集合练习作业

合集下载

集合的基本关系课后作业含答案

集合的基本关系课后作业含答案

§2 集合的基本关系1.下列各式中,正确的个数是( D )①∅={0} ②∅⊆{0} ③∅∈{0} ④0={0} ⑤0∈{0}⑥{1}∈{1,2,3} ⑦{1,2}⊆{1,2,3} ⑧{a ,b}⊆{a ,b}A.1B.2C.3D.42.集合M={x|x=m+61,m ∈Z },N={x|x=2n -31,n ∈Z },P={x=2p +61,p ∈Z },则M 、N 、P 之间的关系是( B ) A.M=N P B.M N=P C.M N P D.N P=M3.满足条件{1}⊆A {1,3,5}的集合A 的个数是( C )A.1B.2C.3D.44.已知集合A={0,2,3,4},B={0,1,2,3},非空集合M 满足M ⊆A 且M ⊆B ,则满足条件的集合M 的个数为( A )A.7B.8C.15D.165.同时满足(1)M ⊆{1,2,3,4,5},(2)若a ∈M ,则6-a ∈M 的非空集合M 有( C )A.32个B.15个C.7个D.6个6.已知集合A {0,1,2,3}且A 中至少有一个奇数,则这样的集合的个数为( A )A.11B.12C.15D.167.设M={x|x=a 2+1,a ∈N *},P={y|y=b 2-4b +5,b ∈N *},则下列关系正确的是( B )A.M=PB.M PC.P MD.M 与P 没有公共元素8.设集合M={x|x 2-x<0},N={x||x|<2},则( B )A.M ∩N=∅B.M ∩N=MC.M ∪N=MD.M ∪N=R9.已知集合A={x|x 2-2x-3=0},集合B={x|ax-1=0}.若B 是A 的真子集,则a 的值为___10,,13⎧⎫-⎨⎬⎩⎭______. 10.已知集合M={x|x=2k +41,k ∈Z },N={x|x=4k +21,k ∈Z },则M_________N. 11.在平面直角坐标系中,集合C={(x ,y )|y=x}表示直线y=x ,从这个角度看, 集合D={(x ,y )|⎩⎨⎧=+=-5412y x y x }表示直线2x-y=1和直线x+4y=5的交集,则集合C 、D 之间的关系为_D C ________,用几何语言描述这种关系为___点D 在直线y x =上______.12.定义集合A *B={x|x ∈A 且x ∉B},若A={1,3,5,7},B={2,3,5},则(1)A *B 的子集为____∅,__{}1_____{}7____{}1,7____________;(2)A *(A *B )=_________{}3,5__________________.13.已知集合A={1,2},B={1,2,3,4,5},且A M⊆B,写出满足上述条件的集合M. {}1,2,3,5,{}1,2,3,4,51,2,4,5,{}1,2,3,4,{}1,2,5,{}1,2,3,{}1,2,4,{}14.已知A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,求实数m的取值范围. {}1m m≥-。

集合的基本运算交集并集练习题

集合的基本运算交集并集练习题

集合的基本运算交集并集练习题1.1. 集合间的基本运算考察下列集合,说出集合C与集合A,B之间的关系: A?{1,3,5},B?{2,4,6},C??1,2,3,4,5,6?;A?{xx是有理数},B?{xx是无理数},用Venn图分别表示上面各组中的3组集合。

思考:上述每组集合中,A,B,C之间均有怎样的关系?1、交集定义:一般地,由所有属于集合A且属于集合B的元素组成的集合,叫作集合A、B的交集。

记作:A∩B 读作:“A交B” 。

即:A∩B={x|x∈A,且x∈B}用Venn图表示:常见的3种交集的情况:说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集讨论:A∩B与A、B、B∩A的关系?A∩A=A∩?=A∩BB∩AA∩B=A ? A∩B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∩B=;2、A={等腰三角形},B={直角三角形},则A∩B=3、A={x|x>3},B={x|x 2、并集定义:一般地,由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与集合B 的并集,记作A∪B,读作:“A 并B”即A∪B={x|x∈A或x∈B}。

用Venn图表示:说明:定义中要注意“所有”和“或者”这两个条件。

讨论:A∪B与集合A、B有什么特殊的关系?A∪A=, A∪Ф=, A∪B∪AA∪B=A? , A∪B=B?:1、A={3,5,6,8},B={4,5,7,8},则A∪B=2、设A ={锐角三角形},B={钝角三角形},则A∪B=;3、A={x|x>3},B={x|x 3、一些特殊结论⑴若A?B,则A∩B=A;⑵若B?A,则A∪B=A;⑶若A,B两集合中,B=?,,则A∩?=?, A∪?=A。

1求A∪B。

2、设A={x|x>-2},B={x|x3、已知集合A={y|y=x2-2x-3,x∈R},B={y|y=-x2+2x+13,x∈R}。

集合知识点总结及习题

集合知识点总结及习题

集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。

、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。

、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。

真子集:若且(即至少存在但),则是的真子集。

集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩一、集合有关概念 1. 集合的含义2. 集合的中元素的三个特性: (1)元素确实定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——〔不〕属于关系 〔1〕集合用大写的拉丁字母A 、B 、C …表示元素用小写的拉丁字母a 、b 、c …表示〔2〕假设a 是集合A 的元素,就说a 属于集合A,记作a ∈A;假设不是集合A 的元素,就说a 不属于集合A,记作a ∉A;4.集合的表示方法:列举法与描述法。

集合作业

集合作业

集合一、选择题(每小题5分,计5×12=60分)1.下列集合中,结果是空集的为()(A)(B)(C)(D)2.设集合,,则()(A)(B)(C)(D)3.下列表示①②③④中,正确的个数为( )(A)1 (B)2 (C)3 (D)44.满足的集合的个数为()(A)6 (B)7 (C)8 (D)95.若集合、、,满足,,则与之间的关系为()(A)(B)(C)(D)6.下列集合中,表示方程组的解集的是()(A)(B)(C)(D)7.设,,若,则实数的取值范围是()(A)(B)(C)(D)8.已知全集合,,,那么是()(A)(B)(C)(D)9.已知集合,则等于( )(A ) (B )(C ) (D )10.已知集合,,那么( )(A )(B )(C ) (D )11. 如图所示,,,是的三个子集,则阴影部分所表示的集合是( )(A ) (B )(C )(D )12.直角坐标平面除去两点(1,1)A 、(2,2)B -可用集合表示为( )A .{}(,)|1,1,2,2x y x y x y ≠≠≠≠B .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩或22x y ⎫≠⎧⎪⎨⎬≠⎪⎩⎭C .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩且22x y ⎫≠⎧⎪⎨⎬≠-⎪⎩⎭D .{}2222(,)|[(1)(1)][(2)(2)]0x y x y x y -+--++≠二、填空题(每小题4分,计4×4=16分) 13.已知集合,,则集合_________________14.用描述法表示平面内不在第一与第三象限的点的集合__________________15.设全集,,,则的值_______________ 16.若集合只有一个元素,则实数的值___________________解答题:1已知集合2{,,2},{,,}A a a d a d B a aq aq =++=,其中0a ≠,且A B =,求q2设集合{|(3)()0,R}A x x x a a =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B3.求集合{1,2,3,,100}M =的所有子集的元素之和的和4.已知,a b 均为实数,设数集41,53A x a x a B x b x b ⎧⎫⎧⎫=≤≤+=-≤≤⎨⎬⎨⎬⎩⎭⎩⎭,且A 、B 都是集合{}10≤≤x x 的子集.如果把n m -叫做集合{}x m x n ≤≤的“长度”,求集合A B ⋂的“长度”的最小值。

人教版数学3年级上册 第9单元(数学广角-集合)同步练习(含答案)

人教版数学3年级上册 第9单元(数学广角-集合)同步练习(含答案)

数学广角——集合同步练习人教版小学三年级数学上册(含答案)一、填空题1.三(1)班一共有46人参加兴趣小组,其中有30人参加语文小组,有35人参加数学小组,两个兴趣小组都参加的有( )人。

2.把两个集合圈重叠一部分,重叠的这一部分表示既参加()比赛,又参加()比赛的同学。

跳绳的学生:陈东、王爱华、丁旭、赵军、刘红、徐强、马超、李芳。

踢毽的学生:扬明、王爱华、于丽、周晓、陶伟、徐强。

填在左侧圈里的()人是只参加了跳绳比赛而没参加踢毽比赛的学生,填在右侧圈里的()人是只参加了踢毽比赛而没参加跳绳比赛的学生,填在中间圈里的两项都参加的学生()人是同时参加了这两项比赛的学生。

3.下面是三年级参加跳绳、跑步的学生名单:参加跳绳的:李华、王刚、刘军、周强、田丽。

参加跑步的:宋林、王明、李华、周强、刘军、张震。

(1)参加跑步的有( )人,参加跳绳的有( )人。

(2)既参加跑步又参加跳绳的有( )人(3)一共有( )人参加比赛。

4.三(2)班有44人,每人至少订一种书籍,订故事书的有28人,订科技书的有26人,两种书籍都订的有( )人。

5.一次考试中,语文得100分的有5人,数学得100分的有11人。

这次考试得100分的有12人,那么得双百分的有( )人。

6.学校举行跳绳和滑冰比赛。

五(1)班参加跳绳比赛的有10人,参加滑冰比赛的有15人,其中有7人既参加跳绳比赛又参加了滑冰比赛,五(1)班参加比赛的一共有( )人。

7.一盔一带,安全出行。

三(1)班全体同学去社区、路口和广场做宣传志愿者,有25人去了社区宣传,有17人去了路口宣传,其中既去了社区又去了路口宣传的有10人,还有13人去广场宣传。

三(1)班一共有( )人。

二、选择题8.三(1)班每人至少订一种课外读物,订《漫画大王》的有37人,订《快乐作文》的有29人,两种课外读物都订的有18人。

三(1)班共有()人。

A.66B.58C.489.王老师出了两道题,全班42人中答对A题的有24人,答对B题的有35人。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。

集合论作业

集合论作业
9
§3 关系的特性
1. 设 A={1, 2, 3}, 定义 A 上的二元关系如下: R={1, 1, 2, 2}, S={1, 1, 1, 2, 2, 1}, T={1, 2, 1, 3}, U={1, 3, 1, 2, 2, 1}.
试说明 R, S, T, U 是否是 A 上的对称关系和反对称关系.
2. 在 R2 平面上画出下述关系的关系图, 判断每一关系成立哪些性质. (1) R1={x, y | x=y}. (2) R3={x, y | | x |≤1 且| y |≥1}.
3. 设 A={1, 2, 3, 4}, 确定下列关系是否是自反的, 反自反的, 对称的, 反对称的或 传递的.
.
5
单元测试题(一)
一、单项选择题
1. 若集合 A={a, b, c}, 为空集合, 则下列表示正确的是( )
(A) {a}A
(B) {a}A
2. 对任意集合 S, S∪=S, 满足(
(C) aA )
(D) A
(A) 幂等律
(B) 零一律
(C) 同一律
(D) 互补律
3. 设 S1=, S2={}, S3=P({}), S4=P(), 以下命题为假的是( )
3. 找出由关系图所确定的关系并且给出它的关系矩阵.
f d e
b
c
a
7
§2 关系的运算
1. 设 A={1, 2, 3, 4}, R={1, 2, 2, 4, 3, 4, 4, 4}, S={1, 3, 2, 4, 4, 2, 4, 3}. (1) 求出 R∪S, R∩S, R-S, R1. (2) 求出 dom (R), ran (R), dom (R∩S), ran (R∩S).

高中数学必修一 《1 3 集合的基本运算》课时分层作业

高中数学必修一 《1 3 集合的基本运算》课时分层作业

课时分层作业(五)补集(建议用时:60分钟)[合格基础练]一、选择题1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个C[A={0,1,3},真子集有23-1=7个.]2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}D[由题意可知,A∪B={x|x≤0,或x≥1},所以∁U(A∪B)={x|0<x<1}.] 3.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B等于()A.{3}B.{4} C.{3,4}D.∅A[∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.]4.设全集U为实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1}都是全集U的子集,则图中阴影部分所表示的集合是()A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}A[阴影部分表示的集合为N∩(∁U M)={x|-2≤x<1},故选A.]5.已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N等于()A.M B.N C.I D.∅A[因为N∩∁I M=∅,所以N⊆M(如图),所以M∪N=M.]二、填空题6.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是________.{m|m<1}[∵∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1.]7.已知集合A={x|-2≤x<3},B={x|x<-1},则A∩(∁R B)=________.{x|-1≤x<3}[∵A={x|-2≤x<3},B={x|x<-1},∴∁R B={x|x≥-1},∴A∩(∁R B)={x|-1≤x<3}.]8.设全集U=R,则下列集合运算结果为R的是________.(填序号)①Z∪∁U N;②N∩∁U N;③∁U(∁U∅);④∁U Q.①[结合常用数集的定义及交、并、补集的运算,可知Z∪∁U N=R,故填①.]三、解答题9.已知U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求A∩B,A∪B,(∁A)∩(∁U B),A∩(∁U B),(∁U A)∪B.U[解]法一(直接法):由已知易求得A∩B={4},A∪B={3,4,5,7,8},∁U A={1,2,6,7,8},∁U B={1,2,3,5,6},∴(∁U A)∩(∁U B)={1,2,6},A∩(∁U B)={3,5},(∁U A)∪B={1,2,4,6,7,8}.法二(Venn图法):画出Venn图,如图所示,可得A∩B={4},A∪B={3,4,5,7,8},(∁U A)∩(∁U B)={1,2,6},A∩(∁U B)={3,5},(∁U A)∪B={1,2,4,6,7,8}.10.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B),∁U(A∪B).[解]如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},U={x|x≤4},∴∁U A={x|x≤-2,或3≤x≤4},∁U B={x|x<-3,或2<x≤4}.A∩B={x|-2<x≤2},A∪B={x|-3≤x<3}.故(∁U A)∪B={x|x≤2,或3≤x≤4},A∩(∁U B)={x|2<x<3},∁U(A∪B)={x|x<-3,或3≤x≤4}.[等级过关练]1.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是()A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)D[∵A∪B={1,3,4,5,6},∴∁U(A∪B)={2,7}.]2.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}C[由于A∪(∁R B)=R,则B⊆A,可知a≥2.故选C.]3.设全集U是实数集R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为________.{x|-2≤x<1}[阴影部分所表示的集合为∁U(M∪N)=(∁U M)∩(∁U N)={x|-2≤x≤2}∩{x|x<1或x>3}={x|-2≤x<1}.]4.设全集U={1,2,x2-2},A={1,x},则∁U A=________.{2}[若x=2,则x2-2=2,与集合中元素的互异性矛盾,故x≠2,从而x =x2-2,解得x=-1或x=2(舍去).故U={1,2,-1},A={1,-1},则∁U A={2}.]5.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.[解]∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合练习1
1.下列命题正确的有( ) (1)很小的实数可以构成集合;
(2)集合{}
1|2-=x y y 与集合(){}
1|,2-=x y y x 是同一个集合; (3)361
1,,,,0.524
2
-
这些数组成的集合有5个元素;
(4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象
限内的点集。

A .0个
B .1个
C .2个
D .3个
2.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )
A .1
B .1-
C .1或1-
D .1或1-或0 3.若集合{}
2
(,)0,{(,)|M x y x y N x y x =+==,
20,,}y x R y R +=∈∈则有( )
A .M N M =
B . M N N =
C . M N M =
D .M N =∅
4.方程组⎩⎨⎧=-=+9
1
2
2y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-。

5.下列式子中,正确的是( ) A .R R ∈+
B .{}Z x x x Z ∈≤⊇-
,0|
C .空集是任何集合的真子集
D .{}φφ∈ 6.下列表述中错误的是( ) A .若A B A B A =⊆ 则, B .若B A B B A ⊆=,则 C .)
(B A
A )(
B A
D .()()()B C A C B A C U U U = 7.用适当的符号填空
(1){}()(){}1|,____2,1,2|______3+=≤x y y x x x
(2){}
32|_______52+≤+x x , (3){}31|
,_______|0x x x R x x x x ⎧⎫
=∈-=⎨⎬⎩⎭
8.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或则
__________,==b a 。

9.若{}{}2
1,4,,1,A x B x ==且A B B =,则
x = 。

10.已知集合}023|{2=+-=x ax x A 至多有一个元
素,则a 的取值范围 ;若至少有一个元素,
则a 的取值范围 。

11.设{}{}(){}
2
,|,,,y x ax b A x y x a M a b M =++====求
12.设2
22
{
40},{2(1)10}A xx x B xx a x a =+==+++-=,
其中x R ∈,如果A
B B =,求实数a 的取值范围。

13



{}
22|190A x x ax a =-+-=,
{}2|560B x x x =-+=,{}2|280C x x x =+-=
满足,A
B φ≠,,A
C φ=求实数a 的值。

14.设U R =,集合{}2
|
320A x x x =
++=,
{}2|(1)0B x x m x m =+++=;若φ=B A C U )(,
求m 的值。

集合练习2
1.若集合{|1}X x x =>-,下列关系式中成立的为( )
A .0X ⊆
B .{}0X ∈
C . X φ∈
D .{}0X ⊆ 2
.已知集合{
}
2
|10,A x x A
R φ=++==若,
则实数m 的取值范围是( )
A .4<m
B .4>m
C .40<≤m
D .40≤≤m 3.下列说法中,正确的是( ) A . 任何一个集合必有两个子集; B 若,A
B φ=则,A B 中至少有一个为φ
C 任何集合必有一个真子集;
D 若S 为全集,且,A
B S =则,A B S ==
4.若U 为全集,下面命题中真命题的个数是( )
(1)若()()U B C A C B A U U == 则,φ (2)若()()φ==B C A C U B A U U 则, (3)若φφ===B A B A ,则
A .0个
B .1个
C .2个
D .3个
5.设集合}
,412|{Z k k x x M ∈+==,},2
1
4|{Z k k x x N ∈+=
=,则( ) A .N M =B .
M N C .
N M D .M N φ= 6.设集合22
{|0},{|0}A x x x B x x x =-==+=,则
集合A B =( )
A .0
B .{}0
C .φ
D .{}1,0,1-
7.已知{}
R x x x y y M ∈+-==,34|2,
{}
R x x x y y N ∈++-==,82|2_____=N M
8










M m m Z m Z =+∈∈{|
,}10
1
= 。

9.若{}|1,I x x x Z =≥-∈,则N C I = 。

10.设集合{}{}{
}1,2,1,2,3,2,3,4A B C ===则
A B =()C 。

11.设全集{}(,
),U x y x y R =∈,集合
2(,)1
2y M x y x ⎧+⎫
==⎨⎬-⎩
⎭,{}(,)4N x y y x =≠-, 那么()
()U U C M C N 等于________________。

12.若{}{}{}.,,|,,M C A M A x x B b a A B 求=⊆==
13.已知集合{}|2A x x a =-≤≤,
{}|23,B y y x x A ==+∈,{}2
|,C z z x x A ==∈,且C B ⊆,求a 的取值范围。

14.全集{}32
1,3,32S x x x =++,{}
1,21A x =-,
如果{},0=A C S 则这样的实数x 是否存在?若存在,求出x ;若不存在,请说明理由。

相关文档
最新文档