1.1正数和负数-1-正数和负数的概念-教案

合集下载

沪科版数学七年级上册1.1《正数和负数》教学设计

沪科版数学七年级上册1.1《正数和负数》教学设计

沪科版数学七年级上册1.1《正数和负数》教学设计一. 教材分析《正数和负数》是沪科版数学七年级上册的第一课时内容。

这部分内容是学生初步接触负数的开始,对于学生理解数学中相反意义的量,以及后续学习有理数的加减法、乘除法等知识有重要意义。

本节课的内容主要包括正数和负数的定义,以及它们的表示方法。

教材通过具体的实例,引导学生理解正数和负数的概念,并通过实际操作,让学生掌握正数和负数的表示方法。

二. 学情分析七年级的学生在小学阶段已经接触过一些简单的数学概念,如加减法、乘除法等,但对负数的概念还没有接触过。

因此,对于这部分内容,学生可能会有新鲜感,但也需要通过具体的实例和操作来帮助他们理解。

此外,学生的学习习惯和方法可能各有不同,需要教师在教学过程中进行引导和调整。

三. 教学目标1.知识与技能目标:使学生理解正数和负数的概念,掌握正数和负数的表示方法。

2.过程与方法目标:通过具体实例和实际操作,培养学生的观察能力、思考能力和动手能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和探究精神。

四. 教学重难点1.重点:正数和负数的概念,正数和负数的表示方法。

2.难点:理解正数和负数的概念,掌握正数和负数的表示方法。

五. 教学方法1.情境教学法:通过具体实例和实际操作,引导学生理解正数和负数的概念。

2.合作学习法:通过小组讨论和合作,培养学生的合作意识和探究精神。

3.引导发现法:教师引导学生观察、思考,发现正数和负数的表示方法。

六. 教学准备1.教学课件:制作正数和负数的课件,包括具体实例和操作步骤。

2.教学素材:准备一些实际的例子,如温度、海拔等,用于引导学生理解正数和负数的概念。

3.学生活动材料:准备一些卡片,上面写有正数和负数的表示方法,用于学生的实际操作。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾小学学过的数学知识,如加减法、乘除法等,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过具体的实例,如温度、海拔等,引导学生理解正数和负数的概念。

人教版七年级数学上册第一章1.1正数和负数的概念(教案)

人教版七年级数学上册第一章1.1正数和负数的概念(教案)
3.重点难点解析:在讲授过程中,我会特别强调正数的意义和负数的意义这两个重点。对于难点部分,比如负数的概念,我会通过温度的例子和数轴的演示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与正数和负数相关的实际问题,如温度、海拔等。
2.实验操作:为了加深理解,我们将进行一个简单的数轴操作实验。这个操作将演示正数和负数在数轴上的表示和它们之间的相对关系。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《正数和负数的概念》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过温度低于0℃或者存款和借款的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正数和负数的奥秘。
-正数和负数的实际应用:通过生活中的实例,强调正数和负数在解决实际问题中的应用,如温度、收入支出等。
举例:讲解正数和负数的定义时,可以借助数轴,让学生理解0以上为正数,0以下为负数。比较大小的时候,可以通过具体的数字比较,如-3和-5,让学生明白绝对值的概念。
2.教学难点
-负数的概念理解:对于初中一年级的学生来说,负数是一个全新的概念,理解上可能存在困难。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生ห้องสมุดไป่ตู้组讨论(用时10分钟)
1.讨论主题:学生将围绕“正数和负数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你还能想到哪些使用正数和负数的例子?”

人教版初一数学上册正数与负数概念.1-正数和负数-教学设计

人教版初一数学上册正数与负数概念.1-正数和负数-教学设计
围绕下面两点,以师生共同交流的方式进行:
1、由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2、正数就是以前学过的除0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
3、0不仅仅表示没有,还是正负数的分界。
让学生充分发言,教师引导小结,是培养学生语言表达能力和良好课堂学习习惯的重要手段,也对本节课堂学习内容有更深入的理解。
情感态度与价值观
1.体验数学发展的一个重要原因是生活实际的需要,激发学习数学的兴趣.
2.进一步体验正数与负数在生产生活实际中的广泛应用.
3.提高解决实际问题的能力,激发学习数学的兴趣.
教学难点
1.正确区分两种不同意义的量.
2.深化对正数与负数概念的理解
知识重点
1.两种相反意义的量.
2.正确理解和表示向指定方向变化的量.
问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.
活动四:尝试解释0的含义
课件展示海论。
师小结并板书。
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习
教科书第5页练习
课堂小结
教学过程(师生活动)
设计理念
设置情境
引入课题
活动一:整理前两个学段学过的整数、分数(包括小数)的知识,引出生活中仅有这些“以前学过的数”不够用了。
上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考:
师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.69米,体重74.5千克,今年43岁.我们的班级是七(2)班,有50个同学,其中男同学有27个,占全班总人数的54%…

1.1正数和负数(1) 教学设计2024-2025学年人教版数学七年级上册

1.1正数和负数(1) 教学设计2024-2025学年人教版数学七年级上册
-数学游戏:尝试一些与正数和负数相关的数学游戏,如数独、接龙等,巩固对正数和负数的概念和运算的理解。
-数学竞赛:参加一些与正数和负数相关的数学竞赛,如数学奥林匹克竞赛中的正数和负数题目。
-在线论坛:参与一些在线论坛或数学社区,与其他学生交流正数和负数的问题,互相学习和分享经验。
2.拓展要求
-鼓励学生利用课后时间进行自主学习和拓展,选择适合自己的拓展内容,提高对正数和负数概念和运算的理解。
-数学游戏:设计一些与正数和负数相关的数学游戏,如数独、接龙等,让学生在游戏中巩固知识。
-数学竞赛:推荐一些正数和负数相关的数学竞赛,鼓励学生参加,提高解决问题的能力。
-在线论坛:提供一些在线论坛或数学社区,让学生可以与其他学生交流正数和负数的问题,互相学习。
2.拓展建议
-让学生阅读数学故事,了解正数和负数的起源和发展,增强对数学的兴趣。
回顾本节课的教学过程,我对教学方法和教学效果进行了思考。首先,我在课前通过在线平台和微信群发布了预习资料和问题,引导学生自主学习,这有助于培养学生的自主学习能力和独立思考能力。然而,在监控学生的预习进度时,我发现部分学生对预习问题的理解和回答不够深入,这可能是因为预习问题的设计不够具体和明确。在未来的教学中,我需要进一步优化预习问题的设计,以提高学生的预习效果。
学生活动:
-自主阅读预习资料:学生按照预习要求,自主阅读预习资料,理解正数和负数的基本概念。
-思考预习问题:学生针对预习问题,进行独立思考,记录自己的理解和疑问。
-提交预习成果:学生将预习成果(如笔记、思维导图、问题等)提交至平台或老师处。
教学方法/手段/资源:
-自主学习法:教师引导学生自主思考,培养自主学习能力。
3.随堂测试:随堂测试是检测学生学习效果的有效手段。通过设计针对正数和负数概念和运算规则的题目,可以了解学生对知识的掌握程度和应用能力。

人教版七年级数学上册教案:1.1 正数和负数

人教版七年级数学上册教案:1.1 正数和负数
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________.
C组
写出比O小4的数,比4小2的数,比-4小2的数.
五、知识小结:本节课你的收获
六、布置作业:习题1,2
2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示
四、应用迁移,巩固提高(A组为必做题)
A组1.任意写出5个正数:________________;任意写出5个负数:_______________.
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3.已知下列各数: , ,3.14,+3065,0,-239.
则正数有_____________________;负数有____________________.
4.如果向东为正,那么-50m表示的意义是………………………()
A.向东行进50mC.向北行进50m
B.向南行进50mD.向西行进50m
5.下列结论中正确的是…………………………………………()
七、教学评价
通过四人一小组合作,小组评价,对自主学习部分,合作探究,当堂检测的题目进行自我评价和小组评价,照顾到每一位不同程度的学生,有效完成教学任务。
教与学重点:两种意义相反的量
教与学难点:正确会区准备
1、小学里学过哪些数请写出来:、、.
2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
3、阅读课本P1三幅图(重点是三个例子,边阅读边思考)

1.1正数和负数.1正数和负数教案 沪科版

1.1正数和负数.1正数和负数教案 沪科版

七年级数学(上) 正数和负数整体设计教学目标知识与技能:掌握有理数的概念,会对有理数按照一定的标准进行分类。

过程与方法:在学习有理数的分类的过程中,培养学生树立分类讨论的思想。

情感、态度与价值观:通过把有理数分类与合作学习的过程,培养学生实事求是的态度和善于观察的学习习惯。

学情介绍学生在学习了正数和负数的基础上,对数有了进一步的了解,对数进行了一次扩充和分类。

内容分析教材在安排学习了正数和负数的概念后,数的范围扩大了,所以引出了本课知识,学好这些知识将为学习有理数的运算做好铺垫。

教学重、难点重点:有理数的正确分类。

难点:正确理解分类的标准和按照一定的标准进行分类。

教学过程一、新课引入导语:到目前为止,我们学过的数的种类有哪些呢? 二、讲授新课 【问题展示】师:我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出),观察黑板上的9个数,并对它们进行分类。

【合作探究】学生思考讨论和交流分类的情况。

教师积极引导、鼓励和不断完善学生的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”。

【问题解答】 可分为“整数”“分数”两类。

教师总结:正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数,“统称”是指“合起来总的名称”的意思。

要求学生尝试着,根据以上概念对以上各数作出一张分类表,教师加以引导得出:正整数 零 负整数整数【问题展示】师:有理数还有其他分类方法吗? 【合作探究】生:学生思考讨论和交流分类的情况。

【问题解答】正有理数,负有理数,0。

教师加以引导得出:教师指出:(1)正和整的区别,“正”是相对于“负”而言,“整”是相对于“分”而言;(2)零的特殊性,它是整数,它既不是正数,也不是负数;(3)分数是指分母不为1的最简分数;(4)有限小数和无限小数都是分数。

2022年《正数和负数教案》4篇

2022年《正数和负数教案》4篇

2022年《正数和负数教案》4篇《正数和负数教案》篇1教学内容:人教版七年级上册第一章有理数 1.1 正数和负数教学目标:在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。

使学生经历数学化,符号化的过程,体会负数产生的必要性。

感受正、负数和生活的密切联系,享受创造性学习的乐趣.教学重点:体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。

教学难点:体会负数的意义,通过描述性定义认识正数、负数和“0”。

教学过程:一、感受相反方向的数量,经历负数产生的过程。

1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。

2、引入负数的概念3、总结正负数(1)这些数很特别,都带上了符号,它们是一种“新数”。

-9、-4.5等都叫负数; +7、+988等都叫正数。

你会读吗?请你读给大家听。

注意“-”叫负号,“+”叫正号。

(2)读给你的同伴听。

(3)把你新认识的负数再写两个,读一读。

下面让我们走进正数和负数的世界,进一步了解它们。

(板书课题)二、借助实际生活情境的直观,丰富对正负数的认识。

1、负数有什么用?用正数或负数表示下列数量。

(1向东走200米,用+200米表示;那么向西走200米元用表示。

2.说说实际问题中负数的确定(1.)表示海拔高度(2.)解释温度中正负数的含义(3)做练习三3、怎样理解具有相反意义的量三、理解01、0既不是正数也不是负数。

0是正负数的分界。

2、0只表示没有吗?1).空罐中的金币数量;2).温度中的0℃;3).海平面的高度;4).标准水位;5).身高比较的基准;6.)正数和负数的界点;3、总结0既不是正数,也不是负数;0是正数负数的分界。

0是整数,0是偶数,0是最小的自然数。

四、探究活动(出示课件):1.探究活动一:东、西为两个相反方向,如果- 4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。

1.1,正数与负数,教案

1.1,正数与负数,教案

1.1,正数与负数,教案篇一:1.1正数和负数教学设计(第一课时)1.1正数和负数(一)一、教学目的1借助生活中的实例理解相反意义的量。

2能用符号表示生活中具有相反意义的量。

3 培养学生会独立考虑、合作交流的认识。

二、教学设计通过电脑动画出示某班举行知识竞赛的得分情况,让学生从计算竞赛得分的动态情境中,接触负数的概念,引出“不够减——得出负数”,再通过“议一议”进一步体会负数的意义,鼓舞学生本人寻找生活中的例子,并在寻务实例的过程中体会负数引人的必要性.老师选择学生熟悉的场景开展讨论,通过实例的讨论分析使学生认识到用正、负数能够表示具有相反意义的量.三、教学重点与难点1.理解“相反意义的量”是重点。

2.能灵敏运用正负数表示生活中具有相反意义的量是难点。

四、课时安排1课时五、教学方法讨论法、探究法、讲授法、观察法.六、教学思路(一)情景导学、提出征询题:通过电脑动画情节的观看,让学生理解新数.动画内容:评分标准是:答对一题加10分、答错一题扣10分,不答复得0分;每个队的根本分均为0分.四个代表队答题情况如下表:如此,我们就能够用带有“+”号与“-”号的数表示各队的得分情况.(二)自主学习、尝试处理:(1)学生阅读课本2页观察与考虑部分,学生独立完成导学卡的自主学习征询题.现实生活中,像如此的相反意义的量还有特别多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进物资8吨,今天运出物资3 吨,“运进”和“运出”,其意义是相反的.(2)一写出与以下各量具有相反意义的量:1气温为零下11度.2向南走200米。

3甲地低于海平面300米4股票第一天涨0.66元.(三)讨论交流、合作处理:1如何用符号表示具有相反意义的量?2.再议一议.3做—做:用正数和负数表示一些意义相反的量.出例如1:(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?(四)展示评研、归纳提升:1.先想一想具有相反意义的量,然后老师提出:如何样区别相反意义的量才好呢? (五)稳定达标、扩展延伸:1用符号表示以下意义相反的量.(1)在知识竞赛中,假设用+10分表示加10分,那么扣20分如何样表示?(2)某人转动转盘,假设用+5表示沿逆时针方向转了5回,那么沿顺时针方向转了12圈如何样表示?(3)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?2课堂作业练习第2小题篇二:1.1《正数和负数》(新版)新人教版单元要点分析教学内容1.本单元结合学生的生活经历,列举了学生熟悉的用正、负数表示的实例,?从扩大运算的角度引入负数,然后再指出能够用正、负数表示现实生活中具有相反意义的量,使学生感遭到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联络.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念. 2.通过如何样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是特别重要的数学工具,它能够把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,提示了数形之间的内在联络,从而表达出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比拟形象化.3.关于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的间隔相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.理解绝对值的两种意义,?一种是几何意义:一个数a 的绝对值确实是数轴上表示数a的点与原点的间隔;另一种是代数意义.绝对值的几何意义是以线段长度来表示一个数的绝对值的;而绝对值的代数意义那么是给出了求绝对值的法 ?a?那么,由绝对值的两种意义可知,有理数a?的绝对值可表示为:│a│=?0??a?(a?0)(a?0) (a?0)按照有理数的绝对值的两种意义,能够归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目的1.知识与技能(1)理解正数、负数的实际意义,会推断一个数是正数仍然负数.(2)掌握数轴的画法,能将已经明白数在数轴上表示出来,?能说出数轴上已经明白点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比拟有理数的大小.2.过程与方法通过探究有理数运算法那么和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联络,鼓舞学生探究规律,并在合作交流中完善标准语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:精确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数2课时1.2 有理数5课时1.3 有理数的加减法4课时1.4 有理数的乘除法5课时1.5 有理数的乘方4课时数学活动1课时回忆与考虑1课时1.1正数和负数第一课时正数和负数(一)课本第2页至第4页.教学目的1.知识与技能能推断一个数是正数仍然负数,能用正数或负数表示生活中具有相反意义的量.2.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性. 3.情感态度与价值观培养学生积极考虑,合作交流的认识和才能.重、难点与关键1.重点:正确理解负数的意义,掌握推断一个数是正数仍然负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生四周熟悉的事物,?加深对负数意义的理解.教具预备投影仪.教学过程一、负数的引入我们明白,数是人们在实际生活和生活需要中产生,并不断扩大的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、消费、科研中经常遇到数的表示与数的运算的征询题,例如课本第2?页至第3页中提到的四个征询题,这里出现的新数:-3,-2,-2.7%在前面的实际征询题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.像-3,-2,-2.7%如此的数(即在往常学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在征询题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把如此的数(即往常学过的0?以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+11,?确实是3,2,0.5,,?一个33 数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.中国古代用算筹(表示数的工具)进展计算,红色算筹表示正数,黑色算筹表示负数.数0既不是正数,也不是负数,但0是正数与负数的分界数.0能够表示没有,还能够表示一个确定的量,现在天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.三、用正负数表示具有相反意义的量把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.你能再举一些用正负数表示数量的实际例子吗?例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.四、稳定练习课本第3页,练习1、2、3、4题.五、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数确实是我们过去学过的数(除0外),在正数前放上“-”号,确实是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.假设原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应留意“0”既不是正数,也不是负数.六、作业布置1.课本第5页习题1.1复习稳定第1、2、3题.2.选用课时作业.第一课时作业设计一、填空题.1.假设向北走5米记作+5,那么向南走10米记作________.2.假设节约30千瓦·时电记作+30千瓦·时,那么浪费10千瓦·时电记作_____.3.假设-26.80表示亏损26.80元,那么+100元表示________.4.假设体重增加1.5千克记作+1.5千克,那么-0.5千克表示________.二、选择题.5.以下说法正确的选项().A.0是正数B.0是负数C.0是整数D.0不是自然数6.有六个数:-5,0,3 111,-0.3,+,-,?,其中正数的个数是().234A.1B.2C.3D.411,0,-6.3,,-?,以下说法完全正确的选项().2811 A.-7,-?是负整数B.5,0,是正数28 7.有六个数:-7,5C.-7,-6.3,-?是负数D.只有-6.3是负分数三、解答题.8.指出以下各数中哪些是正整数?哪些是负整数?哪些是正分数?哪些是负分数?0,-2,31391,-0.08,-,,-4,3.14,77,-103.27239.石英钟的产品说明书上写着“一昼夜误差小于±0.5秒”,?你对此如何样理解?10.假设把公元1997年记作+1997,那么-97表示什么?:篇三:1.1正数与负数讲义、教案例5 假设规定上升为正,那么水位上升-0.5m的意义是()A.水位上升0.5mB.水位下降0.5mC.水位没有变化D.水位下降-0.5m对点练习1.假设+30m表示向东走30m,那么向西走40m表示为()A.+40mB.-40m C.+30mD.-30m2.假设超出标准质量0.05g记作+0.05g,那么低于标准质量0.03g记作()3.某奶粉每袋标准质量为454g,在质量检测中,假设超过标准质量2g记作+2g,假设质量低于标准质量3g以上,那么这袋奶粉那么视为不合格产品,先抽取10袋样品进展质量检测,结果如下:袋号12345678910记作-203 -4 -3 -5 +4+4 -5 -3⑴这10袋奶粉中,有哪几袋不合格?⑵质量最多的是哪袋?实际质量是多少?⑶质量最小的是哪袋,实际质量是多少?课后练习一、根底训练1.假设气温上升3度记作+3度,下降5度记作-5度,那么以下各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.以下语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数确实是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.以下说法中,正确的选项()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既能够是正整数,也能够是负分数D.所有的分数都是有理数5.以下各数中,哪些属于正数集、负数集、非负数集、整数集、分数集?-1,-3.14156,-6.某水库的平均水位为80米,在此根底上,假设水位变化时,把水位上升记为正数;水库治理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试征询这几个月的实际水位是多少米?二、递进演练1.(05年宜昌市·课改卷)假设收入15?元记作+?15?元,?那么支出20?元记作________元.2.(05年吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,?这包食品的合格净含量范围是______克~______克.3.以下说法正确的选项()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.以下不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和缺乏2克5.以下说法正确的选项()A.有理数是指整数、分数、零、正有理数、负有理数这五类B.一个有理数不是正数确实是负数C.一个有理数不是整数确实是分数D.以上说法都正确6.把以下各数:-3,4,-0.5,-1,-5%,-6.3,2006,-0.1,30000,200%,0,-0.01001 315,0.86,0.8,8.7,0,-,-7,分别填在相应的大括号里.36正有理数集合:{ };非负有理数集合:{};整数集合:{ };负分数集合:{ }.7.孔子出生于公元前551年,假设用-551年表示,那么李白出生于公元701年可表示为___________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数
教学目标
〔知识与技能〕1、了解正数、负数的实际意义,会判断一个数是正数还是负数。

2、掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.
4、会利用数轴和绝对值比较有理数的大小。

5、理解乘方的意义,会进行乘方的计算。

掌握有理数加减、乘除、乘方的混合运算。

6、通过实例进一步感受大数,并能用科学记数法表示;了解近似数和有效数字的概念。

〔过程与方法〕
经历探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等思想方法.
2、培养学生应用数学知识的意识,提高学生运用知识解决实际问题的能力。

〔情感、态度与价值观〕
1、通过教学活动,激励学生学习数学的兴趣;使学生感受数学知识与现实世界的联系。

2、给学生渗透辩证唯物主义思想。

重点难点
有理数的运算是重点;准确理解负数、绝对值的意义和运算符号的确定是难点。

课时分配
1.1正数和负数…………………………………2课时
1.2有理数………………………………………5课时
1.3有理数的加减法……………………………3课时
1.4有理数的乘除法……………………………5课时
1.5有理数的乘方………………………………4课时
本章小结…………………………………………2课时
1.1.1 正数和负数的概念
〔教学目标〕1、了解负数产生是生活、生产的需要;2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;3、理解具有相反意义的量的含义。

〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点;正确理解负数、数0表示的量的意义是难点。

〔教学过程〕
一、负数的引入
我们知道,数产生于人们实际生产和生活的需要。

[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3……;为了表示“没有”、“空位”引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题。

[投影4](1)北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
(2)有三个队参加的足球比赛中,红队胜黄队(4︰1),黄队胜蓝队(1︰0),蓝队胜红队(1︰0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?
(3)2006年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?
上面三个问题中,哪些数的形式与以前学习的数有区别?
数-3、-2、-2.7%与以前学习的数有区别。

-3表示零下3摄氏度,-2是由2-4得到的,表示净输2个球,-2.7%表示减少2.7%,而3表示零上3摄氏度,2表示净赢2个球,2.7%表示增长2.7%。

像3、2、2.7%这样大于零的数叫做正数。

像-3、-2、-2.7%这样在正数前面加上负号“-”的数叫做负数。

根据需要,有时在正数前面也加上“+”(正)号,例如,+3、+2、+0.5、+1/3,…就是3、2、0.5、1/3,…。

这样,一个数由两部分组成,数前面的“+”、“-”号叫做它的符号,后面的部分叫做这个数的绝对值。

请你指出数-3.2,5,-2/3的符号和绝对值。

二、对数“0”的重新认识
大于零的数叫做正数,在正数前面加上负号“-”的数叫做负数,那么0是什么数呢?
数0既不是正数,也不是负数,它是正数和负数的分界。

我们知道,0表示没有,它仅仅表示没有吗?实际上它还可以表示一个确定的量。

如今天气温是零度,是指一个确定的温度;海拔0表示海平面的平均高度。

0的意义已不仅仅是表示“没有”,它还可以表示一个确定的量。

三、用正负数表示相反意义的量
把0以外的数分为正数和负数,起源于表示两种相反意义的量。

正数和负数在许多方面被广泛应用。

在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的高度。

例如:珠穆朗玛峰的海拔高度为8844米,吐鲁番盆地的海拔高度为-155米。

又如记录账目时,通常用正数表示收入款额,负数表示支出款额。

请大家看课本第3面的图1.1-2、1.1-3。

你能解释上面图中正数和负数的含义吗?
图1.1-2中的4600表示A地高于海平面4600米,-100表示B地低于海平面100米;图1.1-3中的2300表示存入2300元,-1800表示支出1800元。

你能再举一些用正负数表示数量的实际例子吗?
通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量,等等。

四、巩固练习
课本第3面练习1、2、3、4
五、课堂小结
1、到目前为止,我们学习的数有正数、负数和零;零不仅仅表示没有,它还表示确定的量。

2、正数和负数起源于表示两种相反意义的量。

作业:
课本第5面,第1、2、3题。

相关文档
最新文档