(精典)磁场中各种边界问题
电磁边界问题

“临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。
带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。
一、解题方法画图→动态分析→找临界轨迹。
(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。
)二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度)分述如下:第一类问题:例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。
一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。
已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。
第二类问题:例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。
分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。
【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。
P为屏上的一小孔,PC与MN垂直。
一群质量为m、带电荷量为-q的粒子(不计重力),以相同的速率v,从P处沿垂直于磁场的方向射入磁场区域。
边界磁场问题(生)

带电体或带电粒子在磁场中运动【基本方法】——关键是确定半径 1.带电粒子在磁场中的匀速圆周运动带电粒子仅受磁场力作用下,初速度的方向与磁场方向垂直时,带电粒子将在磁场中做匀速圆周运动.轨道半径公式:由qBv =m v 2R ,得R =mvqB . 周期公式:T =2πR v =2πm qB.2.圆心的确定(1)基本的思路:圆心一定在与速度方向垂直的直线上,并且也在圆中一根弦的中垂线上,也一定在初末速度延长线和反向延长线的角平分线上。
(2)两种方法: 方法一:已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心,如图(1)所示,P 为入射点,M 为出射点.方法二:已知入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心,如图(2)所示,P 为入射点,M 为出射点. 3.半径的确定和计算利用平面几何关系,求出该圆的半径,往往用到以下重要的几何特点:(1)粒子速度的偏向角(φ)等于粒子旋转的圆心角(α),因为速度总是与半径垂直,所以速度方向改变了多少,半径的旋转也跟着改变了多少.并等于弦AB 与切线的夹角(弦切角θ)的2倍,如图所示,即φ=α=2θ=ωt.(2)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180° 4.运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为t =α2πT(或t =α360°T).(一)直线型磁场边界问题结论一:直线形磁场边界,带电粒子射入、射出磁场时,与边界夹角相等,如图所示,∠θ=∠α.【例1】如图所示,直角三角形ABC 区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( ) A .从P 点射出的粒子速度大 B .从Q 点射出的粒子速度大 C .从Q 点射出的粒子在磁场中运动的时间长 D .两个粒子在磁场中运动的时间一样长【例2】如图,A 、C 两点分别位于x 轴和y 轴上,∠OCA =30°,OA 的长度为L.在△OCA 区域内有垂直于xOy 平面向里的匀强磁场.质量为m 、电荷量为q 的带正电粒子,以平行于y 轴的方向从OA 边射入磁场.已知粒子从某点射入时,恰好垂直于OC 边射出磁场,且粒子在磁场中运动的时间为t 0.不计重力. (1)求磁场的磁感应强度的大小;(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC 边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;(3)若粒子从某点射入磁场后,其运动轨迹与AC 边相切,且在磁场内运动的时间为035t ,求粒子此次入射速度的大小.(二) 圆形磁场边界问题 结论一:圆形磁场边界,沿径向射入磁场,必然背离圆心射出磁场,如图所示. 结论二:轨迹圆与磁场圆相交,两圆圆心连线将是两个圆的对称轴,是∠AO ′B 的角平分线【例3】如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A 2A 4为边界的两个半圆形区域Ⅰ和Ⅱ中,直径A 2A 4与直径A 1A 3之间的夹角为θ=60°.一质量为m 、电荷量为q 的带正电粒子(不计重力)以某一速度从Ⅰ区的边缘点A 1处沿与A 1A 3成β=30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入Ⅱ区,最后再从A 4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t ,求:(1)粒子在磁场区域Ⅰ和Ⅱ中运动的轨道半径R 1与R 2的比值; (2)Ⅰ区和Ⅱ区中磁场的磁感应强度B 1和B 2的大小.【例4】在直径为d 的圆形区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ,比荷分别为2211m q m q 、的带正负电荷的粒子从圆形区域的A 点沿与直径AC 成θ=15º角射入磁场,速度大小分别为v 1、v 2,如图所示,且粒子射出磁场时,速度方向都改变了90º,粒子的重力忽略不计,两粒子在磁场中运动的半径分别用r 1、r 2表示,运动时间分别用t 1、t 2表示,则下列说法正确的是:( )d r d r A 46,42.21==221121m q m q v v B ==,则如果.33212211==v v m q m q C 则如果,. 21t t D =恒有不论比荷和速度如何,.【例5】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B .2Δt C.13Δt D .3Δt【拓展训练1】一圆筒的横截面如图所示,其圆心为O 。
高中物理高频考点《边界磁场问题分析与强化训练》(附详细参考答案)

边界磁场问题分析与强化训练(附详细参考答案)一、边界磁场问题分析及例题讲解:1.带电粒子在有界磁场中运动的常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)(4)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。
(5)三边形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。
已知边长为2a,D点距A点3a,粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。
2.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点。
(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍。
3.几点注意(1)当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的。
在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件。
(2)当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B 变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件。
4.求解带电粒子在有界匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件(①带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;②射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。
),然后应用数学知识和相应物理规律分析求解。
(1)两种思路一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。
带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。
(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。
解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。
由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。
粒子在磁场内运行轨迹对应圆心角为πα35=。
而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。
磁场边界问题

(1)模型概述带电粒子在有界磁场中的偏转问题一直是高考的热点,此类模型较为复杂,常见的磁场边界有单直线边界、双直线边界、矩形边界和圆形边界等.因为是有界磁场,则带电粒子运动的完整圆周往往会被破坏,可能存在最大、最小面积、最长、最短时间等问题.(2)模型分类 Ⅰ.单直线边界型当粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子时以图8-2-11(甲)中带负电粒子的运动为例.图8-2-11 规律要点 ①最值相切:当带电粒子的运动轨迹小于12圆周且与边界相切时(如图中a 点),切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点).②最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(如图8-2-11(甲)中的b 点)为带电粒子射出边界的最远点(距O 最远).Ⅱ.双直线边界型当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,以图8-2-11(乙)中带负电粒子的运动为例.规律要点①最值相切:粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.如图8-2-11(乙)所示.②对称性:过粒子源S 的垂线为ab 的中垂线.在如图(乙)中,a 、b 之间有带电粒子射出,可求得ab =22dr -d 2最值相切规律可推广到矩形区域磁场中.Ⅲ.圆形边界(1)圆形磁场区域规律要点 ①相交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于圆心,如图8-2-12(甲).②直径最小:带电粒子从直径的一个端点射入磁场,则从该直径的另一端点射出时,磁场区域面积最小.如图8-2-12(乙)所示.(2)环状磁场区域规律要点①径向出入:带电粒子沿(逆)半径方向射入磁场,若能返回同一边界,则一定逆(沿)半径方向射出磁场.②最值相切:当带电粒子的运动轨迹与圆相切时,粒子有最大速度v m 而磁场有最小磁感应强度B .如图8-2-12(丙).图8-2-12图8-2-13【典例】 如8-2-13所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m ,带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 点,则初速度的大小是多少(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少解析 (1)如图所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r 3,又qv 1B =m v 12R 1得v 1=3Bqr 3m .(2)设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又qv 2B =m v 22R 2,可得v 2=3Bqr4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m .答案 (1)3Bqr 3m (2)3Bqr4m对应学生用书P140图8-2-141.(2011·海南卷,10改编)如图8-2-14所示空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力,下列说法正确的是( ).A .入射速度不同的粒子在磁场中的运动时间一定不同B .入射速度相同的粒子在磁场中的运动轨迹一定相同C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越小解析 带电粒子进入磁场后,在洛伦兹力的作用下做匀速圆周运动,根据qvB =mv 2r 得轨道半径r =mvqB ,粒子的比荷相同.故不同速度的粒子在磁场中运动的轨道半径不同,轨迹不同,相同速度的粒子,轨道半径相同,轨迹相同,故B 正确.带电粒子在磁场中做圆周运动的周期T =2πr v =2πmqB ,故所有带电粒子的运动周期均相同.若带电粒子从磁场左边界射出磁场,则这些粒子在磁场中运动时间是相同的,但不同速度轨迹不同,故A 、C 错误.根据θt =2πT 得θ=2πT t ,所以t 越长,θ越大,故D 错误.答案 B 2.(2011·浙江卷,20改编)利用如图8-2-15所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( ).图8-2-15A .粒子带正电B .射出粒子的最大速度为2mqB 3d +LC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析 利用左手定则可判定只有负电荷进入磁场时才向右偏,故选项A 错误.利用qvB =mv 2r 知r =mv qB ,能射出的粒子满足L 2≤r ≤L +3d 2,因此对应射出粒子的最大速度v max =qBr max m =qB 3d +L 2m ,选项B 错误.最小速度v min =qBr min m -qBL 2m ,Δv =v max -v min =3qBd2m ,由此式可判定选项C正确,选项D错误.答案C3.(2011·广东卷,35)如图8-2-16(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0.一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力.(1)已知粒子从外圆上以速度v1射出,求粒子在A点的初速度v0的大小.(2)若撤去电场,如图8-2-16(b),已知粒子从OA延长线与外圆的交点C以速度v2射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间.(3)在图8-2-16(b)中,若粒子从A点进入磁场,速度大小为v3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少图8-2-16解析(1)根据动能定理,qU=12mv12-12mv02,所以v0=v12-2qUm.(2)如图所示,设粒子在磁场中做匀速圆周运动的半径为R,由几何知识可知R2+R2=(R2-R1)2,解得R=2R0.根据洛伦兹力公式和牛顿第二定律qv2B=mv22R.解得B=mv2q2R0=2mv22qR0.根据公式tT=θ2π,2πR=v2T,qv2B=mv22R,解得t=T4=2πm4Bq=2πm4×mv22R0=2πR02v2.(3)考虑临界情况,如图所示①qv3B1′=mv32R0,解得B1′=mv3qR0,②qv 3B 2′=m v 322R 0,解得B 2′=mv 32qR 0,综合得:B ′<mv 32qR 0.答案 (1) v 12-2qU m (2)2mv 22qR 0 2πR 02v 2 (3)mv 32qR 0图8-2-174.(2011·课标全国卷,25)如图8-2-17所示,在区域Ⅰ(0≤x ≤d )和区域Ⅱ(d <x ≤2d )内分别存在匀强磁场,磁感应强度大小分别为B 和2B ,方向相反,且都垂直于Oxy 平面.一质量为m 、带电荷量q (q >0)的粒子a 于某时刻从y 轴上的P 点射入区域Ⅰ,其速度方向沿x 轴正向.已知a 在离开区域Ⅰ时,速度方向与x 轴正向的夹角为30°;此时,另一质量和电荷量均与a 相同的粒子b 也从P 点沿x 轴正向射入区域Ⅰ,其速度大小是a 的13.不计重力和两粒子之间的相互作用力.求:(1)粒子a 射入区域Ⅰ时速度的大小;(2)当a 离开区域Ⅱ时,a 、b 两粒子的y 坐标之差.解析 (1)设粒子a 在Ⅰ内做匀速圆周运动的圆心为C (在y 轴上).半径为R a 1,粒子速率为v a ,运动轨迹与两磁场区域边界的交点为P ′,如图所示.由洛伦兹力公式和牛顿第二定律得qv a B =m v a2R a 1①由几何关系得∠PCP ′=θ②R a 1=d sin θ ③ 式中,θ=30°,由①②③式得v a =2dqB m ④ (2)设粒子a 在Ⅱ内做圆周运动的圆心为O a ,半径为R a 2,射出点为P a (图中未画出轨迹),∠P ′O a P a =θ′.由洛伦兹力公式和牛顿第二定律得qv a (2B )=m v a 2R a 2⑤由①⑤式得R a 2=R a 12⑥C 、P ′和O a 三点共线,且由⑥式知O a 点必位于x =32d ⑦ 的平面上.由对称性知,P a 点与P ′点纵坐标相同,即 y Pa =R a 1cos θ+h ⑧式中,h 是C 点的y 坐标.设b 在Ⅰ中运动的轨道半径为R b 1,由洛伦兹力公式和牛顿第二定律得q ⎝⎛⎭⎫v a 3B =m R b 1⎝⎛⎭⎫v a 32⑨当a 到达P a 点时,b 位于P b 点,转过的角度为α.如果b 没有飞出Ⅰ,则t T a 2=θ′2π⑩t T b 1=α2π式中,t 是a 在区域Ⅱ中运动的时间,而T a 2=2πR a 2v aT b 1=2πR b 1v a 3由⑤⑨⑩式得α=30°由①③⑨式可见,b 没有飞出Ⅰ.P b 点的y 坐标为 y Pb =R b 1(2+cos α)+h由①③⑧⑨式及题给条件得,a 、b 两粒子的y 坐标之差为y Pa -y Pb =23(3-2)d答案 (1)2dqB m (2)23(3-2)d第3讲 带电粒子在复合场中的运动对应学生用书P141复合场 复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在.从场的复合形式上一般可分为如下四种情况:①相邻场;②重叠场;③交替场;④交变场.带电粒子在复合场中的运动分类 1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运电场磁场同区域应用实例装置 原理图 规律速度选择器若qv 0B =Eq ,即v 0=EB ,粒子做匀速直线运动磁流体发电机等离子体射入,受洛伦兹力偏转,使两极板带正、负电,两极电压为U时稳定,qUd=qv0B,U=vBd电磁流量计UD q=qvB所以v=UDB所以Q=vS=UDBπ⎝⎛⎭⎫D22质谱仪、回旋加速器《见第2讲》复合场中重力是否考虑的三种情况(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略.而对于一些实际物体,如带电小球、液滴、金属块等,一般应考虑其重力.(2)在题目中明确说明的按说明要求是否考虑重力.(3)不能直接判断是否考虑重力的,在进行受力分析与运动分析时,要由分析结果确定是否考虑重力.图8-3-11.如图8-3-1是磁流体发电机的原理示意图,金属板M、N正对着平行放置,且板面垂直于纸面,在两板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是().①N板的电势高于M板的电势②M板的电势高于N板的电势③R中有由b向a方向的电流④R中有由a向b方向的电流A.①②B.③④C.②④D.①③解析本题考查洛伦兹力的方向的判断,电流形成的条件等知识点.根据左手定则可知正电荷向上极板偏转,负电荷向下极板偏转,则M板的电势高于N板的电势.M板相当于电源的正板,那么R中有由a向b方向的电流.答案C图8-3-22.如图8-3-2所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r相同,则它们一定具有相同的().A.动能B.质量C.电荷量D.比荷答案D图8-3-33.(2012·南昌高三调研)某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图8-3-3所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是().A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能减少解析本题考查带电体在复合场中的运动问题.由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受磁场力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A错误;重力和电场力的合力不为零,故不是匀速直线运动,所以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项D错误.答案C4.如图8-3-4所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB,CD 的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电量为+q的粒子(不计重力)从P点以大小为v0的水平初速度射入电场,随后与边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.图8-3-4解析(1)轨迹如图所示v=v0cos 45°=2v0(2)粒子在匀强磁场中做匀速圆周运动设其轨道半径R ,由几何关系可知R =dsin 45°=2d qvB =m v 2R 解得B =mv 0qd(3)粒子进入板间电场至速度减为零的过程,由动能定理有-qU =0-12mv 2 解得U =mv 02q .答案 (1)轨迹见解析图2v 0 (2)mv 0qd (3)mv 02q对应学生用书P142考点一 带电粒子在分离复合场中的运动 “电偏转”和“磁偏转”的比较垂直进入磁场(磁偏转)垂直进入电场(电偏转)情景图受力F B =qv 0B 大小不变,方向总指向圆心,方向变化,F B 为变力 F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2续表运动时间 t =θ2πT =θm Bqt =Lv 0,具有等时性动能不变变化【典例1】 在竖直平面内,图8-3-5以虚线为界分布着如图8-3-5所示的匀强电场和匀强磁场,其中匀强电场的方向竖直向下,大小为E ;匀强磁场的方向垂直纸面向里,磁感应强度大小为B .虚线与水平线之间的夹角为θ=45°,一个带负电荷的粒子在O 点以速度v 0水平射入匀强磁场,已知带电粒子所带的电荷量为q ,质量为m (重力忽略不计,电场、磁场区域足够大).求:(1)带电粒子第1次通过虚线时距O 点的距离;(2)带电粒子从O 点开始到第3次通过虚线时所经历的时间; (3)带电粒子第4次通过虚线时距O 点的距离. 解析 带电粒子运动的轨迹如图所示(1)据qv 0B =m v 02r 得r =mv 0qB ,又由几何知识可知:d 1=2r ,解得d 1=2mv 0qB .(2)在磁场中运动时间为t 1=T 4=πm2qB在电场中a =qEm运动时间为t 2=2v 0a =2mv 0qE再一次在磁场中运动t 3=3πm2qB ,所以总时间t =2πm qB +2mv 0qE .(3)再次进入电场中从C 到D 做类平抛运动(如图所示)x =v 0t 4,y =at 422,x =y ,得x =2mv 02qE所以距O 点距离为Δd =2d 1-2x =22mv 0qB -22mv 02qE .答案 (1)2mv 0qB (2)2πm qB +2mv 0qE (3)22mv 0qB -22mv 02qE——解决带电粒子在分离复合场中运动问题的思路方法【变式1】在如图8-3-6所示的空图8-3-6间坐标系中,y 轴的左侧有一匀强电场,场强大小为E ,场强方向与y 轴负方向成30°,y 轴的右侧有一垂直纸面向里的匀强磁场,磁感应强度为B (未画出).现有一质子在x 轴上坐标为x 0=10 cm 处的A 点,以一定的初速度v 0第一次沿x 轴正方向射入磁场,第二次沿x 轴负方向射入磁场,回旋后都垂直于电场方向射入电场,最后又进入磁场.求:(1)质子在匀强磁场中的轨迹半径R ; (2)质子两次在磁场中运动时间之比;(3)若第一次射入磁场的质子经电场偏转后,恰好从第二次射入磁场的质子进入电场的位置再次进入磁场,试求初速度v 0和电场强度E 、磁感应强度B 之间需要满足的条件.解析 (1)质子两次运动的轨迹如图所示,由几何关系可知x 0=R sin 30° 解得R =2x 0=20 cm.(2)第一次射入磁场的质子,轨迹对应的圆心角为θ1=210° 第二次射入磁场的质子,轨迹对应的圆心角为θ2=30°故质子两次在磁场中运动时间之比为t 1∶t 2=θ1∶θ2=7∶1. (3)质子在磁场中做匀速圆周运动时,由ev 0B =m v 02R 得R =mv 0eB设第一次射入磁场的质子,从y 轴上的P 点进入电场做类平抛运动,从y 轴上的Q 点进入磁场,由几何关系得,质子沿y 轴的位移为Δy =2R质子的加速度a =eEm沿电场方向Δy cos 30°=12at 2 垂直电场方向Δy sin 30°=v 0t解得v 0=3E6B .答案 (1)20 cm (2)7∶1 (3)v 0=3E6B 考点二 带电粒子在叠加复合场中的运动 带电粒子(体)在复合场中的运动问题求解要点(1)受力分析是基础.在受力分析时是否考虑重力必须注意题目条件.(2)运动过程分析是关键.在运动过程分析中应注意物体做直线运动,曲线运动及圆周运动、类平抛运动的条件.(3)构建物理模型是难点.根据不同的运动过程及物理模型选择合适的物理规律列方程求解.【典例2】如图8-3-7所示,与水平面成37°的倾斜轨道AC ,其延长线在D 点与半圆轨道DF 相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN 的右侧存在垂直纸面向里的匀强磁场(C 点处于MN 边界上).一质量为0.4 kg 的带电小球沿轨道AC 下滑,至C 点时速度为v C =1007 m/s ,接着沿直线CD 运动到D 处进入半圆轨道,进入时无动能损失,且恰好能通过F 点,在F 点速度v F =4 m/s(不计空气阻力,g =10 m/s 2,cos 37°=.求:图8-3-7(1)小球带何种电荷(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F 点飞出时磁场同时消失,小球离开F 点后的运动轨迹与直线AC (或延长线)的交点为(G 点未标出),求G 点到D 点的距离.解析 (1)正电荷(2)依题意可知小球在CD 间做匀速直线运动在D 点速度为v D =v C =1007m/s在CD 段受重力、电场力、洛伦兹力且合力为0,设重力与电场力的合力为F =qv C B又F =mg cos 37°=5 N 解得qB =F v C=720在F 处由牛顿第二定律可得qv F B +F =mv F 2R把qB =720代入得R =1 m小球在DF 段克服摩擦力做功W f ,由动能定理可得-W f -2FR =mv F 2-v D 22 W f = J(3)小球离开F 点后做类平抛运动,其加速度为a =Fm 由2R =at 22得t = 4mR F =2 25 s 交点G 与D 点的距离GD =v F t =1.6 2 m =2.26 m.答案 见解析 【变式2】 (2011·广东六校联合体联考)图8-3-8 如图8-3-8所示,竖直平面内有相互垂直的匀强电场和匀强磁场,电场强度E 1=2 500N/C ,方向竖直向上;磁感应强度B =103T ,方向垂直纸面向外;有一质量m =1×10-2kg 、电荷量q =4×10-5C 的带正电小球自O 点沿与水平线成45°角以v 0=4 m/s 的速度射入复合场中,之后小球恰好从P 点进入电场强度E 2=2 500 N/C ,方向水平向左的第二个匀强电场中.不计空气阻力,g 取10 m/s 2.求:(1)O 点到P 点的距离s 1;(2)带电小球经过P 点的正下方Q 点时与P 点的距离s 2.解析 (1)带电小球在正交的匀强电场和匀强磁场中受到的重力G =mg = N 电场力F 1=qE 1= N即G =F 1,故带电小球在正交的电磁场中由O 到P 做匀速圆周运动根据牛顿第二定律得qv 0B =m v 02R解得:R =mv 0qB =1×10-2×44×10-5×103m =1 m 由几何关系得:s 1=2R = 2 m.(2)带电小球在P 点的速度大小仍为v 0=4 m/s ,方向与水平方向成45°.由于电场力F 2=qE 2= N ,与重力大小相等,方向相互垂直,则合力的大小为F =210 N ,方向与初速度方向垂直,故带电小球在第二个电场中做类平抛运动建立如图所示的x 、y 坐标系,沿y 轴方向上,带电小球的加速度a =Fm =102m/s 2,位移y =12at 2沿x 轴方向上,带电小球的位移x =v 0t由几何关系有:y =x 即:12at 2=v 0t ,解得:t =25 2 sQ 点到P 点的距离s 2=2x =2×4×25 2 m =3.2 m.答案 (1) 2 m (2)3.2 m对应学生用书P14411.带电粒子“在复合场中运动的轨迹”模型(1)模型概述当带电粒子沿不同方向进入电场或磁场时,粒子做各种各样的运动,形成了异彩纷呈的轨迹图形.对带电粒子而言“受力决定运动,运动描绘轨迹,轨迹涵盖方程”.究竟如何构建轨迹模型,至关重要.首先应根据电场力和洛伦兹力的性质找出带电粒子所受到的合力,再由物体做曲线运动的条件确定曲线形式.(2)模型分类 ①“拱桥”型图8-3-9【典例1】 如图8-3-9所示,在x 轴上方有垂直于xOy 平面的匀强磁场,磁感应强度为B ,在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m 、电荷量为q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与O 点的距离为L ,求此时粒子射出时的速度和运动的总路程(重力不计).解析 画出粒子运动轨迹如图所示,形成“拱桥”图形.由题可知粒子轨道半径R =L4.由牛顿运动定律知粒子运动速率为v =BqR m =BqL4m设粒子进入电场后沿y 轴负方向做减速运动的最大路程为y ,由动能定理知12mv 2=qEy ,得y =qB 2L 232mE所以粒子运动的总路程为x =qB 2L 216mE +12πL . ②“心连心”型图8-3-10【典例2】 如图8-3-10所示,一理想磁场以x 轴为界,下方磁场的磁感应强度是上方磁感应强度B 的两倍.今有一质量为m 、电荷量为+q 的粒子,从原点O 沿y 轴正方向以速度v 0射入磁场中,求此粒子从开始进入磁场到第四次通过x 轴的位置和时间(重力不计).解析 由r =mv Bq 知粒子在x 轴上方做圆周运动的轨道半径r 1=mv 0Bq ,在x 轴下方做圆周运动的轨道半径r 2=mv 02Bq ,所以r 1=2r 2现作出带电粒子的运动的轨迹如图所示,形成“心连心”图形,所以粒子第四次经过x 轴的位置和时间分别为x =2r 1=2mv 0Bqt =T 1+T 2=2πm Bq +2πm 2Bq =3πmBq③“葡萄串”型【典例3】 如图8-3-11甲所示 ,互相平行且水平放置的金属板,板长L =1.2 m ,两板距离d =0.6 m ,两板间加上U = V 恒定电压及随时间变化的磁场,磁场变化规律如图8-3-11乙所示,规定磁场方向垂直纸面向里为正.当t =0时,有一质量为m =×10-6kg 、电荷量q =+×10-4C 的粒子从极板左侧以v 0=×103m/s 沿与两板平行的中线OO ′射入,取g =10 m/s 2、π=.求:图8-3-11(1)粒子在0~×10-4s 内位移的大小x ; (2)粒子离开中线OO ′的最大距离h ; (3)粒子在板间运动的时间t ;(4)画出粒子在板间运动的轨迹图.解析 (1)由题意知:Eq =U d q =×10-5N ①而mg =×10-5N ② 显然Eq =mg ③ 故粒子在0~×10-4s 时间内做匀速直线运动,因为Δt =×10-4s , 所以x =v 0Δt =0.4 m ④(2)在×10-4~×10-4s 时间内,电场力与重力平衡,粒子做匀速圆周运动,因为T =2πm qB =×10-4s ⑤ 故粒子在×10-4~×10-4s 时间内恰好完成一个周期圆周运动⑥由牛顿第二定律得:qv 0B =mv 02R ⑦R =mv 0qB =0.064 m ⑧h =2R =0.128 m<d2.所以粒子离开中线OO ′的最大距离h =0.128 m .⑨ (3)板长L =1.2 m =3 x ⑩t =2T +3Δt =×10-4s(4)轨迹如图对应学生用书P145图8-3-121.(2011·大纲全国卷,25)如图8-3-12所示,与水平面成45°角的平面MN 将空间分成Ⅰ和Ⅱ两个区域.一质量为m 、电荷量为q (q >0)的粒子以速度v 0从平面MN 上的P 0点水平向右射入Ⅰ区.粒子在Ⅰ区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在Ⅱ区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里.求粒子首次从Ⅱ区离开时到出发点P 0的距离.粒子的重力可以忽略.解析 带电粒子进入电场后, 在电场力的作用下做类平抛运动,其加速度方向竖直向下,设其大小为a , 由牛顿运动定律得qE =ma ①设经过时间t 0粒子从平面MN 上的点P 1进入磁场,由运动学公式和几何关系得v 0t 0=12at 02②粒子速度大小v 1=v 02+at 02③设速度方向与竖直方向的夹角为α,则tan α=v 0at 0④此时粒子到出发点P 0的距离为 s 0=2v 0t 0⑤此后,粒子进入磁场,在洛伦兹力作用下做匀速圆周运动,圆周半径为r 1=mv 1qB ⑥设粒子首次离开磁场的点为P 2,弧P 1P 2所对的圆心角为2β,则点P 1到点P 2的距离为 s 1=2r 1sin β⑦ 由几何关系得 α+β=45°⑧联立①②③④⑥⑦⑧式得s 1=2mv 0qB ⑨点P 2与点P 0相距l =s 0+s 1⑩联系①②⑤⑨⑩解得l =2mv 0q⎝⎛⎭⎫2v 0E +1B 答案 2mv 0q ⎝⎛⎭⎫2v 0E +1B图8-3-132.(2011·安徽卷,23)如图8-3-13所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里.一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t 0时间从P 点射出.(1)求电场强度的大小和方向;(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t 02时间恰从半圆形区域的边界射出.求粒子运动加速度的大小;(3)若仅撤去电场,带电粒子仍从O 点射入,但速度为原来的4倍,求粒子在磁场中运动的时间.解析 (1)因为带电粒子进入复合场后做匀速直线运动,则qv 0B =qE ① R =v 0t 0②由①②联立解得E =BRt 0,方向沿x 轴正方向.(2)若仅撤去磁场,带电粒子在电场中做类平抛运动,沿y 轴正方向做匀速直线运动y =v 0·t 02=R 2③沿x 轴正方向做匀加速直线运动x =12at 2④由几何关系知x = R 2-R 24=32R ⑤解得a =43Rt 02(3)仅有磁场时,入射速度v ′=4v ,带电粒子在匀强磁场中做匀速圆周运动,设轨道半径为r ,由牛顿第二定律有qv ′B =m v ′2r ⑥ 又qE =ma ⑦可得r =3R3⑧由几何知识sin α=R2r ⑨即sin α=32,α=π3⑩带电粒子在磁场中运动周期T =2πmqB则带电粒子在磁场中运动时间t ′=2α2πT ,所以t ′=3π18t 0. 答案 见解析 3.(2011·重庆卷,25)某仪器用电场和磁场来控制电子在材料表面上方的运动.如图8-3-14所示,材料表面上方矩形区域PP ′N ′N 充满竖直向下的匀强电场,宽为d ;矩形区域NN ′M ′M 充满垂直纸面向里的匀强磁场,磁感应强度为B ,长为3s ,宽为s ;NN ′为磁场与电场之间的薄隔离层.一个电荷量为e 、质量为m 、初速为零的电子,从P 点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M ′N ′飞出.不计电子所受重力.图8-3-14(1)求电子第二次与第一次圆周运动半径之比. (2)求电场强度的取值范围.(3)A 是M ′N ′的中点,若要使电子在A 、M ′间垂直于AM ′飞出,求电子在磁场区域中运动的时间.解析 (1)设圆周运动的半径分别为R 1、R 2、…R n 、R n +1…,第一和第二次圆周运动速率分别为v 1和v 2,动能分别为E k1和E k2.由:E k2=,R 1=mv 1Be ,R 2=mv 2Be ,E k1=12mv 12,E k2=12mv 22,得R 2∶R 1=. (2)设电场强度为E ,第一次到达隔离层前的速率为v ′.由eEd =12mv ′2,×12mv ′2=12mv 12,R 1≤s得E ≤5B 2es 29md ,又由:R n =-1R 1, 2R 1(1+++…++…)>3s得E >B 2es 280md ,故B 2es 280md <E ≤5B 2es 29md .(3)设电子在匀强磁场中,圆周运动的周期为T ,运动的半圆周个数为n ,运动总时间为t .由题意,有错误!+R n +1=3s ,R 1≤s ,R n +1=,R n +1≥错误!,得n =2,又由T =错误!.得:t =5πm 2eB .答案 (1) (2)B 2es 280md <E ≤5B 2es 29md (3)5πm2eB。
磁场边界问题

(1)模型概述带电粒子在有界磁场中的偏转问题一直是高考的热点,此类模型较为复杂,常见的磁场边界有单直线边界、双直线边界、矩形边界和圆形边界等.因为是有界磁场,则带电粒子运动的完整圆周往往会被破坏,可能存在最大、最小面积、最长、最短时间等问题.(2)模型分类 Ⅰ.单直线边界型当粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子时以图8-2-11(甲)中带负电粒子的运动为例.图8-2-11 规律要点 ①最值相切:当带电粒子的运动轨迹小于12圆周且与边界相切时(如图中a 点),切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点).②最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(如图8-2-11(甲)中的b 点)为带电粒子射出边界的最远点(距O 最远).Ⅱ.双直线边界型当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,以图8-2-11(乙)中带负电粒子的运动为例.规律要点①最值相切:粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.如图8-2-11(乙)所示.②对称性:过粒子源S 的垂线为ab 的中垂线.在如图(乙)中,a 、b 之间有带电粒子射出,可求得ab =22dr -d 2最值相切规律可推广到矩形区域磁场中.Ⅲ.圆形边界(1)圆形磁场区域规律要点 ①相交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于圆心,如图8-2-12(甲).②直径最小:带电粒子从直径的一个端点射入磁场,则从该直径的另一端点射出时,磁场区域面积最小.如图8-2-12(乙)所示.(2)环状磁场区域规律要点①径向出入:带电粒子沿(逆)半径方向射入磁场,若能返回同一边界,则一定逆(沿)半径方向射出磁场.②最值相切:当带电粒子的运动轨迹与圆相切时,粒子有最大速度v m 而磁场有最小磁感应强度B .如图8-2-12(丙).图8-2-12图8-2-13【典例】 如8-2-13所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m ,带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?解析 (1)如图所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r 3,又q v 1B =m v 12R 1得v 1=3Bqr3m.(2)设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又q v 2B =m v 22R 2,可得v 2=3Bqr4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m. 答案 (1)3Bqr 3m (2)3Bqr4m对应学生用书P140图8-2-141.(2011·海南卷,10改编)如图8-2-14所示空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力,下列说法正确的是( ).A .入射速度不同的粒子在磁场中的运动时间一定不同B .入射速度相同的粒子在磁场中的运动轨迹一定相同C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越小解析 带电粒子进入磁场后,在洛伦兹力的作用下做匀速圆周运动,根据q v B =m v 2r得轨道半径r =m vqB ,粒子的比荷相同.故不同速度的粒子在磁场中运动的轨道半径不同,轨迹不同,相同速度的粒子,轨道半径相同,轨迹相同,故B 正确.带电粒子在磁场中做圆周运动的周期T =2πr v =2πmqB ,故所有带电粒子的运动周期均相同.若带电粒子从磁场左边界射出磁场,则这些粒子在磁场中运动时间是相同的,但不同速度轨迹不同,故A 、C 错误.根据θt =2πT 得θ=2πT t ,所以t 越长,θ越大,故D 错误. 答案 B 2.(2011·浙江卷,20改编)利用如图8-2-15所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( ).图8-2-15A .粒子带正电B .射出粒子的最大速度为2mqB (3d +L )C .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析 利用左手定则可判定只有负电荷进入磁场时才向右偏,故选项A 错误.利用q v B =m v 2r 知r =m v qB ,能射出的粒子满足L 2≤r ≤L +3d 2,因此对应射出粒子的最大速度v max =qBr maxm=qB (3d +L )2m ,选项B 错误.最小速度v min =qBr min m -qBL 2m ,Δv =v max -v min =3qBd 2m ,由此式可判定选项C 正确,选项D 错误. 答案 C 3.(2011·广东卷,35)如图8-2-16(a)所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0.一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力.(1)已知粒子从外圆上以速度v 1射出,求粒子在A 点的初速度v 0的大小.(2)若撤去电场,如图8-2-16(b),已知粒子从OA 延长线与外圆的交点C 以速度v 2射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间.(3)在图8-2-16(b)中,若粒子从A 点进入磁场,速度大小为v 3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?图8-2-16 解析 (1)根据动能定理,qU =12m v 12-12m v 02,所以v 0= v 12-2qUm.(2)如图所示,设粒子在磁场中做匀速圆周运动的半径为R ,由几何知识可知R 2+R 2=(R 2-R 1)2,解得R =2R 0.根据洛伦兹力公式和牛顿第二定律q v 2B =m v 22R .解得B =m v 2q 2R 0=2m v 22qR 0.根据公式t T =θ2π,2πR =v 2T ,q v 2B =m v 22R ,解得t =T 4=2πm 4Bq =2πm 4×m v 22R 0=2πR 02v 2.(3)考虑临界情况,如图所示①q v 3B 1′=m v 32R 0,解得B 1′=m v 3qR 0,②q v 3B 2′=m v 322R 0,解得B 2′=m v 32qR 0,综合得:B ′<m v 32qR 0.答案 (1) v 12-2qU m (2)2m v 22qR 0 2πR 02v 2 (3)m v 32qR 0图8-2-174.(2011·课标全国卷,25)如图8-2-17所示,在区域Ⅰ(0≤x ≤d )和区域Ⅱ(d <x ≤2d )内分别存在匀强磁场,磁感应强度大小分别为B 和2B ,方向相反,且都垂直于Oxy 平面.一质量为m 、带电荷量q (q >0)的粒子a 于某时刻从y 轴上的P 点射入区域Ⅰ,其速度方向沿x 轴正向.已知a 在离开区域Ⅰ时,速度方向与x 轴正向的夹角为30°;此时,另一质量和电荷量均与a 相同的粒子b 也从P 点沿x 轴正向射入区域Ⅰ,其速度大小是a 的13.不计重力和两粒子之间的相互作用力.求:(1)粒子a 射入区域Ⅰ时速度的大小;(2)当a 离开区域Ⅱ时,a 、b 两粒子的y 坐标之差.解析 (1)设粒子a 在Ⅰ内做匀速圆周运动的圆心为C (在y 轴上).半径为R a 1,粒子速率为v a ,运动轨迹与两磁场区域边界的交点为P ′,如图所示.由洛伦兹力公式和牛顿第二定律得q v a B =m v a2R a 1①由几何关系得∠PCP ′=θ②R a 1=d sin θ ③ 式中,θ=30°,由①②③式得v a =2dqB m④(2)设粒子a 在Ⅱ内做圆周运动的圆心为O a ,半径为R a 2,射出点为P a (图中未画出轨迹),∠P ′O a P a =θ′.由洛伦兹力公式和牛顿第二定律得q v a (2B )=m v a 2R a 2⑤由①⑤式得R a 2=R a 12⑥C 、P ′和O a 三点共线,且由⑥式知O a 点必位于x =32d ⑦的平面上.由对称性知,P a 点与P ′点纵坐标相同,即 y Pa =R a 1cos θ+h ⑧ 式中,h 是C 点的y 坐标.设b 在Ⅰ中运动的轨道半径为R b 1,由洛伦兹力公式和牛顿第二定律得q ⎝⎛⎭⎫v a 3B =m R b 1⎝⎛⎭⎫v a32⑨当a 到达P a 点时,b 位于P b 点,转过的角度为α.如果b 没有飞出Ⅰ,则t T a 2=θ′2π⑩t T b 1=α2π⑪ 式中,t 是a 在区域Ⅱ中运动的时间,而T a 2=2πR a 2v a⑫T b 1=2πR b 1v a 3⑬由⑤⑨⑩⑪⑫⑬式得α=30°⑭由①③⑨⑭式可见,b 没有飞出Ⅰ.P b 点的y 坐标为 y Pb =R b 1(2+cos α)+h ⑮由①③⑧⑨⑭⑮式及题给条件得,a 、b 两粒子的y 坐标之差为y Pa -y Pb =23(3-2)d ⑯答案 (1)2dqB m (2)23(3-2)d第3讲 带电粒子在复合场中的运动对应学生用书P141复合场 复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在.从场的复合形式上一般可分为如下四种情况:①相邻场;②重叠场;③交替场;④交变场.带电粒子在复合场中的运动分类 1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运电场磁场同区域应用实例装置 原理图 规律速度选择器若q v0B=Eq,即v0=EB ,粒子做匀速直线运动磁流体发电机等离子体射入,受洛伦兹力偏转,使两极板带正、负电,两极电压为U时稳定,qUd=q v0B,U=v0Bd电磁流量计UD q=q v B所以v=UDB所以Q=v S=UDBπ⎝⎛⎭⎫D22质谱仪、回旋加速器《见第2讲》温馨提示复合场中重力是否考虑的三种情况(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略.而对于一些实际物体,如带电小球、液滴、金属块等,一般应考虑其重力.(2)在题目中明确说明的按说明要求是否考虑重力.(3)不能直接判断是否考虑重力的,在进行受力分析与运动分析时,要由分析结果确定是否考虑重力.图8-3-11.如图8-3-1是磁流体发电机的原理示意图,金属板M、N正对着平行放置,且板面垂直于纸面,在两板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是().①N板的电势高于M板的电势②M板的电势高于N板的电势③R中有由b向a方向的电流④R中有由a向b方向的电流A.①②B.③④C.②④D.①③解析本题考查洛伦兹力的方向的判断,电流形成的条件等知识点.根据左手定则可知正电荷向上极板偏转,负电荷向下极板偏转,则M板的电势高于N板的电势.M板相当于电源的正板,那么R中有由a向b方向的电流.答案 C图8-3-22.如图8-3-2所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r相同,则它们一定具有相同的().A.动能B.质量C.电荷量D.比荷答案 D图8-3-33.(2012·南昌高三调研)某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图8-3-3所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是().A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能减少解析本题考查带电体在复合场中的运动问题.由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受磁场力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A错误;重力和电场力的合力不为零,故不是匀速直线运动,所以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项D错误.答案 C4.如图8-3-4所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB,CD 的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电量为+q的粒子(不计重力)从P点以大小为v0的水平初速度射入电场,随后与边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.图8-3-4解析 (1)轨迹如图所示v =v 0cos 45°=2v 0(2)粒子在匀强磁场中做匀速圆周运动设其轨道半径R ,由几何关系可知R =dsin 45°=2dq v B =m v 2R 解得B =m v 0qd(3)粒子进入板间电场至速度减为零的过程,由动能定理有-qU =0-12m v 2 解得U =m v 02q. 答案 (1)轨迹见解析图2v 0 (2)m v 0qd (3)m v 02q对应学生用书P142考点一 带电粒子在分离复合场中的运动 “电偏转”和“磁偏转”的比较垂直进入磁场(磁偏转)垂直进入电场(电偏转)情景图受力F B =q v 0B 大小不变,方向总指向圆心,方向变化,F B 为变力 F E =qE ,F E 大小、方向不变,为恒力运动规律匀速圆周运动r =m v 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqmt x =v 0t ,y =Eq2mt 2续表运动时间 t =θ2πT =θm Bq t =Lv 0,具有等时性 动能不变变化【典例1】 在竖直平面内,图8-3-5以虚线为界分布着如图8-3-5所示的匀强电场和匀强磁场,其中匀强电场的方向竖直向下,大小为E ;匀强磁场的方向垂直纸面向里,磁感应强度大小为B .虚线与水平线之间的夹角为θ=45°,一个带负电荷的粒子在O 点以速度v 0水平射入匀强磁场,已知带电粒子所带的电荷量为q ,质量为m (重力忽略不计,电场、磁场区域足够大).求:(1)带电粒子第1次通过虚线时距O 点的距离;(2)带电粒子从O 点开始到第3次通过虚线时所经历的时间; (3)带电粒子第4次通过虚线时距O 点的距离.解析 带电粒子运动的轨迹如图所示(1)据q v 0B =m v 02r 得r =m v 0qB ,又由几何知识可知:d 1=2r ,解得d 1=2m v 0qB.(2)在磁场中运动时间为t 1=T 4=πm2qB在电场中a =qEm运动时间为t 2=2v 0a =2m v 0qE再一次在磁场中运动t 3=3πm2qB,所以总时间t =2πm qB +2m v 0qE.(3)再次进入电场中从C 到D 做类平抛运动(如图所示) x =v 0t 4,y =at 422,x =y ,得x =2m v 02qE所以距O 点距离为Δd =2d 1-2x =22m v 0qB -22m v 02qE.答案 (1)2m v 0qB (2)2πm qB +2m v 0qE (3)22m v 0qB -22m v 02qE——解决带电粒子在分离复合场中运动问题的思路方法【变式1】在如图8-3-6所示的空图8-3-6间坐标系中,y 轴的左侧有一匀强电场,场强大小为E ,场强方向与y 轴负方向成30°,y 轴的右侧有一垂直纸面向里的匀强磁场,磁感应强度为B (未画出).现有一质子在x 轴上坐标为x 0=10 cm 处的A 点,以一定的初速度v 0第一次沿x 轴正方向射入磁场,第二次沿x 轴负方向射入磁场,回旋后都垂直于电场方向射入电场,最后又进入磁场.求:(1)质子在匀强磁场中的轨迹半径R ; (2)质子两次在磁场中运动时间之比;(3)若第一次射入磁场的质子经电场偏转后,恰好从第二次射入磁场的质子进入电场的位置再次进入磁场,试求初速度v 0和电场强度E 、磁感应强度B 之间需要满足的条件.解析 (1)质子两次运动的轨迹如图所示,由几何关系可知x 0=R sin 30° 解得R =2x 0=20 cm.(2)第一次射入磁场的质子,轨迹对应的圆心角为θ1=210° 第二次射入磁场的质子,轨迹对应的圆心角为θ2=30° 故质子两次在磁场中运动时间之比为t 1∶t 2=θ1∶θ2=7∶1. (3)质子在磁场中做匀速圆周运动时,由e v 0B =m v 02R 得R =m v 0eB设第一次射入磁场的质子,从y 轴上的P 点进入电场做类平抛运动,从y 轴上的Q 点进入磁场,由几何关系得,质子沿y 轴的位移为Δy =2R质子的加速度a =eEm沿电场方向Δy cos 30°=12at 2垂直电场方向Δy sin 30°=v 0t 解得v 0=3E6B. 答案 (1)20 cm (2)7∶1 (3)v 0=3E 6B考点二 带电粒子在叠加复合场中的运动 带电粒子(体)在复合场中的运动问题求解要点(1)受力分析是基础.在受力分析时是否考虑重力必须注意题目条件.(2)运动过程分析是关键.在运动过程分析中应注意物体做直线运动,曲线运动及圆周运动、类平抛运动的条件.(3)构建物理模型是难点.根据不同的运动过程及物理模型选择合适的物理规律列方程求解.【典例2】如图8-3-7所示,与水平面成37°的倾斜轨道AC ,其延长线在D 点与半圆轨道DF 相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN 的右侧存在垂直纸面向里的匀强磁场(C 点处于MN 边界上).一质量为0.4 kg 的带电小球沿轨道AC 下滑,至C 点时速度为v C =1007m/s ,接着沿直线CD 运动到D 处进入半圆轨道,进入时无动能损失,且恰好能通过F 点,在F 点速度v F =4 m/s(不计空气阻力,g =10 m/s 2,cos 37°=0.8).求:图8-3-7(1)小球带何种电荷?(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F 点飞出时磁场同时消失,小球离开F 点后的运动轨迹与直线AC (或延长线)的交点为(G 点未标出),求G 点到D 点的距离.解析 (1)正电荷(2)依题意可知小球在CD 间做匀速直线运动在D 点速度为v D =v C =1007m/s在CD 段受重力、电场力、洛伦兹力且合力为0,设重力与电场力的合力为F =q v C B又F =mg cos 37°=5 N 解得qB =F v C =720在F 处由牛顿第二定律可得q v F B +F =m v F 2R把qB =720代入得R =1 m小球在DF 段克服摩擦力做功W f ,由动能定理可得 -W f -2FR =m (v F 2-v D 2)2W f =27.6 J(3)小球离开F 点后做类平抛运动,其加速度为a =Fm由2R =at 22得t = 4mR F =2 25 s交点G 与D 点的距离GD =v F t =1.6 2 m =2.26 m.答案 见解析 【变式2】 (2011·广东六校联合体联考)图8-3-8 如图8-3-8所示,竖直平面内有相互垂直的匀强电场和匀强磁场,电场强度E 1=2 500N/C ,方向竖直向上;磁感应强度B =103 T ,方向垂直纸面向外;有一质量m =1×10-2kg 、电荷量q =4×10-5C 的带正电小球自O 点沿与水平线成45°角以v 0=4 m/s 的速度射入复合场中,之后小球恰好从P 点进入电场强度E 2=2 500 N/C ,方向水平向左的第二个匀强电场中.不计空气阻力,g 取10 m/s 2.求:(1)O 点到P 点的距离s 1;(2)带电小球经过P 点的正下方Q 点时与P 点的距离s 2.解析 (1)带电小球在正交的匀强电场和匀强磁场中受到的重力G =mg =0.1 N 电场力F 1=qE 1=0.1 N即G =F 1,故带电小球在正交的电磁场中由O 到P 做匀速圆周运动根据牛顿第二定律得q v 0B =m v 02R解得:R =m v 0qB =1×10-2×44×10-5×103m =1 m由几何关系得:s 1=2R = 2 m.(2)带电小球在P 点的速度大小仍为v 0=4 m/s ,方向与水平方向成45°.由于电场力F 2=qE 2=0.1 N ,与重力大小相等,方向相互垂直,则合力的大小为F =210N ,方向与初速度方向垂直,故带电小球在第二个电场中做类平抛运动建立如图所示的x 、y 坐标系,沿y 轴方向上,带电小球的加速度a =Fm=102m/s 2,位移y =12at 2沿x 轴方向上,带电小球的位移x =v 0t由几何关系有:y =x 即:12at 2=v 0t ,解得:t =252 sQ 点到P 点的距离s 2=2x =2×4×252 m =3.2 m.答案 (1) 2 m (2)3.2 m对应学生用书P14411.带电粒子“在复合场中运动的轨迹”模型(1)模型概述当带电粒子沿不同方向进入电场或磁场时,粒子做各种各样的运动,形成了异彩纷呈的轨迹图形.对带电粒子而言“受力决定运动,运动描绘轨迹,轨迹涵盖方程”.究竟如何构建轨迹模型,至关重要.首先应根据电场力和洛伦兹力的性质找出带电粒子所受到的合力,再由物体做曲线运动的条件确定曲线形式.(2)模型分类 ①“拱桥”型图8-3-9【典例1】 如图8-3-9所示,在x 轴上方有垂直于xOy 平面的匀强磁场,磁感应强度为B ,在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m 、电荷量为q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与O 点的距离为L ,求此时粒子射出时的速度和运动的总路程(重力不计).解析 画出粒子运动轨迹如图所示,形成“拱桥”图形.由题可知粒子轨道半径R =L4.由牛顿运动定律知粒子运动速率为v =BqR m =BqL4m设粒子进入电场后沿y 轴负方向做减速运动的最大路程为y ,由动能定理知12m v 2=qEy ,得y =qB 2L 232mE所以粒子运动的总路程为x =qB 2L 216mE +12πL .②“心连心”型图8-3-10【典例2】 如图8-3-10所示,一理想磁场以x 轴为界,下方磁场的磁感应强度是上方磁感应强度B 的两倍.今有一质量为m 、电荷量为+q 的粒子,从原点O 沿y 轴正方向以速度v 0射入磁场中,求此粒子从开始进入磁场到第四次通过x 轴的位置和时间(重力不计).解析 由r =m v Bq 知粒子在x 轴上方做圆周运动的轨道半径r 1=m v 0Bq ,在x 轴下方做圆周运动的轨道半径r 2=m v 02Bq,所以r 1=2r 2现作出带电粒子的运动的轨迹如图所示,形成“心连心”图形,所以粒子第四次经过x轴的位置和时间分别为x =2r 1=2m v 0Bqt =T 1+T 2=2πm Bq +2πm 2Bq =3πmBq③“葡萄串”型【典例3】 如图8-3-11甲所示 ,互相平行且水平放置的金属板,板长L =1.2 m ,两板距离d =0.6 m ,两板间加上U =0.12 V 恒定电压及随时间变化的磁场,磁场变化规律如图8-3-11乙所示,规定磁场方向垂直纸面向里为正.当t =0时,有一质量为m =2.0×10-6kg 、电荷量q =+1.0×10-4C 的粒子从极板左侧以v 0=4.0×103m/s 沿与两板平行的中线OO ′射入,取g =10 m/s 2、π=3.14.求:图8-3-11(1)粒子在0~1.0×10-4s 内位移的大小x ; (2)粒子离开中线OO ′的最大距离h ;(3)粒子在板间运动的时间t ;(4)画出粒子在板间运动的轨迹图.解析 (1)由题意知:Eq =Udq =2.0×10-5N ①而mg =2.0×10-5N ②显然Eq =mg ③故粒子在0~1.0×10-4s 时间内做匀速直线运动,因为Δt =1.0×10-4s , 所以x =v 0Δt =0.4 m ④(2)在1.0×10-4~2.0×10-4s 时间内, 电场力与重力平衡,粒子做匀速圆周运动,因为T =2πm qB=1.0×10-4s ⑤故粒子在1.0×10-4~2.0×10-4s 时间内恰好完成一个周期圆周运动⑥由牛顿第二定律得:q v 0B =m v 02R⑦R =m v 0qB=0.064 m ⑧h =2R =0.128 m<d2.所以粒子离开中线OO ′的最大距离h =0.128 m .⑨ (3)板长L =1.2 m =3 x ⑩t =2T +3Δt =5.0×10-4s ⑪(4)轨迹如图⑫对应学生用书P145图8-3-121.(2011·大纲全国卷,25)如图8-3-12所示,与水平面成45°角的平面MN 将空间分成Ⅰ和Ⅱ两个区域.一质量为m 、电荷量为q (q >0)的粒子以速度v 0从平面MN 上的P 0点水平向右射入Ⅰ区.粒子在Ⅰ区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在Ⅱ区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里.求粒子首次从Ⅱ区离开时到出发点P 0的距离.粒子的重力可以忽略.解析 带电粒子进入电场后, 在电场力的作用下做类平抛运动, 其加速度方向竖直向下,设其大小为a , 由牛顿运动定律得qE =ma ①设经过时间t 0粒子从平面MN 上的点P 1进入磁场,由运动学公式和几何关系得v 0t 0=12at 02②粒子速度大小v 1=v 02+(at 0)2③设速度方向与竖直方向的夹角为α,则tan α=v 0at 0④此时粒子到出发点P 0的距离为 s 0=2v 0t 0⑤此后,粒子进入磁场,在洛伦兹力作用下做匀速圆周运动,圆周半径为r 1=m v 1qB⑥设粒子首次离开磁场的点为P 2,弧P 1P 2所对的圆心角为2β,则点P 1到点P 2的距离为 s 1=2r 1sin β⑦ 由几何关系得 α+β=45°⑧联立①②③④⑥⑦⑧式得s 1=2m v 0qB ⑨点P 2与点P 0相距l =s 0+s 1⑩ 联系①②⑤⑨⑩解得 l =2m v 0q ⎝⎛⎭⎫2v 0E +1B ⑪答案2m v 0q ⎝⎛⎭⎫2v 0E +1B图8-3-132.(2011·安徽卷,23)如图8-3-13所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里.一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t 0时间从P 点射出.(1)求电场强度的大小和方向;(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t 02时间恰从半圆形区域的边界射出.求粒子运动加速度的大小;(3)若仅撤去电场,带电粒子仍从O 点射入,但速度为原来的4倍,求粒子在磁场中运动的时间.解析 (1)因为带电粒子进入复合场后做匀速直线运动,则q v 0B =qE ① R =v 0t 0②由①②联立解得E =BRt 0,方向沿x 轴正方向.(2)若仅撤去磁场,带电粒子在电场中做类平抛运动,沿y 轴正方向做匀速直线运动y =v 0·t 02=R 2③沿x 轴正方向做匀加速直线运动x =12at 2④由几何关系知x = R 2-R 24=32R ⑤ 解得a =43Rt 02(3)仅有磁场时,入射速度v ′=4v ,带电粒子在匀强磁场中做匀速圆周运动,设轨道半径为r ,由牛顿第二定律有q v ′B =m v ′2r⑥又qE =ma ⑦ 可得r =3R 3⑧ 由几何知识sin α=R2r⑨即sin α=32,α=π3⑩带电粒子在磁场中运动周期T =2πmqB则带电粒子在磁场中运动时间t ′=2α2πT ,所以t ′=3π18t 0.答案 见解析 3.(2011·重庆卷,25)某仪器用电场和磁场来控制电子在材料表面上方的运动.如图8-3-14所示,材料表面上方矩形区域PP ′N ′N 充满竖直向下的匀强电场,宽为d ;矩形区域NN ′M ′M 充满垂直纸面向里的匀强磁场,磁感应强度为B ,长为3s ,宽为s ;NN ′为磁场与电场之间的薄隔离层.一个电荷量为e 、质量为m 、初速为零的电子,从P 点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M ′N ′飞出.不计电子所受重力.图8-3-14(1)求电子第二次与第一次圆周运动半径之比. (2)求电场强度的取值范围.(3)A 是M ′N ′的中点,若要使电子在A 、M ′间垂直于AM ′飞出,求电子在磁场区域中运动的时间.解析 (1)设圆周运动的半径分别为R 1、R 2、…R n 、R n +1…,第一和第二次圆周运动速率分别为v 1和v 2,动能分别为E k1和E k2.由:E k2=0.81E k1,R 1=m v 1Be ,R 2=m v 2Be ,E k1=12m v 12,E k2=12m v 22,得R 2∶R 1=0.9.(2)设电场强度为E ,第一次到达隔离层前的速率为v ′.由eEd =12m v ′2,0.9×12m v ′2=12m v 12,R 1≤s得E ≤5B 2es 29md ,又由:R n =0.9n -1R 1,2R 1(1+0.9+0.92+…+0.9n +…)>3s得E >B 2es 280md ,故B 2es 280md <E ≤5B 2es 29md.(3)设电子在匀强磁场中,圆周运动的周期为T ,运动的半圆周个数为n ,运动总时间为t .由题意,有2R 1(1-0.9n )1-0.9+R n +1=3s ,R 1≤s ,R n +1=0.9n R 1,R n +1≥s 2,得n =2,又由T=2πm eB .得:t =5πm 2eB.。
磁场边界条件

磁场边界条件磁场边界条件是电磁学中的重要概念之一,它描述了磁场在介质或空间中的传播和转换规律。
磁场边界条件在解决电磁问题时起着关键作用,能帮助我们理解和分析各种电磁现象。
一、磁场边界条件的基本概念磁场边界条件是指在两个不同介质或空间中,磁场在界面上的行为规律。
根据不同的情况,可以有不同的磁场边界条件,主要包括磁感应强度的切向连续性和法向连续性。
1. 磁感应强度的切向连续性:在两个介质或空间的界面上,磁感应强度的切向分量在界面上是连续的。
这意味着磁场的切向分量在穿过界面时保持不变,不会发生跳跃或间断现象。
2. 磁感应强度的法向连续性:在两个介质或空间的界面上,磁感应强度的法向分量在界面上也是连续的。
这意味着磁场的法向分量在穿过界面时也保持不变,不会有突变或断裂。
二、常见的磁场边界条件根据具体情况,磁场边界条件可以有不同的形式和表达方式。
下面介绍几种常见的磁场边界条件。
1. 自由磁场边界条件:在自由空间中,磁场边界条件可以简化为磁感应强度的法向分量为零。
这意味着磁场在自由空间的边界上不存在法向分量,也就是说磁场不会通过自由空间的边界。
2. 介质边界条件:当磁场从一种介质进入另一种介质时,磁场边界条件可以表示为磁感应强度的法向分量和切向分量在界面上的关系。
根据不同介质的特性,可以有不同的表达形式。
3. 导体边界条件:当磁场与导体相互作用时,磁场边界条件可以表示为磁感应强度的切向分量在导体表面上为零。
这意味着磁场在导体表面的切向分量为零,也就是说磁场不会穿透导体。
4. 磁壁边界条件:在磁壁上,磁感应强度的切向分量和法向分量都为零。
这意味着磁场在磁壁上既没有切向分量,也没有法向分量,也就是说磁场在磁壁上完全消失。
三、磁场边界条件的应用磁场边界条件在电磁学中的应用非常广泛,可以帮助我们解决各种与磁场有关的问题。
以下是磁场边界条件的一些常见应用。
1. 磁场传播问题:当磁场在不同介质中传播时,磁场边界条件可以帮助我们确定磁场的传播方向和传播规律。
带电粒子在磁场中运动的边界问题三角形边界

带电粒子在磁场中运动的边界问题三角形边界大家好,今天我要给大家讲解一个关于带电粒子在磁场中运动的边界问题——三角形边界。
我们要明白什么是三角形边界,它是指带电粒子在磁场中运动时,其运动轨迹形成的边界是一个三角形。
接下来,我将从三个方面来详细讲解这个问题。
一、1.1 带电粒子的基本概念带电粒子是指带有电荷的粒子,它们可以是电子、质子等。
电荷是带电粒子的一种属性,它决定了粒子的运动特性。
在磁场中,带电粒子会受到洛伦兹力的作用,从而改变它们的运动轨迹。
洛伦兹力是根据爱因斯坦的洛伦兹理论计算出来的,它与带电粒子的速度和磁场的强度有关。
二、2.1 磁场的基本概念磁场是由电荷产生的,它是一种物理场。
在磁场中,带电粒子会受到一个垂直于速度方向和磁场方向的力,这个力就是洛伦兹力。
磁场的方向可以用磁感应强度来表示,磁感应强度的大小与磁场的强度成正比,与距离磁场的距离成反比。
三、3.1 三角形边界的形成原理当我们把带电粒子放在一个磁场中时,它们会在磁场中受到洛伦兹力的作用,从而改变它们的运动轨迹。
这些运动轨迹在空间中形成了一个封闭的曲线,这个曲线就是带电粒子的运动轨迹。
由于带电粒子在磁场中的运动是三维的,所以这个曲线是一个三维的空间曲面。
我们关心的是带电粒子在磁场中的边界问题。
这里的边界指的是带电粒子在磁场中运动时形成的最外层边界。
对于这个问题,我们可以通过分析带电粒子的运动轨迹来找到解决办法。
当带电粒子在磁场中沿着一个圆周运动时,它们的运动轨迹是一个圆形。
但是,当它们沿着一个螺旋线运动时,它们的运动轨迹就不再是一个圆形了。
这时,我们需要考虑一种特殊的边界情况——三角形边界。
四、4.1 三角形边界的形成过程当带电粒子沿着一个螺旋线运动时,它们的运动轨迹形成一个封闭的曲线。
这个曲线在空间中看起来像一个三角形。
这是因为螺旋线的形状使得带电粒子的运动轨迹在一个方向上保持不变,而在另一个方向上发生周期性的变化。
这种变化使得带电粒子的运动轨迹在一个方向上呈现出直线的特点,而在另一个方向上呈现出螺旋线的特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中运动
例1.(2004全国理综Ⅳ24)空间存在方向垂直于纸面向里的匀强磁场,磁感应强度为B,一带电量为+q、质量为m的粒子,在P点以某一初速度开始运动,初速度方向(在图中纸面内)如图中P点箭头所示。该粒子运动到图中Q点时速度方向与P点时速度方向垂直,如图中Q点箭头所示。已知P、Q间的距离为L。若保持粒子在P点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P点时速度方向垂直。在此电场作用下粒子也由P点运动到Q点,不计重力。求:
练1.如图所示,磁感强度B的匀强磁场存在于半径为R的光滑的圆环内部。圆环A处开一小孔,带电粒子经电压为U的电场加速后,沿着半径方向由小孔射入圆环。粒子在环内和圆环发生两次不损失能量的碰撞(碰撞过程中带电粒子电量不变,圆环固定不动)后仍从A孔射出环处,试求带电粒子的荷质比。
练2.带电粒子的质量为m,带电量为q,以速度V0从O点处进入磁感强度为B的匀强磁场,从磁场射出经过b点,射出方向与x轴成θ=30°,试求,
(1)粒子到达P2点的速度大小和方向;
(2)第三象限空间中电场强度和磁感应强度的大小;
(3)带电质点在第四象限空间运动过程中最小的速度的大小和方向。
练4.如图所示中,整个空间内有水平向右的匀强电场,以竖直虚线NC为理想边界,其右侧有垂直纸面向里、磁感强度为B的匀强磁场。带有极短斜槽的光滑绝缘轨道CD部分水平,斜槽倾角α=45°。质量为m、带电量+q的微粒自A点从静止开始运动,刚好沿虚线AC运动至斜槽上,假设微粒和斜槽发生碰撞时有能量损失,但可以认为碰撞前后微粒的水平分速度保持不变,由于C处斜槽极短使微粒即以该水平速度进入水平光滑绝缘轨道CD部分,之后在D处离开沿图示曲线轨道DP运动。求
(1)所考察的粒子在磁场中的轨道半径。
(2)这两个粒子从O点射入磁场中的时间间隔。
练3.核聚变反应需几百万度高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如右图所示,环状均强磁场围成中空区域,中空区域中的带电粒子的只要速度不是很大,都不会穿出磁场外缘,设环状磁场的内半径为R1=0.5m,外半径为R2=1.0m,磁场的感应强度B=1.0T,方向垂直纸面向里,若被束缚带电粒子的荷质比为 =4×104C/kg,中空区域内带电粒子具有各个方向的速度,试计算:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。
(1)若粒子运动到CD边时速度方向恰好与CD边垂直,则它从A点射入时速度V0为多少?
(2)若已知粒子从A点射入时速度为u(u>V0),则粒子运动到CD边界时,速度方向与CD边的夹角θ为多少?
(3)若已知粒子从A点射入时速度为u(u>V0)粒子运动到EF边界时恰好不穿出磁场,则CD、EF之间磁场的磁感强(y0)存在着垂直纸面向外的匀强磁场,磁感应强度为B。在原点O有一离子源向各个方向发射出质量为m、电量为q的正离子,速率都是V0,对那些在xy平面内运动的离子,在磁场中,可能到达的最大x=__________,最大y=_________.画出粒子能到达的区域图。
(1)圆形磁场区域的最小半径(带电质点重力可忽略不计)
(2)写出b点的坐标
(3)计算出粒子在磁场中运动的时间。
拓展:如图所示,一带电质点,质量为m,电量为q,以平行b于ox轴的速度V0从y轴上a点射入图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于ox轴的速度V0射出,可在适当的地方加一个垂直于xy平面、磁感强度为B的匀强磁场。若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径(带电质点重力可忽略不计)。
练2.(99年全国高考)如图所示,虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的空间存在一磁感强度为B的匀强磁场,方向是垂直纸面向外。O是MN上的一点,从O点可以向磁场区域发射电量为+q,质量为m,速度为v的粒子,粒子射入磁场时的速度可在纸面内各个方向。已知先后射入的两个粒子恰好在磁场中的P点相遇,P到O的距离为L,不计重力及粒子间的相互作用,求:
(1)当两金属板电势差为U0时,求从小孔S2射出的电子速度V0
(2)求金属板间电势差U在什么范围内,电子不能穿过磁场区域。
(3)若电子能够穿过磁场区域而打到荧光屏上,试在图上定性画出电子运动的轨迹。
(4)求电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系。
练4.如图所示,abcd是一边长为L的正方形,它是磁感强度为B的匀强磁场横截面的边界线。一带电粒子从ad边的中点O与ad边成θ=30°角且垂直于磁场方向射入。若该带电粒子所带的电荷量为q,质量为m(重力不计)则该带电粒子在磁场中飞行时间最长是多少?若要带则粒子飞行时间最长,带电粒子的速度必须满足什么条件?
练2.(2004全国理综Ⅱ24)如图所示,在y>0的空间存在匀强电场,场强沿y轴负方向;在y<0空间中存在匀强磁场,磁场的方向垂直xy平面(纸面)向外。一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为V0,方向沿x轴正方向,然后,经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点。不计重力,求
(1)电场强度的大小;
(2)粒子到达P2时速度的大小和方向;
(3)磁感应强度的大小。
练3.如图所示的坐标中,x轴沿水平方向,y轴沿竖直方向。在x轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直于xy平面(纸面)向里的匀强磁场,在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场。一质量为m、电量为q的带电质点,从y轴上y=h处的P1点以一定的的水平初速度沿x轴负方向进入第二象限。然后经过x轴上x=-2h处的P2点进入第三象限、带电质点恰好能做匀速圆周运动。之后经过y轴上y=-2h处的P3点进入第四象限。已知重力加速度为g。求:
如图,xoy平面内的圆O′与y轴相切于坐标原点O。在该圆形区域内,有与y轴平行的匀强电场和垂直于圆面的匀强磁场。一个带电粒子(不计重力)从原点为O沿x轴进入场区,恰好作匀速运动,穿过场区的时间为T0。
若撤去磁场,只保留电场,其他条件不变,该带电粒子穿过场区的时间为T0/2。若撤去电场,只保留磁场,其他条件不变,该带电粒子穿过场区的时间。
(2)所有粒子不能穿越磁场的最大速度。
(07全国Ⅰ25)两平面荧光屏互相垂直放置于两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示。在y>0,0<x<a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点外有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经孔射入磁场,最后打在竖直和荧光屏上,使荧光屏发亮。入射粒子的速度可取从零到某一最值之间的各种数值。已知最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中做圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。
练3.(2005广东)如图所示,在一圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径为A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°。一质量为m,带电量为+q的粒子以某一速度从Ⅰ区的边缘A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感强度的大小(忽略粒子的重力)。
(1)电场强度大小
(2)两种情况中粒子由P点运动到Q点所经历的时间之差。
拓展:
1.如图所示,宽度为d=8cm的匀强磁场和匀强电场共存的区域内,电场方向竖直向下,磁场的方向垂直纸面向里,一带电粒子沿水平方向射入电磁场区域,恰好不发生偏转,若入射时撤去磁场,带电粒子穿过场区射出时,向上侧移了3.2cm。若入射时撤去电场,求带电粒子穿过场区时射出时的侧移(不计重力)
练1:已知B、+q、m、θ、d、a、V0。求从左边界穿出时经历的时间。
(1)刚好不从上边界穿出
(2)刚好不从下边界穿出
(3)能从左边界穿出。
练3.如图所示,在水平直线MN上方有一匀强磁场,磁感强度为B,方向垂直向里。一带电粒子质量为m、电量为q,从a点以与水平线MN成θ角度射入匀强磁场中,从右侧b点离开磁场。问:
2.(2004广东、广西)如图所示,真空室内存在匀强磁场,磁场方向垂直于图中纸面向里,磁感应强度大小B=0.60T。磁场内有一块平面感光板ab,板面与磁场方向平行。在距ab的距离为L=16cm处有一个点状的α放射源S,它向各个方向发射α粒子。α粒子的速度都是v=3.0×106m/s。已知α粒子的比荷为 。现只考虑在图纸平面中运动的α粒子,求ab上α粒子打中的区域的长度。
2.如图所示为一长度足够长,宽度d=8.0cm的匀强磁场,磁感强度B=0.33T,磁场方向垂直纸面向里。在磁场边界aa′上有一放射源S,它可沿纸面向各个方向射出初速度V0=3.2×106m/s的α粒子。已知α粒子的电量q=3.2×10-19C,质量m=6.6×10-27Kg,试求α粒子从磁场的另一边界bb′射出的长度范围。
(1)AD之间的水平距离d;
(2)微粒离开D点后继续运动过程中达最大速度时,速度和竖直方向的夹角是多少度(只需写出结果,不需说明原因)。
练5.如图所示,在坐标的第Ⅰ象限内有一匀强磁场区域,磁感强度为B,y轴是磁场左侧的边界,直线OA是磁场的右侧边界。在第Ⅱ象限y>0的区域,有一束带电量为q的负粒子(重力不计)垂直y轴射入磁场,粒子的质量为m,粒子在各入射点的速度与入射点的y轴坐标值成正比,即v=by,(b是常数,且b>0)。要求粒子穿过磁场区域后,都垂直于x轴射出,求:直线OA与x轴的夹角θ多大?(用题中已知物理量符号表示)