中,为磁化强度M与磁场强度H的夹角。通常静磁能密度 EH在习惯上简称为静磁能。
抗磁体的磁化率与温度无关或变化极小。
凡是电子壳层被填满了的物质都属于抗磁性物质。 惰性气体,离子型固体(如氯化钠)等; 共价键的碳、硅、锗、硫、磷等通过共有电子而填满了 电子层,故也属于抗磁性物质; 大部分有机物质属于抗磁性物质。 金属中属于抗磁性物质的有铋、铅、铜、银等。
三、顺磁性
• 材料的顺磁性来源于原子的固有磁矩。
磁滞:从饱和磁化状态A点降低磁 场H时,磁感应强度B将不沿着原 磁化曲线下降而是沿AC缓慢下降。 剩余磁感应强度:当外磁场降为0 时,得到不为零的磁感应强度Br 矫顽力:将B减小到零,必须加的 反向磁场-Hc
顺磁性和反磁性

10
反磁性物質
當以磁鐵靠近某 物質時: 若物質產生和磁鐵 的磁場相反方向的 磁性,則稱該物質 具有反磁性。
反磁性產生示意圖:
S N
A
S N
N A S
11
反磁性物質
通常每個物質都同時存在有順磁性跟反 磁性,但反磁性實在是非常不明顯,如果 東西又有強烈的順磁性,那幾乎是看不到 反磁性的,所以反磁性物質通常都是大家 認為,對磁力沒有反應的物質,像是水、 DNA、石油、塑膠、水銀等。 另外,許多超導體在低於臨界溫度之時, 也會具有反磁性,其內部沒有磁力線通過, 將外加磁場隔絕在外。
電子繞行原子核 所產生的磁矩會 相互抵消 每個原子的淨磁 矩並不為零,但 由於原子與原子 之間的磁矩方向 不一而互相抵消
不受溫度影響
順磁性物質
淨磁矩會受熱擾 動影響,而使得 原子磁矩的排列 受到破壞
8
順磁性物質
當以磁鐵靠近某 物質時: 若物質產生和磁鐵 的磁場相同方向的 磁性,則稱該物質 具有順磁性 。 順磁性產生示意圖:
12
順磁性的應用(1)
順磁性雖是一種弱磁性,但也有其重要 的應用,例如,從順磁物質的順磁性和順 磁共振可以研究其結構,特別是電子組態 結構;利用順磁物質的絕熱退磁效應可以 獲得約1-10-3K的超低溫度,這是一種產生 超低溫度的重要方法。
13
順磁性的應用(2)
在順磁性和順磁共振基礎上發展起來的 順磁微波量子放大器,促進了激光器的研 究和發明。 在生命科學方面,如血紅蛋白和肌紅蛋 白在未同氧結合時為順磁性,但在同氧結 合后便轉變為抗磁性,這兩種弱磁性的相 互轉變就反映了生物體內的氧化和還原過 程,因而其磁性研究成為這種重要生命現 象的一種研究方法。
Hale Waihona Puke S NBS N
磁性物理铁磁与顺磁

磁性物理铁磁与顺磁磁性是物质的一种基本性质,是物质固有的特性之一。
在物质中,存在着许多具有磁性的元素和化合物。
根据磁性的不同表现,可以将物质分为铁磁性、顺磁性、抗磁性和铁磁性等几种类型。
其中,铁磁性和顺磁性是最常见和重要的两种磁性现象。
本文将重点介绍铁磁性和顺磁性的基本概念、特点和应用。
铁磁性是指物质在外加磁场作用下,会产生明显的磁化现象。
铁磁性物质的代表是铁、镍、钴等金属,以及铁氧体等化合物。
铁磁性物质在外加磁场下,会形成磁畴结构,即微观上呈现出一定方向的磁矩排列。
在无外磁场作用时,铁磁性物质中的磁矩方向是无规则的,总磁矩为零;而在外磁场作用下,磁矩会沿着外磁场方向排列,使整个物质呈现出磁化特性。
铁磁性物质在去除外磁场后,仍能保留一定的磁化强度,这种现象称为剩磁。
铁磁性物质的磁化强度随外磁场的增大而增大,但在一定磁场强度下会达到饱和状态,无法再增加磁化强度。
顺磁性是指物质在外加磁场下,磁化方向与外磁场方向一致,但磁化强度较弱,且不会保留剩磁。
顺磁性物质的代表是氧气、铜等。
顺磁性物质中的原子或离子本身并不具有磁矩,但在外磁场作用下,会产生磁矩并沿外磁场方向排列,使整个物质呈现出磁化特性。
顺磁性物质的磁化强度随外磁场的增大而增大,但不会出现饱和现象,且去除外磁场后磁化强度立即消失。
铁磁性和顺磁性在物质的磁性表现上有着明显的区别。
铁磁性物质在外磁场下会形成磁畴结构,具有剩磁和矫顽力等特点,适用于制造永磁体、电磁铁等设备;而顺磁性物质在外磁场下磁化强度较弱,不具有剩磁和矫顽力,适用于磁共振成像、磁性材料的研究等领域。
除了铁磁性和顺磁性外,还有抗磁性和铁磁性等其他磁性现象。
抗磁性是指物质在外磁场下磁化方向与外磁场方向相反,磁化强度较弱,且不具有剩磁和矫顽力;铁磁性是指物质在外磁场下磁化方向与外磁场方向相反,磁化强度较强,但不具有剩磁和矫顽力。
这些不同类型的磁性现象在物质的磁性研究和应用中发挥着重要作用。
顺磁性物质

顺磁性物质
1.顺磁性材料是什么意思
顺磁性物质是一种非铁磁性物质(如铂、铝、氧),把它们移近磁场时,可依磁场方向发生磁化,但很微弱。
要用精密仪器才能测出。
顺磁场材料即材料具有顺磁性,是按照磁体磁化时磁化率的大小和符号分类的一类。
一些物质在受到外磁场作用后,感生出与外磁场同向的磁化强度,其磁化率大于零,但数值很小,仅为10-6~10-3数量级,这种材料称为顺磁性材料。
顺磁性物质的磁化率与温度有密切关系。
顺磁性物质包括稀土金属和铁族元素的盐类等。
2.顺磁性材料有哪些
常见的顺磁物质有氧气、金属铂(白金)、一氧化氮、含掺杂原子的半导体{如掺磷(P)或砷(As)的硅(Si)}、由幅照产生位错和缺陷的物质等。
还有含导电电子的金属如锂(Li)、钠(Na)等,这些顺磁(性)金属的顺磁磁化率却与温度无关,这种金属的特殊顺磁性是可以用量子力学解释的。
顺磁性是一种弱磁性。
原子`离子的磁矩(顺`抗磁)

率温度关系服从居里-外斯定律。
C
4. 在居里温度附近出现比热等性质的反常。
T Tp
5. 磁化强度M和磁场H之间不是单值函数,存在磁滞效应。
构成这类物质的原子也有一定的磁矩,但宏观表现却完 全不同于顺磁性,解释铁磁性的成因已成为对人类智力的最 大挑战,虽然经过近100年的努力已经有了比较成功的理论, 但仍有很多问题有待后人去解决。
在测量材料磁化曲线前可以通过交流退磁;形变退磁; 热退磁等方法,使材料达到退磁状态。
2.磁化曲线 反映材料特性的基本曲线,从中可以得到标
志材料的参量:饱和磁化强度Ms、起始磁化率a 和最大磁化率m
Ms
Ms可以理解为 该温度下的自
发磁化强度M0
顺磁性物质磁化曲线 抗磁性物质磁化曲线
铁磁体的磁化过程
就是亚铁磁性物质上世纪3040年代开始在此基础上人工合成了一些具有亚铁磁性的氧化物但其宏观磁性质和铁磁物质相似很长时间以来人们并未意识到它的特殊性1948neel在反铁磁理论的基础上创建了亚铁磁性理论后人们才认识到这类物质的特殊性在磁结构的本质上它和反铁磁物质相似但宏观表现上却更接近于铁磁物质
1.3 宏观物质的磁性
O2,有机物中的双自由基等
3. 铁磁性(Ferromagnetism)
这是人类最早发现并利用的强磁性,它的主要特征是:
1. >>0,磁化率数值很大, 100 105
2. 磁化率数值是温度和磁场的函数;
3. 存在磁性转变的特征温度——居里温度TC,温度低于居里 温度时呈铁磁性,高于居里温度时表现为顺磁性,其磁化
1.77 39.95 0.85
-28.0
3.09 83.80 1.03
-43
3.78 131.3 1.24
顺磁性

影响材料顺磁性的因素
1.原子结构的影响 • 氧与臭氧分子是具有顺磁性的单质分子,O2分子中存在两 个三电子派键,导致了其顺磁性。 • 常见的非金属顺磁物质有氧气、臭氧、一氧化氮、含掺杂 原子的半导体{掺磷(P)或砷(As)的硅(Si)}、由辐照产生位 错和缺陷的物质等。
O3的结构
• 碱金属 碱金属的电子层由惰性气体电子层加上一个s电子组成。 按照洪特定则它们在基态下有磁矩,这个磁矩提供很强的 磁化率,因此碱金属是顺磁性的。
• 碱土金属(Be除外) 碱土金属有两个s电子,因此其电子层饱和,但是它们属 于金属,因此拥有自由电子。除铍外其自由电子导致的顺 磁性强于抗磁性,因此它们均是弱顺磁性物质。
当形成两相合金时,在两相区范围内,其磁化率随 成分的变化呈直线关系。
磁化率随合金成分变化规律
顺磁分析的应用 合金的磁化率取决于其成分、组织和结构状态。从磁化率变 化的特点可以分析合金组织的变化,以及这些变化与温度和 成分之间的关系。这种分析在测定铝合金的固溶度曲线和研究铝合金
的时效等问题中应用取得了良好的结果。
Ra
7S2
• 稀土金属 稀土金属是制造磁铁时最重要的合金物质,原因是稀土金 属不饱和的电子层不是最外部的电子层,而是内部的电子 层(f层),因此它们对于原子的化学性能没有影响。几 乎所有的稀土金属是顺磁性的,但是其磁化率不同。通过 它们合金可以成为非常强的磁铁。 • 金属Cu、Ag、Au、Cd、Hg 这类金属的离子所产生的抗磁性大于自由电子的顺磁性, 表现为抗磁性。 • Ti、V、Cr、Mn的过渡元素 Ti 3d24s2 ; V 3d34s2; Cr 3d54s1; Mn 3d54s2 3d层未被填满,自旋磁矩未被抵消,因而产生强烈的顺磁 性。
抗磁性与顺磁性PPT课件

郎之万顺磁性理论
每个原子内有 z 个电子,每个电子有自己 的运动轨道,在外磁场作用下,电子轨道 绕 H 进动,进动频率为ω,称为Lamor进 动频率。由于轨道面绕磁场进动,使电子 运动速度有一个变化⊿v,电子轨道磁矩增 加⊿μ,但方向与磁场相反,使总的电子轨 道磁矩减小。 总之,由于磁场作用引起电子轨道磁矩减小, 表现出抗磁性。
第14页/共46页
第15页/共46页
无论电子顺时针运动还是逆时针运动,所产生的附加磁矩△m都与外加磁场的方 向相反,故称为抗磁矩。
一个电子在外加磁场H 的作用下,产生的的抗磁矩为
ml
0e2r2H
4me
式中,负号表示△ml与H 的方向相反;分母me为电子质量
一个原子常有z 个电子,每个电子都要产生抗磁矩,由于电子的轨道半径不 同,故一个原子的抗磁矩为
第21页/共46页
顺磁体的分类
正常顺磁体 稀土金属,在居里点以上的铁磁金属等。
磁化率服从居里定律或居里 – 外斯定律。对于存在铁磁 转变的物质,在居里点以上服从居里 – 外斯定律。
磁碱化金率属等与。 温度无关的顺磁体
过渡族金属及其合金或 它们的化合物。
存反在铁磁反体当铁温磁度高体于尼转尔点变(的TN)顺时,磁表体现为顺磁体。
mat
0e2H
4m
z
ri2
i1
任何材料在磁场作用下都要产生抗磁性,与温度、外磁场无关。从广义上 来说,超导也是一种抗磁性。
第16页/共46页
第17页/共46页
第18页/共46页
第二节 抗磁性与顺磁性
• 物质磁性的分类 • 物质的抗磁性 • 物质的顺磁性 • 金属的抗磁性与顺磁性 • 影响因素 • 测量与应用
第二章原子的磁性及物质的顺磁性

第四节 轨道角动量的冻结 (晶体场效应)
晶体场理论是计算离子能级的一种有效方法,在 物理、化学、矿物学、激光光谱学以及顺磁共振中有 广泛应用。
晶体场理论的基本思想: 认为中心离子的电子波函数与周围离子(配位子)
的电子波函数不相重叠,因而把组成晶体的离子分为 两部分:基本部分是中心离子,将其磁性壳层的电子 作量子化处理;非基本部分是周围配位离子,将其作 为产生静电场的经典处理。配位子所产生的静电场等 价为一个势场——晶体场。
1) L(L 1) 1)
则:J=gJ J (J 1)B
注:1、当兰L德=0因时子,gJJ=的S,物g理J=意2,义J:=2 S(S 1)B 均来源
于自旋运动。
当S=0时,
J=L,gJ=1,
=
J
L(L 1)B
均来源于轨
道运动。
当1<gJ<2,原子磁矩由轨道磁矩与自旋磁矩共同 贡献。
二、过渡族元素离子的顺磁性 3d(铁族)、4d(钯族)、5d(铂族)、6d(锕族) 1、结构特征: 过渡元素的磁性来源于d电子,且d电子受外界影
响较大。) 2、有效玻尔磁子
即过nP渡族2 元S素S的离1子磁2S矩, 主要由n电P子B自旋2S作贡B 献,
而轨道角动量不作贡献,这是“轨道角动量猝灭”所 致。
μ级JH五。)重3简磁d 并场能使级原来简并的能级分裂dddxzy为22zy五2 个不同的能 d zx d xy
2. 将3d电子置于晶场中 eg(2)
(5)
t2g(3) 立方晶场 (2)
三角晶场
d x2 y2
dz2
2
d xy d yz
1
正交晶场
d zx
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PJ PS PL
µ L = L( L + 1) µ B , µs = S ( S + 1) µ B
∧ J ( J + 1) + L( L + 1) − S ( S + 1) cos PL PJ = 2 L( L + 1) ⋅ J ( J + 1) ∧ J ( J + 1) + S ( S + 1) − L( L + 1) cos Ps PJ = 2 L( L + 1) ⋅ J ( J + 1)
第四节 轨道角动量的冻结 晶体场效应) (晶体场效应)
晶体场理论是计算离子能级的一种有效方法,在 物理、化学、矿物学、激光光谱学以及顺磁共振中有 广泛应用。 晶体场理论的基本思想: 认为中心离子的电子波函数与周围离子(配位子) 的电子波函数不相重叠,因而把组成晶体的离子分为 两部分:基本部分是中心离子,将其磁性壳层的电子 作量子化处理;非基本部分是周围配位离子,将其作 为产生静电场的经典处理。配位子所产生的静电场等 价为一个势场——晶体场。
即过渡族元素的离子磁矩主要由电子自旋作贡献, 而轨道角动量不作贡献,这是“轨道角动量猝灭”所 致。
nP = 2 S (S + 1) ≈ 2S , µ = nP µ B ≈ 2 Sµ B
• 过渡元素的原子或离子组成物质时,轨道角动量冻结, 因而不考虑L • 孤立Fe原子的基态(6.7 µB)与大块铁中的铁原子(2.2 µB) 磁矩不一样。 • 物质中: Fe3+的基态磁矩为5 µB Mn2+ 5 µB Cr2+ 4µB Ni2+ 2 µB Co2+ 3 µB Fe2+ 4 µB (有几个未成对电子,就有几个µB)
构成原子 的总磁矩
ห้องสมุดไป่ตู้
物质磁性 的起源
一、电子轨道磁矩(由电子绕核的运动所产生) 由量子力学知:轨道角动量 Pl = l (l + 1)h
v µl e e v v ∴ v =− Pl ⇒ µl = − Pl 2m 2m e 令γ l = ,轨道磁力比 2m v v 则:µ l = −γ l Pl
说明:电子轨道运动产生的磁矩与角动量在数值上成正 比,方向相反。 其中l=0,1,2…n-1 , h = h
µL µJ µL-S
µS
3 J ( J + 1) + S ( S + 1) − L( L + 1) ∴ µJ = J ( J + 1) µ B 2 J ( J + 1)
3J ( J + 1) + S ( S + 1) − L( L + 1) 令:g J = 2 J ( J + 1) 则:µ J=g J J ( J + 1) µ B
第二章 原子的磁性及物质的顺磁性
第一节 第二节 第三节 第四节 第五节 电子的轨道磁矩和自旋磁矩 原子磁矩 稀土及过渡元素的有效玻尔磁子 轨道角动量的冻结(晶体场效应) 轨道角动量的冻结(晶体场效应) 朗之万顺磁性理论 返回 结束放映
第一节
电子的轨道磁矩和自旋磁矩
物质的磁性来源于原子的磁性,研究原子磁性是研究 物质磁性的基础。 原子的磁性来源于原子中电子及原子核的磁矩。 原子核磁矩很小,在我们所考虑的问题中可以忽略。 电子磁矩(轨道磁矩、自旋磁矩) ——→原子的磁矩。 即: 电子轨道运动产 生电子轨道磁矩 电子自旋产生电 子自旋磁矩
注:1、兰德因子gJ的物理意义: 当L=0时,J=S,gJ=2, µ J =2 S ( S + 1) µ B 均来源 于自旋运动。 µ 当S=0时, J=L,gJ=1, J= L(L +1)µB 均来源于轨 道运动。 当1<gJ<2,原子磁矩由轨道磁矩与自旋磁矩共同 贡献。 ∴gJ反映了在原子中轨道磁矩与自旋磁矩对总磁 矩贡献的大小。
因为受外面 5s25p66s2电子的屏蔽作用,稀土离子 中的4f电子受到外界影响小,离子磁矩与孤立原子相似。
µ J ( J + 1) µ B 3+J =g J3+除外,原因是他们不能满足hv>>k Sm 与Eu
BT。
二、过渡族元素离子的顺磁性 3d(铁族)、4d(钯族)、5d(铂族)、6d(锕族) 1 1、结构特征: 过渡元素的磁性来源于d电子,且d电子受外界影 响较大。) 2、有效玻尔磁子
R(r)为归一化的径向波函数
选用Richardson等人的近似,Hartfree-Fock解析波函数:
R3d (r ) = r α1e
2
(
−α1r
+ α 2e
(PJ )H
= mJ h
总磁量子数:mJ =J,J-1,……-J 按原子矢量模型,角动量PL与PS绕PJ 进动。故µL与 µS也绕PJ进动。
µL与µS在垂直于PJ方向的分量(µL)┴与(µS)┴在一个进 动周期中平均值为零。 ∴ 原子的有效磁矩等于µL与µS 平行于PJ的分量和,即:
∧ ∧ µ J = µ L cos PL PJ + µs cos Ps PJ Q PL = L( L + 1)h, PS = S ( S + 1)h,
二、电子自旋磁矩
实验证明:电子自旋磁矩在外磁场方向分量等于一个µB,取正或取负。
eh e h ∴ (µ s )H = ± µ B = ± =± ⋅ 2m m 2 自旋角动量: PS = S (S + 1)h
在外场方向分量: (Ps )H = m s h = ±
h 2
1 (自旋磁量子数: m s = ± ) 2 ∴自旋磁矩与自旋角动量 的关系为: e v v (µ s )H =- (Ps )H m v e v v Q 方向相反 ∴ µ s = − Ps=- γ s Ps m
B
L = ∑ ml
角量子数 l=0,1,2…n-1 (n个取值)
磁量子数 ml=0、 ± 1、 ± 2、 ± 3 · · · · · · ±l (2l+1个取值) 在填充满电子的次壳层中,各电子的轨道运动分 别占了所有可能的方向,形成一个球体,因此合 成的总角动量等于零,所以计算原子的轨道磁矩 时,只考虑未填满的那些次壳层中的电子 只考虑未填满的那些次壳层中的电子——这 只考虑未填满的那些次壳层中的电子 些壳层称为磁性电子壳层。
与自由原子(离子)一样,满足洪特规则。 稀土金属及其离子属于此 2. 中等晶场
、
e2 > V (r ) > ξL i ⋅ Si rij
仍满足洪特规则,但晶体场V(r)首先对轨道能量产 生影响,即能级分裂,简并部分或完全消除。 含3d电子组态的离子的盐类属于此 3. 强晶场
e2 V (r ) > > ξL i ⋅ Si rij
4、组成分子或宏观物体的原子的平均磁矩一般不等 于孤立原子的磁矩。这说明原子组成物质后,原 子之间的相互作用引起了磁矩的变化。因此计算 宏观物质的原子磁矩时,必须考虑相互作用引起 的变化。 5、决定多电子原子基态的量子数L、S与J,可依照 Hund’s Rule计算如下: I. 在Pauli原则允许下,S取最大值,S= ∑ms II. 总轨道量子数L在上述条件下可能的最大值, L= ∑ml III. 次壳层未半满时, J=|L-S|; 次壳层半满或超过半满时,J=L+S
(µ J )max
= g J Jµ B
∴原子磁矩的大小取决于原子总角量子数J。 3、原子中电子的结合大体分三类: a) L-S耦合:各电子的轨道运动间有较强的相互作用 ∑li → L,∑si →S , J=S+L 发生与原子序数较小的原子中(Z<32)。
b)
j-j耦合:各电子轨道运动与本身的自旋相互作 用较强,∑(li+si) → ji,∑ji →J ,Z>82 c) LS+jj耦合: 32<Z<82 ★无论那种耦合, µ J =g J J ( J + 1) µ B 均成立。
晶体中的晶体场效应 a、晶体场对磁性离子轨道的直接作用 引起能级分裂使简并度部分或完全解除,导致轨 道角动量的取向处于被冻结状态。 b、晶体场对磁性离子自旋角动量的间接作用。 通过轨道与自旋耦合来实现。常温下,晶体中自 旋是自由的,但轨道运动受晶体场控制,由于自 旋-轨道耦合和晶体场作用的联合效应,导致单 离子的磁各向异性。
15 xy R(r ) 2 4π r 15 yz R(r ) 2 4π r 15 zx R(r ) 2 4π r
15 3z 2 − r 2 R (r ) d z 2 − x 2 − y 2 = 2 r 4π eg (2 )项 15 x 2 − y 2 d R (r ) 2 x 2 − y 2 = 4π r
2π
e ∴ µ l = l (l + 1) h 2m
e 令µ B = h = 9.273 ×10 − 24 [ A ⋅ m 2 ] ≈ 10 − 23[ A ⋅ m 2 ] 2m (波尔磁子,电子磁矩的基本单位) ∴ µ l = l (l + 1) µ B
对于多电子系统:µ l =
L( L + 1) µ
第三节
稀土及过渡元素的有效 波尔磁子
一、稀土离子的顺磁性 1、稀土元素的特征: 1s22s22p63s23p63d104s24p64d104f0~145s25p65d0~16s2 最外层电子壳层基本相同,而内层的4f轨道从La到 Lu逐一填充。相同的外层电子决定了他们的共性,但4f电 子数的不同导致稀土元素磁性不同。 2、La系收缩:指La系元素的原子与离子半径随原子序 数的增加而逐渐缩小。 3、稀土离子的有效波尔磁子
一、晶体场劈裂作用 考虑到晶体场与L-S 耦合作用,晶体系统的哈密 顿量为: 2 h Ze 2 e2 2 ℜ=− ∇ − + + ξL i ⋅ Si + eV (r ) 2me i ri r i i > j ij i