甘肃省兰州一中11-12学年高一上学期期末考试数学试题
甘肃省兰州市高一上学期期末考试数学试题Word版含答案

高一数学说明 : 本试卷分第Ⅰ卷( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分 , 满分 100 分 , 考试时间 100 分钟 .答案写在答题卡上, 交卷时只交答题卡.第Ⅰ卷(选择题, 共 40分)一、选择题 ( 本大题共10 小题 , 每题 4 分,共 40 分 . 在每题给出的四个选项中, 只有一项是切合题目要求的, 请将答案写在答题卡上.)1 .过点A(4,1)且在两坐标轴上的截距相等的直线方程是()A . x y 5B . x y 5C . x y 5或 x 4 y 0D . x y 5或 x 4 y02 .已知m, n表示两条不一样直线,表示平面.以下说法正确的选项是()A .若 m // , n // ,则 m // nB .若 m, n,则 m nC .若 m, m n, 则 n //D .若 m // , m n, 则 n3.如图,矩形O ' A' B ' C '是水平搁置的一个平面图形的斜二测画法画出的直观图,此中 O ' A'6cm,C ' D '2cm ,则原图形是()A .正方形B .矩形C .梯形D .菱形4.如图,将正方形ABCD 沿对角线AC 折成一个直二面角,则异面直线AB和CD 所成的角是( )A.30 B.45 C .60 D.90DCO B A5.若圆锥的高等于其内切球半径长的 3 倍,则圆锥侧面积与球表面积的比值为()A .1B .3C .1D .4 2 2 3 36.已知三棱锥P ABC 的四个极点 P, A, B, C 都在半径为R的同一个球面上, 若 PA,PB, PC两两互相垂直,且PA1, PB 2,PC 3 ,则R等于()A .14B . 14C .13D . 3227.如图,已知两点A( 4,0), B(0,4) ,从点 P( 2,0) 射出的光芒经直线 AB 反射后射到直线 OB 上,再经直线 OB 反射后射 到 P 点,则光芒所经过的行程PM MN MNP 等于( )NA .2 10B . 6C .3 3D .2 58.定义在 R 上的奇函数 f (x) 知足:当 x 0时, f ( x) 2017 xlog 2017 x ,则在 R 上,函数 f ( x) 零点的个数为 ( )A .1个B .2个C .3个D .4个9.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A .5 2B .4 2C . 4D . 610.已知点 A( 1,0), B(1,0), C ( 0,1),直线 y kx b(k 0) 将 ABC 切割为面积相等的两部分 , 则 b 的取值范围是 ()A . (0,1)B .[1 , 1)C .[12 , 1] D .[12,1)3 22 32 2第Ⅱ卷 ( 非选择题 )二、填空题 ( 本大题共 4 小题 , 每题 4 分,共 16 分 , 请将答案写在答题卡上.)11.如图,长方体 ABCD A 1 B 1 C 1 D 1 中, AB 3, BC 4 ,CC 1 5 , 则沿着长方体表面从 A 到 C 1 的最短路线长为 ________ .12.若幂函数 f ( x) x ( 为常数 ) 的图象恒过定点 A ,直线 kx y 2k 1 3 0 恒过定点 B, 则直线AB 的倾斜角是________.13.一个工厂生产某种产品每年需要固定投资100 万元,每生产1件该产品还需要增添投资1 万元,年产量为x( x N ) 件.当 x 20 时,年销售总收入为(33 x x 2 ) 万元;当 x 20 时,年销售总收入为 260 万元.则该工厂的年产量为________件时,所得年收益最大 . ( 年收益 =年销售总收入-年总投资) .14.已知函数 f ( x) 2 x a (x 1)若 f ( x) 0 恰有2个实数根,4(x a)( x 2a) (x 1).则实数 a 的取值范围是_______________.三、解答题 ( 本大题共 5 小题,共44 分. )15. ( 本小题 8 分 ) 如图,在三棱柱ABC A1 B1C1中,侧棱垂直于底面,AB AC ,E,F , H分别是A1C1,BC, AC的中点. E(1)A 1 C 1 求证:平面 C 1 HF // 平面 ABE .B 1(2) 求证:平面 AEF 平面 B1 BCC1HA CFB16. ( 本小题 8 分)(1) 已知直线l1: ax 2 y 6 0 和直线 l 2 : x (a 1) y a 2 1 0 .当 l1 // l 2时,求a的值.(2) 已知点P(2, 1),求过P点且与原点距离最大的直线l 的方程,并求出最大距离. 17. ( 本小题 8 分 ) 如图,长方体ABCD A1 B1C1D1中,D1D DC 4,ADD1 C1 2 ,E为D1C的中点.B1A1 EDC(1) 求三棱锥 D 1 ADE 的体积 .(2)AC 边上能否存在一点 M ,使得 D 1 A // 平面 MDE ?若存在,求出AM 的长;若不存在,请说明原因.18. ( 本小题 10 分 ) 如图,在四棱锥 P ABCD 中,PA平面 ABCD , ABAD, ACCD ,ABC 60 , PA AB BC , E 是 PC 的中点.(1) 求 PB 和平面 PAD 所成的角的大小 .(2) 求二面角 A PD C 的正弦值.19. ( 本小题 10 分 ) 设二次函数 f (x) x 2 axa .(1)若方程 f ( x) x 0 的两实根x 1和 x 2 知足0 1 x 21 .x务实数 a 的取值范围 .(2)求函数 g( x) af (x) a 2 (x1) 2x 在区间 [ 0,1] 上的最小值.兰州一中 2016-2017-1 学期期末考试高一数学答题卡第Ⅰ卷 ( 选择题 )一、选择题 ( 本大题共 10 小题 , 每题 4 分,共 40 分 .)题号 12 345678910答案第Ⅱ卷 ( 非选择题 )二、填空题 ( 本大题共 4 小题 , 每题 4 分,共 16 分 .)11.________________12.______________________13.________________ 14.______________________EA1三、解答题 ( 本大题共 5 小题,共 44 分. ) C 1 15. ( 本小题 8 分) B 1HA CFB16. ( 本小题 8 分)17. ( 本小题 8 分)D1 C1B1A1 ED18.(本小题 10 分)19.(本小题10分)兰州一中 2016-2017-1 学期期末考试高一数学答案一、选择题 ( 本大题共 10 小题 , 每题 4 分,共 40 分 .)题号 1 2 3 4 5 6 7 8 9 10 答案CBDCBAACDD二、填空题 ( 本大题共 4 小题 , 每题 4 分,共 16 分 .)11.7412.15013. 1614.[1,1) [2,)2提示: 8.别漏了 (0,0)9. 结构正方体模型 ( 如左以下图 ) 该多面体为三棱锥ADBCA BCDCMABNO10.k0 时 ,b12; k 0 时, 如右上图 ,b k b2N ( ,0), y M1kk 令S MNB1 (1 b ) k b 1,得 kb 2b11 022k k 1 22b14. 当时 ,方程f ( x)0 无实根 ;a 0当 0a1时 ,要使 f (x) 0 恰有 2 个实数根,须 2a1 a11 ,2当 a 1时 , 要使 f ( x) 0 恰有 2 个实数根,须 21a0 a 2综上 ,所求为 [ 1,1) [ 2,)2三、解答题 ( 本大题共 5 小题,共 44 分 .)15 (8 )如图,在三棱柱 ABC 1 1 1中,侧棱垂直于底面, AB AC , E,F,H. 本小题 分 A B C分别是 A 1C 1 , BC , AC 的中点 .(1) 求证:平面 C 1 HF // 平面 ABE .EA 1C 1B 1(2) 求证:平面 AEF 平面 B1 BCC1证明 : (1) F , H 分别是 BC, AC 的中点,HF//AB.又E, H 分别是 A1C1, AC 的中点,EC1 // AH又EC1 AH 四边形 EC1 HA 为平行四边形.C1H // AE ,又C1H HF H,AE AB A,因此平面 C 1 HF // 平面 ABE .(2) AB AC, F为BC中点, AF BC B1 B 平面 ABC , AF 平面 ABC ,B1 B AF B1B BC B, AF 平面 B1 BCC1又AF 平面 AEF , 平面 AEF 平面 B1 BCC116. ( 本小题8 分) (1) 已知直线 l 1 : ax 2 y 6 0 和直线 l 2 : x (a 1) y a2 1 0 .当 l1 // l 2时,求a的值.(2) 已知点P(2, 1) ,求过 P 点且与原点距离最大的直线l 的方程,并求出最大距离.解: (1) 由 A1B2 A2 B1 0 ,得a(a 1) 1 2 0 ,由 B1C2 B2 C1 0 ,得2( a2 1) 6( a 1) 0 , a 1(2) 过 P 点且与原点距离最大的直线, 是过P点且与OP垂直的直线,由 l OP 得 k l k OP 1 .因此 k l 2 .由直线方程的点斜式得y 1 2( x 2) ,即 2x y 5 0 ,所以直线 2x y 5 0是过P点且与原点距离最大的直线,最大距离为5d 5 .D1 C1517. (本小题 8 分 ) 如图,长方体ABCD A1B1C1 D1中,A1 B1ED1 D DC 4,AD 2 , E为 D 1C 的中点.DC(1) 求三棱锥D1 ADE 的体积. A B(2)AC 边上能否存在一点M,使得 D1 A // 平面 MDE ?若存在,求出AM 的长;若不存在,请说明原因.解 : (1) V D1 ADE VA DED 1长方体中, AD 平面 D1CD ,AD 是三棱锥 A D1DE 的高.E为D1C 的中点,且 D1D DC 4,S D 1DE4又 AD2,因此V D 1 ADE V A DED 18.3(2) 取 AC 中点 M ,连结 EM , DM ,由于 E 为 D 1C 的中点, M 是 AC 的中点,EM //D 1A .又 EM 平面 MDE , D 1A 平面 MDE , D 1A // 平面 MDE .AM5 .即在 AC 边上存在一点 M ,使得 D 1A // 平面 MDE ,此时 M 是 AC 的中点AM 5 .18. (本小题 10 分 )如图,在四棱锥 P ABCD 中,PA平面 ABCD , AB AD , ACCD ,ABC 60 ,PAABBC ,E 是PC 的中点.(1) 求 PB 和平面 PAD 所成的角的大小.(2)求二面角 APD C 的正弦值.解 : (1) 在四棱锥 PABCD 中, PA平面 ABCD ,AB 平面 ABCD ,PAAB . 又 ABAD , PA ADA ,AB平面 PAD .故 PB 在平面 PAD 内的射影为 PA ,进而 APB 为 PB 和平面 PAD 所成的角 .在 Rt PAB 中, ABPA ,故 APB 45 .因此 PB 和平面 PAD 所成的角的大小为 45 .(2) 在四棱锥 P ABCD 中, PA 平面 ABCD ,CD 平面 ABCD , PACD .由条件 AC CD ,PAACA , CD平面 PAC . 又 AE平面 PAC , CD AE .由 PA ABBC ,ABC 60 ,可得 AC PA .∵ E 是 PC 的中点,PCAE .又CD PC C , AE平面 PCD .过点 E 作EM PD ,垂足为 M ,连结 AM ,如下图.AE 平面 PCD , AM 在平面 PCD 内的射影是 EM , AMPD .AME 是二面角 A PD C 的平面角.由已知CAD30 , 设 CD1,则PAAC3 ,AD2, PC6, PD7 .Rt PAC 中 , AE1PC6 .22在 Rt ADP 中,AM PD , 在 Rt AEM 中, sin AME14.419. ( 本小题 10 分 ) 设二次函数 f (x)(1)若方程 f ( x) x 0 的两实根(2)求函数 g(x) af ( x) a2 ( x解 : (1) 令m( x) f ( x) x x 21 0 a0 1依题意, 2 得 0m(1) 0m(0) 0AM PD AP AD,2 21得AM .7AE 14A PD C 的正弦值为AM.因此二面角4x 2 ax a .x1和 x2知足 0 x1 x2 1.务实数a的取值范围;1)2x 在区间 [0,1] 上的最小值.(a 1) x a .a 3 2 2 ,故实数a的取值范围为( 0,3 2 2) .(2) g( x) ax 2 2x①当 a 0 时, g( x) 2x 在 [0,1] 上递减,g (x) min g(1) 2 .②当 a 0 时,函数g( x) a(x 1) 21图象的张口方向向上,且对称轴为x10 .a a a若11即 a 1,函数 g (x) 在 [ 0,1] 上递减,在 [1,1] 上递加.g(x)min g (1) 1 .a a a a a若11即 0 1 ,函数在上递减.( ) (1) 2a g (x) [0,1]g xmin g a .a③当 a 0 时,函数g( x) a(x 1 ) 2 1 的图象的张口方向向下,且对称轴x 1 0 ,a a ag( x) 在 [0,1] 上递减, g(x)min g(1) a 2综上所述,g(x)min a12 ( a 1)(a 1) a。
甘肃省兰州一中高一上学期期末考试(数学).doc

甘肃省兰州一中高一上学期期末考试(数学)说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卷(卡)上,交卷时只交答题卷(卡).第I 卷(选择题)一、选择题(每小题3分,共30分,将答案写在答题卡上) 1.右图是由哪个平面图形旋转得到的( )2. 长方体ABCD -A 1B 1C 1D 1中,与面ABCD 的对角线AC 异面的棱有( )A .4条B . 6条C . 8条D . 10条 3.直线10x +-=的倾斜角是( )A .30oB .1C .135oD .150o4.直线3x +4y -13=0与圆1)3()2(22=-+-y x 的位置关系是:( )A . 相离B . 相交C . 相切D . 无法判定 5. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( )A ①和②B ②和③C ③和④D ①和④6.直线330x y +-=与直线610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如图,一个水平放置的平面图形的斜二测直观图是一个底角为45o ,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A. 2BCD. 18.如下图,正方体ABCD -A 'B 'C 'D '中, 直线D 'A 与DB 所成的角为( )A .30oB .45oC .60oD .90o9. 如上图,一个简单空间几何体的三视图中,其正视图与侧视图都是边长为2的正三角形,俯视图轮廓为正方形,则其侧面积是( )A .12B . 8CD 10. 若直线l 与直线y =1和x -y -7=0分别交于A 、B 两点,且AB 的中点为P (,则直线l 的斜率等于( )A .32B .-32C .23D .-23第II 卷(非选择题)二、填空题(每小题4分,共将答案写在答题卡上)11.过点(1,3)且与直线210x y +-=垂直的直线方程是 .12.如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径相等,这时圆柱、圆锥、球的体积之比为 .13 在四面体ABCD 中,已知棱AC 的长为,其余各棱长都为2,则二面角A -BD -C 的大小为 .14.两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c =0上,则m +c = . 15.已知两个平面垂直,给出下列一些说法:①一个平面内的一条直线必垂直于另一个平面内的任意一条直线;②一个平面内的一条直线必垂直于另一个平面内的无数条直线;③一个平面内的任意一条直线必垂直于另一个平面;④在一个平面内过该平面内的任意一点作交线的垂线,则此垂线必垂直于另 一个平面. 其中正确的说法的序号依次是 .三、解答题(共50分) 16.(本小题8分)如图,四棱锥ABCD 中,底面ABCD 是正方形,O 是正方形ABCD 的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证: (1)PA ∥平面BDE ;(2)平面PAC 平面BDE.17.(本小题10分)已知线段AB的两个端点A、B分别在x轴和y轴上滑动,且∣AB∣=2.(1)求线段AB的中点P的轨迹C的方程;(2)求过点M(1,2)且和轨迹C相切的直线方程.18.(本小题10分)(1)求经过直线l1:x + y– 1 = 0与直线l2:2x– 3y + 8 = 0的交点M,且与直线2x + y + 5 = 0平行的直线l的方程;(2)已知点A(1,1),B(2,2),点P在直线l上,求∣PA∣2+∣PB∣2取得最小值时点P的坐标.19. (本小题12分)如图,在长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,AA1=1,E是A1C1与B1D1的交点.(1)作出面A1BC1与面ABCD的交线l,并写出作法;(2)若以D为坐标原点,分别以DA,DC,DD1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,试写出B,E两点的坐标,并求BE的长;(3)求BC1与面BDD1B1所成角的正切值.(本小题10分)已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.(1)求圆C的方程;(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l 垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)11.2x-y+ 1=0 12. 3:1:2 13.60°14. 3 15.②④三、解答题(共50分)16.(本小题8分)证明:(1)连结OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.………………………4分(2) ∵PO⊥底面ABCD,∴PO⊥BD,又∵AC⊥BD,且AC PO=O,∴BD⊥平面PAC.而BD⊂平面BDE,∴平面PAC⊥平面BDE.……………8分17.(本小题10分)解: (1) 方法一:设P(x , y ),∵∣AB∣=2,且P为AB的中点,∴∣OP∣=1 ……………………2分∴点P的轨迹方程为x2+y2=1. ……………………5分方法二:设P(x , y ),∵P为AB的中点,∴A (2x , 0 ), B(0 , 2y ), ………………………2分又∵∣AB∣=2∴(2x)2+(2y)2=2 ………………………4分化简得点P的轨迹C的方程为x2+y2=1. ……………5分(2) ①当切线的斜率不存在时,切线方程为x=1,由条件易得 x =1符合条件; ………………7分②当切线的斜率存在时,设切线方程为 y -2=k (x -1) 即kx -y +2-k =01=得k =34,∴切线方程为y -2=34 (x -1)即 3x -4y +5=0综上,过点M (1,2)且和轨迹C 相切的直线方程为: x =1 或3x -4y +5=0 ……………………10分18.(本小题10分)解:(1) 102380x y x y +-=⎧⎨-+=⎩解得⎩⎨⎧=-=21y x所以交点为(-1,2)……………3分 ∵所求直线与直线2x + y + 5 = 0平行, ∴2-=k∴直线方程为02=+y x ……………………5分 (2) 设P (t ,-2t ) 则2222222(1)(21)(2)(22)10610PA PB t t t t t t +=-+--+-+--=++当310t =-时,22PB PA +取得最小值,∴33(,)105P -…………………………10分19.(本小题12分)解:(1)在面ABCD 内过点B 作AC 的平行线BE , (或过点B 作A 1C 1的平行线)则此平行线即为所求作的交线l . …………4分(2) B ( 2 , 2 , 0 ) , E ( 1 , 1 , 1 ) …………6分BE…………………………8分(3)连接BE ,∵C 1E ⊥B 1D 1, C 1E ⊥BB 1 ∴C 1E ⊥面BDD 1B 1 ,∴∠C 1BE 为BC 1与面BDD 1B 1所成的角, …………10分 又∵C 1E, BE∴ tan ∠C 1BE=1C E BE==…………………12分本小题10分)解:(1)设圆C 的方程为:x 2+y 2+Dx +Ey +F =0则有--1024-201030DE EF D E F ⎧+=⎪⎪+=⎨⎪+++=⎪⎩ …………………2分解得644D E F =-⎧⎪=⎨⎪=⎩……………………………4分 ∴圆C 的方程为:x 2+y 2-6x +4y +4=0 …………5分 (2)设符合条件的实数a 存在,由于l 垂直平分弦AB ,故圆心(3, 2)C -必在l 上. 所以l 的斜率2PC k =-,而1AB PC k a k ==-, 所以12a =. …………7分把直线ax -y +1=0 即y =ax +1.代入圆C 的方程,消去y ,整理得22(1)6(1)90a x a x ++-+=. 由于直线10ax y --=交圆C 于,A B 两点,故2236(1)36(1)0a a ∆=--+>, 即20a ->,解得0a <.则实数a 的取值范围是(,0)-∞.…………………9分由于1(, 0)2∉-∞,P的直线l垂直平分弦AB.………10分故不存在实数a,使得过点(2, 0)。
甘肃省兰州一中2011届高三上学期期末考试(数学理)

兰州一中2010—2011学年度高三第一学期期末考试数 学 试 题(理)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120 分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案涂在答题卡相应位置上......... 1.设全集U 是实数集,R 22{|4},{|1},1M x x N x x =>=≥-则图中阴影部分所表示的集合是( )A .{|21}x x -≤<B .{|22}x x -≤≤C .{|12}x x <≤D .{|2}x x <2.下列结论正确的是( )A .当2lg 1lg ,10≥+≠>x x x x 时且B .21,0≥+>xx x 时当C .x x x 1,2+≥时当的最小值为2 D .当(0,]2x π∈时,4()sin sin f x x x=+的最小值是43.已知正项数列{}n a 为等比数列,且4a 是22a 与33a 的等差中项,若22a =,则该数列的前5项的和为 ( )A .3312B .31C .314D .以上都不正确4.“a =3”是“直线ax -2y -1=0”与“直线6x -4y +c =0平行”的 ( ) A .充分不必要条件 B .必要不充分条件D .充要条件 D .既不充分也不必要条件5.若直线02=+-c y x 按向量)1,1(-=a 平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-86.设双曲线)0,0(12222>>=-b a by a x 的离心率为3,且它的一条准线与抛物线x y 42=的准线重合,则此双曲线的方程为( )A .16322=-y xB .132322=-y xC .1964822=-y x D .1241222=-y x 7.设函数()sin()(0,0,||)2f x A x A πωϕωϕ=+≠><的图像关于直线23x π=对称,且它的最小正周期为π,则( )A .()f x 的图像经过点1(0,)2B .()f x 在区间52[,]123ππ上是减函数 C .()f x 的图像的一个对称中心是5(,0)12πD .()f x 的最大值为A8.已知||1,||3,0OA OB OA OB ==⋅=,点C 在AOB ∠内,且AOC ∠=30°,设(),OC mOA nOB m n R =+∈,则mn等于 ( )A .13B .3C .3D 9.如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G为棱A 1B 1上的一点,且A 1G=λ(0≤λ≤1)则点G 到平面D 1EF 的距离为( )AB .2C.3D.510.设函数y=f (x )存在反函数y =1()f x -,且函数()y x f x =-的图象过点(1,2),则函数1()y f x x -=-的图象一定过点( )A .(-1,2)B .(2,0)C .(1,2)D .(2,1)11.已知,,l m n 是三条不重合的直线,,,αγβ是三个不重合的平面,下列四个命题正确的个数为( )①若m α⊥, m ∥,βαβ⊥则②若直线m ,n 与平面α所成的角相等,则m ∥n ;③存在异面直线m ,n ,使得m ∥α,m //β,n ∥β,则α//β;④若,,,l m n αββγγα===l ∥γ,则m ∥n .A .1B .2C .3D .412.已知a >0且a ≠1,若函数f (x ) = log a (ax 2 –x )在[3,4]是增函数,则a 的取值范围是( )A .(1,+∞)B .11[,)(1,)64+∞ C .11[,)(1,)84+∞ D .11[,)64第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.请把答案直接填写在答题卡相应位置上.13.1+i + i 2 + i 3+……+ i 2011= .14.已知(A ,O 为原点,点(),P x y的坐标满足0200y x y --+⎨⎪⎪⎩≤≥≥,则OA OP OA ⋅的最大值是 .15.若直线20kx y --=||1x =-有两个不同的交点,则实数k 的取值范围是______________.16.若球O 的球面上共有三点A 、B 、C ,其中任意两点间的球面距离都等于大圆周长的1,6经过A 、B 、C这三点的小圆周长为,则球O 的体积为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分) 已知向量2(3sin ,1),(cos ,cos )444x x xm n ==.(1)若1m n ⋅=,求2cos()3x π-的值; (2)记n m x f ⋅=)(,在△ABC 中,角C B A ,,的对边分别是c b a ,,且满足C b B c a cos cos )2(=-,求函数f (A )的取值范围.18.(本小题满分12分)已知三棱柱111ABC A B C -的侧棱垂直于底面,90BAC ∠=,12AB AA ==,1AC =,M ,N 分别是11A B ,BC 的中点.(1)证明:1AB AC ⊥;(2)证明:MN ∥平面11ACC A ; (3)求二面角M AN B --的余弦值. 19.(本小题满分12分)已知圆C :224x y +=.(1)直线l 过点()1,2P ,且与圆C 交于A 、B 两点,若||AB =l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量BB 1CC 1A 1MNOQ OM ON =+,求动点Q 的轨迹方程.20.(本小题满分12分)已知函数22()ln ()f x x a x ax a =-+∈R . (1)当1a =时,证明函数()f x 只有一个零点;(2)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围 21.(本小题满分12分)设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (1)设12n n n b a a +=-,证明数列{}n b 是等比数列; (2)求数列{}n a 的通项公式;(3)若2(32)n n n c a n =+,n T 为{}n c 的前n 项和,求证:n T 23<.22.(本小题满分12分)椭圆G:22221(0)x y a b a b+=>>的左、右焦点分别为()()12,0,,0F c F c -,M 是椭圆上的一点,且满足12F M F M ⋅=0. (1)求离心率e 的取值范围;(1)当离心率e 取得最小值时,点N (0,3)到椭圆上的点的最远距离为①求此时椭圆G 的方程;②设斜率为(0)k k ≠的直线l 与椭圆G 相交于不同的两点A 、B ,Q 为AB 的中点,问:A 、B 两点能否关于过点(0,P 、Q 的直线对称?若能,求出k 的取值范 围;若不能,请说明理由.参考答案第Ⅰ卷(选择题 共60分)1.C 2.B 3.B 4.B 5.A 6.A 7.C 8.B 9.D 10.A 11.B 12.A 13.0 1415. 442,,233⎡⎫⎛⎤--⎪⎢⎥⎣⎭⎝⎦16. 288π 三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 解:(1)23sin cos cos 444x x x m n ⋅=⋅+ 1sin()262x π=++∵1m n ⋅= ∴1sin()262x π+=211cos()12sin ()23262x x ππ+=-+= 21cos()cos()332x x ππ-=-+=- ............5分 (2)∵(2a-c )cosB=bcosC由正弦定理得(2s inA-sinC )cosB=sinBcosC∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin (B+C ) ∵A B C π++= ∴sin()sin 0B C A +=≠, ∴1cos ,23B B π== ∴203A π<<∴1,sin()(,1)6262262A A ππππ<+<+∈ ........10分18.(本小题满分12分) 解法一: (Ⅰ)证明:因为1CC ⊥平面ABC ,所以AC 是1AC 在平面ABC 内的射影,… 2 分 由条件可知AB ⊥AC ,所以1AB AC ⊥. ………………… 4 分 (Ⅱ)证明:设 AC 的中点为D , 连接DN ,1A D .因为D ,N 分别是AC ,BC 的中点,DABB 1CC 1A 1MN所以DN //=12AB . 又1A M =1211A B ,11A B //=AB , 所以1A M //=DN . 所以四边形1A DNM 是平行四边形. 所以1A D ∥MN . …………………6 分因为1A D ⊂平面11ACC A ,MN ⊄平面11ACC A , 所以MN ∥平面11ACC A . …………… 8 分 (Ⅲ)如图,设AB 的中点为H ,连接MH , 所以MH ∥1BB . 因为1BB ⊥底面ABC ,所以MH ⊥底面ABC .在平面ABC 内,过点H 做HG ⊥AN ,垂足为G . 连接MG ,则MG ⊥AN .所以∠MGH 是二面角M AN B --的平面角. ………………… 10 分因为MH =1BB =2,由AGH ∆∽BAC ∆,得HG=. 所以MG. 所以cos MGH ∠=HG MG=21. 二面角M AN B--的余弦值是21. ………………… 12 分 解法二:依条件可知AB ,AC ,1AA 两两垂直.如图,以点A 为原点建立空间直角坐标系A xyz -. 根据条件容易求出如下各点坐标:DABB 1CC 1A 1MNHG(0,0,0)A ,(0,2,0)B ,(1,0,0)C -,1(0,0,2)A ,1(0,2,2)B ,1(1,0,2)C -,(0,1,2)M ,1(,1,0)2N -.(Ⅰ)证明:因为(0,2,0)AB =,1(1,0,2)AC =-,所以1AB AC ⋅=0(1)20020⨯-+⨯+⨯=. ………………… 2 分 所以1AB AC ⊥.即1AB AC ⊥. ………………… 4 分 (Ⅱ)证明:因为1(,0,2)2MN =--,(0,2,0)AB =是平面11ACC A 的一个法向量, 且MN AB ⋅=10022002-⨯+⨯-⨯=,所以MN AB ⊥. ………6 分 又MN ⊄平面11ACC A ,所以MN ∥平面11ACC A . ………………… 8 分 (Ⅲ)设(,,)x y z =n 是平面AMN 的法向量, 因为(0,1,2)AM =,1(,1,0)2AN =-, 由=0,=0,AM AN ⎧⋅⎪⎨⋅⎪⎩n n 得020,10.2y z x y ++=⎧⎪⎨-+=⎪⎩解得平面AMN 的一个法向量(4,2,1)=-n .由已知,平面ABC 的一个法向量为(0,0,1)=-m . ………………… 10 分设二面角M AN B --的大小为θ, 则cos ||||θ⋅=n m n m=21.二面角M AN B --. ………………… 12 分 19.(本小题满分12分) 解(Ⅰ)①当直线l 垂直于x 轴时,则此时直线方程为1=x ,l 与圆的两个交点坐标为()3,1和()3,1-,其距离为32,满足题意……… 2分20.(本小题满分12分)解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞………1分∴ 2121()21x x f x x x x --'∴=-+=- ………………………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去.…………………3分当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ………………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+==……………7分①当0a =时,1()0,()f x f x x '=>∴在区间()1,+∞上为增函数,不合题意………9分 ②当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a ≥此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭. 依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.…………………9分当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a ≥-此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩ 得12a ≤- ………………………11分综上,实数a 的取值范围是1(,][1,)2-∞-+∞U ………………………12分法二:①当0a =时,1()0,()f x f x x '=>∴在区间()1,+∞上为增函数,不合题意……………7分②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数, 只需()0f x '≤在区间()1,+∞上恒成立,0x >∴只要22210a x ax --≥恒成立,2214210a a a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤- ………………………11分综上,实数a 的取值范围是 1(,][1,)2-∞-+∞U ………………………12分 21.(本小题满分12分)解:(I )由11,a =及142n n S a +=+,有 12142,a a a +=+21121325,23a a b a a =+=∴=-=由142n n S a +=+,...① 则当2n ≥时,有142n n S a -=+.....② ②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=- 又12n n n b a a +=-,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.…….4分 (II )由(I )可得11232n n n n b a a -+=-=⋅,113224n n n n a a ++∴-= ∴数列{}2nn a 是首项为12,公差为34的等差数列. ∴1331(1)22444nn a n n =+-=-,2(31)2n n a n -=-⋅ …….8分 (Ⅲ) 4(31)(32)n c n n =-+ 所以n T =111111141124(...)()32558313132313n n n ⋅-+-++-=-<-++ ………12分 22.(本小题满分12分)....4分........8分....12分。
甘肃省兰州市第一中学2022高一数学上学期期末考试试题(含解析)

A.快、新、乐B.乐、新、快
C.新、乐、快D.乐、快、新
【答案】A
【解析】
【分析】
根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,即可得出结论.
设点 坐标为 ,则 ,
即 ,
由于点 在圆 上,则 ,所以, ,
整理得 对任意的 恒成立,
,解得 或 (舍去),
所以,存在点 ,对于圆 上任意一点 ,都使得 .
故答案为: .
【点睛】本题考查动点的轨迹方程,涉及两点间距离公式的应用,同时也要注意到点在圆上这一条件的应用,考查计算能力,属于中等题.
三、解答题(本大题共6小题,共70分)
19.如图所示,矩形 中, ⊥平面 , , 为 上的点,且 ⊥平面 .
(1)求证: ⊥平面 ;
(2)求三棱锥 的体积.
【答案】(1)见解析;(2)
【解析】
试题分析:解:(1)∵ 平面 , ∥ ,
∴ 平面 ,∴ ,
又∵ 平面 ,∴ ,
又∵ ,∴ 平面 .
(2)由题意可得, 是 的中点,连接 ,
∵ 平面 ,∴1)求弦 的垂直平分线方程;
(2)求弦 的长.
【答案】(1) ;(2) .
【解析】
【分析】
(1)将圆 方程化为标准式,可得出圆心坐标,由垂径定理可知,线段 的垂直平分线为过圆心且与直线 垂直的直线,由此可得出线段 的垂直平分线方程;
(2)计算出圆心到直线 的距离 ,然后利用勾股定理可计算出弦 的长.
∴ 是 的中点,
甘肃省兰州第一中学2023-2024学年高一上学期期末考试数学试卷(PDF版,含解析)

兰州一中2023-2024-1学期期末考试试题高一数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间 120分钟. 答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、单项选择题:本大题共8小题,每小题5分,共40分. 在每个小题绐岀的四个选项中,只有一项符合题目要求.1.己知集合(){}N |30P x x x =∈−≥,{}2,4Q =,则()N P Q ⋃=( ) A .{}1,4B .{}0,2,4C .{}0,1,2,4D .{}1,2,42.坐标平面内点P 的坐标为()sin 5,cos5,则点P 位于第( )象限. A .一B .二C .三D .四3.若()2222mmy m m x +=−−是幂函数,且在()0,∞+上单调递增,则m 的值为( )A .(2,3)B .(3,4)C .(4,5)D .(5,6)A .()3cos f x x =B .()3sin f x x =C .()3cos 3f x x =+D .()sin f x x =二、多项选择题:本大题共4小题,每小题5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得5分,部分选对得3分,有选错的得0分.9.若log 0a b <,则函数()x f x a b =+的大致图象是( )A .B ...下列说法错误..的是( .若α终边上一点的坐标为),则3cos 5α= .若角α为锐角,则2第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共20分)(0,1)上()3xf x=,则四、解答题:本题共6分.解答时应写出文字说明、证明过程或演算步骤2兰州一中2023-2024-1高一期末考试试题(答案)高一数学命题:石磊 审题:达志虎 周莉说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、单项选择题:本大题共8小题,每小题5分,共40分. 在每个小题绐岀的四个选项中,只有一项符合题目要求. 所以{}N1,2P =()N P Q ⋃=【详解】3π25<<0,则点P 位于第二象限,【详解】因为(y =,0y x ==二、多项选择题:本大题共4小题,每小题5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得5分,部分选对得3分,有选错的得0分.⎤⎥⎦17,412⎡⎤⎢⎥⎣⎦,故二、多项选择题:本大题共4小题,每小题5分,共20分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得5分,部分选对得3分,有选错的得0分.四、解答题:本题共6令sin u θ=,则[]1,1u ∈−,记()221h u u u λ=−+,[]1,1u ∈−,故只要()min 0h u ≥,①当1λ≤−时,()()min 1220h u h λ=−=+≥,解得1λ≥−,∴1λ=−,②当11λ−<<时,()()2min 10h u h λλ==−≥,解得11λ−≤≤,∴11λ−<<,③当1λ≥时,()()min 1220h u h λ==−≥,解得1λ≤,∴1λ=.综合①②③得,11λ−≤≤.。
甘肃省兰州一中2012届高三年级期末考试试题(数学理)

兰州一中2011—2012学年度高三期末考试数学试题(理)注意:该试卷总分150分,考试时间120分钟,交卷时只交答题卡.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案直接涂在答题卡相应位置上......... 1.在复平面内,复数1ii++(1+3i )2对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.已知25,2(),1,2x x f x x -≠⎧=⎨=⎩则下列结论正确的是 ( )A .()f x 在2x =处连续B .(2)1f =-C .2lim ()1x f x →= D .2lim ()1x f x →=-3.下列命题中错误的是 ( )A .如果平面⊥α平面β,那么平面α内所有直线都垂直于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面⊥α平面β,那么平面α内一定存在直线平行于平面βD .如果平面⊥α平面γ,平面⊥β平面γ,l αβ=,那么直线⊥l 平面γ4.已知}{n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为}{n a 的前n 项和,*N n ∈,则10S 的值为( )A .110-B .90-C .90D .1105.若实数a ,b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记(,)a b a b ϕ=-,那么(,a b ϕ=是a 与b 互补的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件6. 若,a b R ∈,且0ab >,则下列不等式中,恒成立的是( )A .222a b ab +>B.a b +≥C.11a b +> D .2b aa b+≥ 7.已知在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若(,)M x y 为D 上的动点,点A的坐标为,1),则z O M O =⋅的最大值为( )A .3B .4C.D.8.sin(2)3y x π=+的图像经过怎样的平移后所得的图像关于点(,0)12π-中心对称( )A .向左平移12π个单位 B .向左平移6π个单位C .向右平移12π个单位D .向右平移6π个单位9.若()f x 是R 上的奇函数,且当0x >时,1()()12xf x =+,则()f x 的反函数的图像大致是( )10. 有6个座位连成一排,三人就座,恰有两个空位相邻的概率是( )A .45 B .35 C .25D .1511.已知圆O :221x y +=,点P 是椭圆C :2214x y +=上一点,过点P 作圆O 的两条切线PA 、PB ,A 、B 为切点,直线AB 分别交x 轴、y 轴于点M 、N ,则OMN ∆的面积的最小值是( )A .12 B .1 C .14D12.已知球的直径SC = 4,A ,B是该球球面上的两点,AB =30ASC BSC ∠=∠=︒,则棱锥S -ABC的体积为( )A. B. CD .19二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡相应位置上......... 13.已知||||2a b ==,(2)()2a b a b +-=-,则a 与b 的夹角为 . 14.已知1sin cos 2αα=+,且(0,)2πα∈,则cos 2sin()4απα-的值为 . 15.在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是 .16.函数)(x f 的定义域为A ,若A x x ∈21,且)()(21x f x f =时总有21x x =,则称)(x f 为单函数.例如,函数)(12)(R x x x f ∈+=是单函数.下列命题: ①函数)()(2R x x x f ∈=是单函数;②若)(x f 为单函数,A x x ∈21,且21x x ≠则)()(21x f x f ≠; ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④函数)(x f 在某区间上具有单调性,则)(x f 一定是该区间上的单函数. 其中的真命题是 .(写出所有真命题的编号)三、解答题:本大题共6小题,共70分,解答时应写出文字说明、证明过程.17.(本小题满分10分)在ABC ∆中,角,,A B C 所对应的边分别为,,a b c,a =,tantan 4,22A B C++=2sin cos sin B C A =,求,A B 及,b c .18.(本小题满分12分)如图,已知正三棱柱111ABC A B C -的各棱长都是4, E 是BC 的中点,动点F 在侧棱1CC 上,且不与点C 重合. (I )当1CF =时,求证:1EF A C ⊥;(II )设二面角C AF E --的大小为θ,求tan θ的最小值.19.(本小题满分12分)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A ,乙对B ,丙对C 各一盘,已知甲胜A ,乙胜B ,丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立.(I )求红队至少两名队员获胜的概率; (II )用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E ξ.20.(本小题满分12分)设函数()f x 定义在(0,)+∞上,(1)0f =,导函数/1()f x x=,/()()().g x f x f x =+(I )讨论()g x 与1()g x的大小关系; (II )求a 的取值范围,使得1()()g a g x a-<对任意0x >成立.21.(本小题满分12分)已知数列}{n a 的前n 项和为n S ,若n a S n n +=2,且11+-=n n n n a a a b ,数列}{n b 的前n 项和为n T . (I )求证:}1{-n a 为等比数列; (Ⅱ)求n T ;(III )设*()(21)ln(21)1,()nnf x x x x n N =-+-+-+∈,求证:().2(1)nn T f x T ≥+22.(本小题满分12分)))(,(000a x y x P ±≠是双曲线)00(1:2222>>=b a by a x E ,-上一点,M 、N 分别是双曲线E 的左、右顶点,直线PM 、PN 的斜率之积为.51(I )求双曲线的离心率; (II )过双曲线E 的右焦点且斜率为1的直线交双曲线E 于B A ,两点,O 为坐标原点,C为双曲线上一点,满足OC OA OB λ=+,求λ的值.参考答案一、1.B 2.D 3.A 4.D 5.C 6.D 7.B 8.C 9.A 10.B 11.A 12.C 二、13.3π14.2- 15.)1(21e e + 16.②③④ 三、17.由tan tan 422A B C ++=得cot tan 422C C +=,∴cossin224sin cos 22C CC C +=, ∴14sin cos 22C C =,∴1sin 2C =,又(0,)C π∈,∴566C C ππ==,或. ∴B C =,6B C π==,2()3A B C ππ=-+=.由正弦定理sin sin sin a b c A B C ==,得1sin 2sin Bb c a A ====.18.解法一:过E 作EN AC ⊥于N ,连结EF .(I )如图1,连结NF 、1AC ,由直棱柱的性质知,底面ABC ⊥侧面1A C . 又底面ABC侧面1A C =A C ,且EN ⊂底面ABC ,所以EN ⊥侧面1A C ,∴NF 为EF 在侧面1A C 内的射影,在Rt CNE ∆中,cos60CN CE =︒=1,则由114CF CN CC CA ==,得NF //1AC ,又11,AC AC ⊥故1NF A C⊥,由三垂线定理知1.EF A C ⊥(II )如图2,连结AF ,过N 作NM AF ⊥于M ,连结ME ,由(I )知EN ⊥侧面1A C , 根据三垂线定理得EM AF ⊥,所以EMN ∠是二面角C —AF —E 的平面角,即EMN θ∠=. 设,045FAC αα∠=︒<≤︒则,在Rt CNE ∆中,sin 60NE EC =⋅︒=在,sin 3sin ,Rt AMN MN AN a a ∆=⋅=中故tan NE MN θ==又0,0sin 42παα<≤∴<≤sin 2α=即当45α=时,tan θ达到最小值,tan θ==,此时F 与1C 重合.解法二:(I )建立如图3所示的空间直角坐标系,则由已知可得1(0,0,0),(0,4,0),(0,0,4),(0,4,1),A B C A E F于是1(0,4,4),(3,1,1).CA EF =-=-1(0,4,4)(,1)0440,CA EF ⋅=-⋅=-+= 故1.EF A C ⊥(II )设(04)CF λλ=<≤平面AEF 的一个法向量为(,,)m x y z =, 则由(I )得(0,4,)F λ,(3,3,0),(0,4,),AE AF λ== 于是由,m AE mAF ⊥⊥可得0,30,40.0,m AE y y z m AF λ⎧⋅=+=⎪⎨+=⎪⋅=⎪⎩⎩即 取,,4).m λ=-又由直三棱柱的性质可取侧面1AC 的一个法向量为(1,0,0)n =,于是由θ为锐角可得||cos ||||m n m n θ⋅=⋅θtan θ,由04λ<≤,得114λ≥,即tan θ≥故当4λ=,即点F 与点1C 重合时,tan θ 19.解:(I )设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F , 则,,D E F 分别表示甲不胜A 、乙不胜B ,丙不胜C 的事件.因为()0.6,()0.5,()0.5P D P E P F ==+=,()0.4,()0.5,()0.5P D P E P F ∴==+=. 红队至少两人获胜的事件有:,,,DEF DEF DEF DEF ,由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率()()()()0.60.50.50.60.50.50.40.50.50.60.50.50.55P P DEF P DEF P DEF P DEF =+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=(II )由题意知ξ可能的取值为0,1,2,3.又由(I )知,,DEF DEF DEF 是两两互斥事件,且各盘比赛的结果相互独立, 因此(0)()0.40.50.50.1P P DEF ξ===⨯⨯=,(1)()()()0.40.50.50.40.50.50.60.50.50.35P P DEF P DEF P DEF ξ==++=⨯⨯+⨯⨯+⨯⨯=(3)()0.60.50.5P P D E F ξ===⨯⨯=,由对立事件的概率公式得(2)1[(0)(1)(3)]0.4.P P P P ξξξξ==-=+=+==所以ξ的分布列为:因此00.110.3520.43 1.5 1.6.E ξ=⨯+⨯+⨯+⨯=20.解:(I )∵/1()f x x=,∴()ln f x x c =+(c 为常数),又∵(1)0f =,所以ln10c +=,即0c =,∴1()ln ,()ln f x x g x x x ==+,∴/21()x g x x-=,令/()0g x =得1x =,当x ∈(0,1)时,/()0g x <,()g x 是减函数,故(0,1)是()g x 的单调减区间。
甘肃省高一上学期期末考试数学试题(解析版)

一、单选题1.关于命题“,”,下列判断正确的是( ) x ∃∈N 220x x +=A .该命题是全称量词命题,且是真命题 B .该命题是存在量词命题,且是真命题 C .该命题是全称量词命题,且是假命题 D .该命题是存在量词命题,且是假命题【答案】B【分析】根据存在量词命题的定义及取可判断.0x =【详解】该命题是存在量词命题,当时,,所以该命题为真命题. 0x =220x x +=故选:B.2.设集合,,则( ){}2A y y x =={}2210B x x x =--<A B = A . B .C .D .()0,110,2⎛⎫ ⎪⎝⎭[)0,110,2⎡⎫⎪⎢⎣⎭【答案】C【分析】求集合中函数的值域,解集合中一元二次不等式,得到两个集合,再求 A B A B ⋂【详解】函数值域为,∴, 2y x =[)0,∞+[)0,A =+∞不等式解得,∴, 2210x x --<112x -<<1,12B ⎛⎫=- ⎪⎝⎭则. [)0,1A B ⋂=故选:C3.下列函数为增函数的是( ) A . B .()31log f x x=()3f x x =C . D .()sin f x x =()23xf x ⎛⎫= ⎪⎝⎭【答案】B【分析】根据函数的单调性逐项判断即可.【详解】函数与在定义域内为减函数,不符合题意;()31log f x x =()23xf x ⎛⎫= ⎪⎝⎭函数在上为减函数,不符合题意;()sin f x x =π3π22⎛⎫⎪⎝⎭,根据幂函数的性质知为增函数.()3f x x =故选:B. 4.函数的部分图像大致为( )()22111x f x x +=-+A .B .C .D .【答案】A【分析】利用奇偶性和特殊点排除不符合的选项. 【详解】函数的定义域为,,因此()22111x f x x +=-+R ()()()2221211111x x f x f x x x -+-+-=-=-=+-+是上的偶函数,其图象关于轴对称,选项C ,D 不满足; ()f x R y 又,所以选项B 不满足,选项A 符合题意. ()1102f =>故选:A5.已知,,,则( ) 0.32=a ln 0.2b =20.3c =A . B .C .D .a b c >>b a c >>c b a >>a c b >>【答案】D【分析】根据指数函数、对数函数与幂函数的性质比较即可. 【详解】因为,,, 0.321a =>ln 0.20b =<200.31c <=<所以. a c b >>故选:D.6.已知幂函数的图象过点,若,则的取值范围为( ) ()f x ()2,32()()110f a f ++->a A . B .C .D .()2,+∞()1,+∞()0,∞+()1,-+∞【答案】C【分析】利用待定系数法求出幂函数的解析式,可得其为奇函数,且在上单调递增,R 可转化为,根据单调性即可求解.()()110f a f ++->()()11f a f +>【详解】设幂函数,其图象过点,所以,解得,()y f x x α==()2,32232α=5α=所以.()5f x x =因为,所以为奇函数,且在上单调递增,()()()5f x x f x -=-=-()5f x x =R 所以可化为, ()()110f a f ++->()()()111f a f f +>--=可得,解得,所以的取值范围为. 11a +>0a >a ()0,∞+故选:C.7.下列式子中,可以是函数为奇函数的充分必要条件为( ) ()()cos 2f x x φ=+A . B . πϕ=3π2ϕ=C .,D .,ππ2k ϕ=+k ∈Z π2π2k ϕ=+k ∈Z 【答案】C【分析】利用三角函数的奇偶性和充要条件的定义判定即可. 【详解】若为奇函数,则,解得; ()()cos 2f x x φ=+()0cos 0f ϕ==()ππ2k k ϕ=+∈Z 当时,有,则函数为奇函数. ()ππ2k k ϕ=+∈Z ()()cos 2sin 2f x x x ϕ=+=±()f x 所以函数为奇函数的充分必要条件为, ()()cos 2f x x φ=+()ππ2k k ϕ=+∈Z 故选:C8.已知函数满足,若与的图像有交点,()()f x x ∈R ()()2f x f x +-=1y x =+()y f x =()11,x y ,,则( )()22,x y ()33,x y 123123x xx y y y +++++=A . B .0C .3D .63-【答案】C【分析】两个函数图像都关于点对称,则图像交点也关于点对称,可求值. ()0,1()0,1【详解】由可得,()()2f x f x +-=()()2f x f x -=-函数的图像上任意一点关于点的对称点为, 即点,()f x ()(),x f x ()0,1()(),2x f x --()(),x f x --由也满足函数解析式,可得函数的图像关于点对称,()(),x f x --()f x ()0,1函数的图像可以由奇函数的图像向上平移1个单位得到,所以函数的图像也关1y x =+y x =1y x =+于点对称,()0,1若与的图像有交点,,,不妨设,1y x =+()y f x =()11,x y ()22,x y ()33,x y 123x x x <<由对称性可得,,,,1302x x +=20x =1312y y+=21y =所以. 1231233x x x y y y +++++=故选:C二、多选题9.下列命题正确的是( ) A .若,,则 B .若,则 0a b >>0m >a b m m>1a b <<33a b >C .若且,则 D .若正数a ,b 满足,则0x >1x ≠1ln 2ln x x +≥2a b +=112a b+≥【答案】AD【分析】由不等式的性质和基本不等式的运用,逐个判断选项. 【详解】由不等式的性质可知,A 正确,B 错误; 当时,,C 错误; ()0,1x ∈1ln 0ln x x+<正数a ,b 满足,则, 2a b +=()1111222221121b a a b a b a b a b ⎛⎫⎛⎫⎛⎫+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当时,等号成立,D 正确. 1a b ==故选:AD.10.设函数,则( )()()2ln 2f x x =-A .是偶函数 B .在上单调递减 ()f x ()f x ()0,∞+C .的最大值为 D .的一个零点()f x ln 2x ()f x 【答案】AC【分析】根据函数解析式,研究函数的奇偶性、单调性、最值和零点,验证各选项的结论.【详解】函数,由得的定义域为,关于坐标原点对称,()()2ln 2f x x =-220x ->()f x (又,所以为定义域上的偶函数,A 选项正确;()()f x f x -=()f x令,则,由二次函数的性质,当时,为增函数;当22t x =-ln y t =()x ∈22t x =-(x ∈时,为减函数;22t x =-在定义域内为增函数,由复合函数的单调可知,在上单调递增,在上单ln y t =()f x ()(调递减,B 选项错误;由函数单调性可知,最大值为,C 选项正确; ()f x ()0ln 2f =,解得,则的零点为,D 选项错误.()2ln 20x -=1x =±()f x 1±故选:AC.11.现代研究结果显示,饮茶温度最好不要超过60℃.一杯茶泡好后置于室内,1分钟、2分钟后测得这杯茶的温度分别为80℃,65℃,给出两个茶温T (单位:℃)关于茶泡好后置于室内时间t(单位:分钟,)的函数模型:①;②.根据所给的数据,t ∈N 380204t T ⎛⎫=⋅+ ⎪⎝⎭260203tT ⎛⎫=⋅+ ⎪⎝⎭下列结论中正确的是( )(参考数据:,) lg 20.30≈lg 30.48≈A .选择函数模型① B .选择函数模型②C .该杯茶泡好后到饮用至少需要等待2分钟D .该杯茶泡好后到饮用至少需要等待2.5分钟 【答案】AD【分析】将分别代入与,从而可判断AB ;解不等式2x =380204t T ⎛⎫=⋅+ ⎪⎝⎭260203tT ⎛⎫=⋅+ ⎪⎝⎭可得判断CD.38020604tT ⎛⎫=⋅+≤ ⎪⎝⎭【详解】将代入,得;2x =380204tT ⎛⎫=⋅+ ⎪⎝⎭65T =将代入,得. 2x =260203tT ⎛⎫=⋅+ ⎪⎝⎭1403T =故选择函数模型①.由,可得, 38020604tT ⎛⎫=⋅+≤ ⎪⎝⎭1lglg 22 2.532lg 2lg 3lg 4t ≥=≈-故该杯茶泡好后到饮用至少需要等待2.5分. 故选:AD.12.高斯是德国的天才数学家,享有“数学王子”的美誉,以“高斯”命名的概念、定理、公式很多,如高斯函数,其中不超过实数x 的最大整数称为x 的整数部分,记作.如[]y x =[]x []20222022=,,,记函数,则( )[]1.71=[]1.52-=-()[]f x x x =-A .B .的值域为()2.90.9f -=()f x [)0,1C .在上有5个零点 D .,方程有两个实根()f x []0,5a ∀∈R ()f x x a +=【答案】BD【分析】根据高斯函数的定义,结合特殊点的函数值、值域、零点、方程的根、函数图象等知识对选项进行分析,从而确定正确答案.【详解】,选项A 错误; ()[]()2.9 2.9 2.9 2.930.1f -=---=---=当时,, 10x -≤<[]1x =-()[]1f x x x x =-=+当时,,; 01x ≤<[]0x =()[]f x x x x =-=当时,,12x ≤<[]1x =()[]1f x x x x =-=-……以此类推,可得的图象如下图所示,()[]f x x x =-由图可知,的值域为,选项B 正确; ()f x [)0,1由图可知,在上有6个零点,选项C 错误;()f x []0,5,函数与的图象有两个交点,如下图所示, a ∀∈R ()y f x =y a x =-即方程有两个根,选项D 正确.()f x x a +=故选:BD三、填空题13.“数摺聚清风,一捻生秋意”是宋代朱翌描写折扇的诗句,折扇出入怀袖,扇面书画,扇骨雕琢,是文人雅士的宠物,所以又有“怀袖雅物”的别号.如图,这是折扇的示意图,已知为的中D OA 点,,,则此扇面(扇环)部分的面积是__________. 4OA =3π4AOB ∠=ABCD【答案】9π2【分析】利用扇形的面积公式可求得扇环的面积.【详解】. ()2213π9π42242ABCD AOB DOC S S S =-=⨯⨯-=扇环扇形扇形故答案为:. 9π214.已知,则__________.()sin cos 2sin cos f αααα+=πcos 4f ⎛⎫= ⎪⎝⎭【答案】##12-0.5-【分析】利用同角三角函数的关系,求出函数解析式,再代入求值. 【详解】已知, ()sin cos 2sin cos f αααα+=因为,()2sin cos 12sin cos αααα+=+所以令,则,sin cos t αα=+()21f t t =-则. π11cos 1422f f ⎛⎫==-=- ⎪⎝⎭故答案为:12-15.已知,函数,已知有且仅有5个零点,则的取值范0a >2,0()πsin ,02π5ax a x f x ax x -+-<⎧⎪=⎨⎛⎫+≤≤ ⎪⎪⎝⎭⎩()f x a 围为__________.【答案】191229,2,10510⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】当时,在上无零点,所以在上有且仅有5个零点;当2a ≥()f x (,0)-∞()f x [0,2π]2a <时,在上恰有一个零点,所以在上有且仅有4个零点,利用正弦函数的图象()f x (,0)-∞()f x [0,2π]列式可求出结果.【详解】当时,,令,得, 0x <()2f x ax a =-+-()0f x =21x a=-若,即时,在上无零点,所以在上有且仅有5个零点, 210a-≥2a ≥()f x (,0)-∞()f x [0,2π]当时,,所以,即. [0,2π]x ∈πππ,2π555ax a ⎡⎤+∈+⎢⎥⎣⎦π5π2π6π5a ≤+<1229510a ≤<若,即时,在上恰有一个零点,210a-<2a <()f x (,0)-∞所以在上有且仅有4个零点,所以,即, ()f x [0,2π]π4π2π5π5a ≤+<191255a ≤<又,所以. 2a <1925a ≤<综上所述:的取值范围为.a 191229,2,10510⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭故答案为:.191229,2,10510⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭四、双空题16.已知函数是奇函数,当时,,,则__________.当()f x (),0x ∈-∞()2xf x mx =+()11f =-m =时,__________.()0,x ∈+∞()f x =【答案】 ##12-0.5-122xx ---【分析】利用是奇函数,由,代入函数解析式解出的值;由()f x ()()111f f =--=-m (),0x ∈-∞时的函数解析式利用奇函数的性质求时的解析式.()0,x ∈+∞【详解】因为是奇函数,所以,解得;()f x ()()11112f f m ⎛⎫=--=--=- ⎪⎝⎭12m =-因为当时,,0x <()122xf x x =-当时,,则.0x >0x -<()()112222x xf x f x x x --⎡⎤=--=-+=--⎢⎥⎣⎦故答案为:;12-122xx ---五、解答题17.已知是第二象限角,且. α222sin 3sin cos 2cos 0αααα--=(1)求的值;tan α(2)求的值.()()πsin sin π23π3cos cos 2αααα⎛⎫-++ ⎪⎝⎭⎛⎫-+- ⎪⎝⎭【答案】(1);1tan 2α=-(2). 35【分析】(1)利用同角三角函数的基本关系化为关于的方程,根据所在的象限即可求解; tan αα(2)根据诱导公式可得原式,分子分母同时除以即可求解.cos sin 3sin cos αααα-=-+cos α【详解】(1)由,222sin 3sin cos 2cos 0αααα--=可得,即, 2222sin 3sin cos 2cos 0cos ααααα--=22tan 3tan 20αα--=解得或.1tan 2α=-tan 2α=因为是第二象限角,所以.α1tan 2α=-(2). ()()πsin sin πcos sin 1tan 323π3sin cos 3tan 153cos cos 2αααααααααα⎛⎫-++ ⎪--⎝⎭===-+-+⎛⎫-+- ⎪⎝⎭18.已知函数的定义域为集合,集合.()()ln 5f x x =-A {}21B x a x a =-<<-(1)当时,求;2a =()A B R ð(2)若命题:,是假命题,求的取值范围. p x A ∃∈x B ∈a 【答案】(1); (){}35A B x x x ⋃=<≥R 或ð(2). (],1-∞【分析】(1)求出函数的定义域可得集合,代入,根据集合的补集与并集运算即可求()f x A 2a =解;(2)由题意可得,分与讨论列式即可求解.A B ⋂=∅B =∅B ≠∅【详解】(1)要使函数有意义,则解得,()f x 5010x x ->⎧⎨->⎩15x <<所以集合,. {}15A x x =<<{}15A x x x =≤≥R 或ð因为,所以. {}23B x x =-<<(){}35A B x x x ⋃=<≥R 或ð(2)因为命题:,是假命题,所以.p x A ∃∈x B ∈A B ⋂=∅当时,,解得;B =∅21a a -≥-13a ≤当时,则或,解得.B ≠∅215a a a -<-⎧⎨-≥⎩21211a a a -<-⎧⎨-≤⎩113a <≤综上,的取值范围为.a (],1-∞19.已知幂函数在上单调递增.()()2211m f x m x -=-⋅()0,∞+(1)求的值域; ()f x (2)若,,求的取值范围. 0x ∀>()222f x axx≥-a 【答案】(1) R (2) [)2,+∞【分析】(1)根据幂函数的定义及单调性列式求解即可;(2)由题意可得,,根据二次函数的性质求出的最大值即可. 0x ∀>242≥-a x x 242y x x =-【详解】(1)因为幂函数在上单调递增,()()2211m f x m x -=-⋅()0,∞+所以,解得,()211210m m ⎧-=⎪⎨->⎪⎩2m =所以.()3f x x =故的值域为. ()f x R (2)由题可得,,则, 0x ∀>22ax x≥-242≥-a x x 当时,有最大值2, 4122x =-=-⨯242y x x =-则,即的取值范围为. 2a ≥a [)2,+∞20.已知函数.()()22ln 12nf x x x =+-+(1)证明:当时,在上至少有两个零点;1n =()f x ()0,∞+(2)当时,关于的方程在上没有实数解,求的取值范围.2n =x ()f x m =[]1,2m 【答案】(1)证明见解析;(2).()(),362ln 2,-∞⋃++∞【分析】(1)通过零点存在性定理即可判断零点个数;(2)易判断函数的单调性,求出的值域,结合题设条件,即可求得的取值范围.()f x ()f x m 【详解】(1)当时,,1n =()22ln 2f x x x =-+因为,,, 2110e e f ⎛⎫=-< ⎪⎝⎭()110f =>()2e 4e 0f =-<所以,, ()110e f f ⎛⎫< ⎪⎝⎭()()1e 0f f <因此,,,,即在上至少有两个零点. 11,1e x ⎛⎫∃∈ ⎪⎝⎭()21,e x ∈()10f x =()20f x =()f x ()0,∞+(2)当时,,易知在上单调递增.2n =()22ln 2f x x x =++()f x []1,2又,,即的值域为,()13f =()262ln 2f =+()f x []3,62ln 2+且关于的方程在上没有实数解,x ()f x m =[]1,2所以的取值范围为.m ()(),362ln 2,-∞⋃++∞21.对于函数,若在定义域内存在两个不同的实数x ,满足,则称为“类指数()f x ()2x f x =()f x 函数”.(1)已知函数,试判断是否为“类指数函数”,并说明理由; ()123x g x =-()g x (2)若为“类指数函数”,求a 的取值范围. ()21x a h x a =--【答案】(1)不是 “类指数函数” ()g x(2)()3-+【分析】(1)是否为“类指数函数”,可以转化为方程是否存在两个不同的实数()g x ()()0f x g x -=根;(2)是否为“类指数函数”, 转化为方程是否存在两个不同的实数根,进一步()h x ()()0f x h x -=化简、换元转化为一元二次方程求解.【详解】(1)若函数为“类指数函数”,则在定义域内存在两个不同的实数x 满足方程()123xg x =-,. ()()0f x g x -=()()1223x x f x g x -=-+由于函数与在R 上均单调递增,所以在R 上均单调递增,至多有一个零2x y =13xy =-()()f x g x -点,所以不是 “类指数函数”.()g x (2)若函数为“类指数函数”,则方程有两个不同的实数根,即方程()21x a h x a =--()()0f x h x -=有两个不同的实数根, 2021x xa a -=--整理得,()()22120x x a a -+-=设,则方程有两个不等的正根,20x t =>()210t a t a -+-=,由,解得或()21212Δ140100a a t t a t t a ⎧=++>⎪+=+>⎨⎪=->⎩()2Δ140a a =++>3a <--3a >-+由,解得;由,解得. 1210t t a +=+>1a >-120t t a =->a<0所以.30a -+<故a 的取值范围. ()3-+22.已知函数的部分图像如图所示. ()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭(1)求函数的解析式;()y f x =(2)将的图像上所有点的横坐标缩短到原来的,纵坐标不变,再向右平移个单位长度得()y f x =12π6到的图像,求函数的单调递增区间;()y g x =()g x (3)在第(2)问的前提下,对于任意,是否总存在实数,使得1ππ,33x ⎡⎤∈-⎢⎥⎣⎦2ππ,66x ⎡⎤∈-⎢⎥⎣⎦成立?若存在,求出实数的值或取值范围;若不存在,说明理由.()()12f x g x m +=m【答案】(1) ()πsin 23f x x ⎛⎫=+ ⎪⎝⎭(2) ()ππ5ππ,242242k k k ⎡⎤-++∈⎢⎥⎣⎦Z (3)存在,0m =【分析】(1)由题知,,求出从而得的值,将特殊点代入函数中求出,即可1A =7ππ4123T =-T ωϕ解决问题;(2)根据函数伸缩变换与平移变换后的到新函数的解析式,根据函数解析式求解单调区间即可; (3)假设存在实数的值或取值范围满足题意,根据所给条件先由,得m ()()12f x g x m +=,再根据所给的角把范围求出来,根据范围的包含关系列出不等()()21g x m f x =-()()21,g x m f x -式解出即可.【详解】(1)由图可知, 1A =,则,, 7πππ41234T =-=2ππT ω==2ω=所以,. ()()sin 2f x x ϕ=+77sin 126ππ1f ϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭所以,即 7π2π(Z)π62k k ϕ+=-+∈5π2π(Z)3k k ϕ=-+∈又,所以当时,, π2ϕ<1k =π3ϕ=所以. ()πsin 23f x x ⎛⎫=+ ⎪⎝⎭(2)将的图像上所有点的横坐标缩短到原来的,纵坐标不变, ()y f x =12得:, πsin 43y x ⎛⎫=+ ⎪⎝⎭再向右平移个单位长度得到: π6, ()πππsin 4sin 4633g x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦由,, πππ2π42π232k x k -+≤-≤+k ∈Z 解得,, ππ5ππ242242k k x -+≤≤+k ∈Z 所以函数的单调递增区间为 ()g x ()ππ5ππ,242242k k k ⎡⎤-++∈⎢⎥⎣⎦Z (3)由,得,()()12f x g x m +=()()21g x m f x =-由,得, 1ππ33x -≤≤1ππ2π33x -≤+≤所以,1sin 213x π⎛⎫≤+≤ ⎪⎝⎭所以. ()11,m f x m m ⎡-∈-⎢⎣又,得, 2ππ66x -≤≤2πππ433x -≤-≤所以2π1sin 43x ⎛⎫-≤-≤ ⎪⎝⎭由题可知, 1,m m ⎡⎡-⊆-⎢⎢⎣⎣得 11m m -≥-⎧⎪⎨≤⎪⎩解得,0m =所以存在, 0m =使得成立. ()()12f x g x m +=。
甘肃省兰州市第一中学高一数学上学期期末考试试题

兰州一中2016-2017-1学期期末考试试题高一数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间100分钟. 答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是 符合题目要求的,请将答案写在答题卡上.)1.过点)1,4(A 且在两坐标轴上的截距相等的直线方程是( ) A .5=+y x B .5=-y xC .045=-=+y x y x 或D .045=+=-y x y x 或 2.已知n m ,表示两条不同直线,α表示平面.下列说法正确的是( ) A .若n m n m //,//,//则αα B .若n m n m ⊥⊂⊥则,,αα C .若αα//,,n n m m 则⊥⊥ D .若αα⊥⊥n n m m 则,,//3.如图,矩形''''C B A O 是水平放置的一个平面图形的斜二测画法画出的直观图,其中cm D C cm A O 2,6''''==,则原图形是( )A .正方形B .矩形C .梯形D .菱形4.如图,将正方形ABCD 沿对角线AC 折成一个直二面角, 则异面直线CD AB 和所成的角是( ) A .30 B .45 C .60 D .905.若圆锥的高等于其内切球半径长的3倍,则圆锥侧面积 与球表面积的比值为( ) A .21 B .23 C .31 D .346.已知三棱锥ABC P -的四个顶点C B A P ,,,都在半径为R 的同一个球面上, 若PC PB PA ,, 两两相互垂直,且3,2,1===PC PB PA ,则R 等于 ( )ABCDOA .214 B .14 C .213 D .3 7.如图,已知两点)4,0(),0,4(B A ,从点)0,2(P 射出的光线 经直线AB 反射后射到直线OB 上,再经直线OB 反射后射 到P 点,则光线所经过的路程NP MN PM ++等于( )A .102B .6C .33D .528.定义在R 上的奇函数)(x f 满足:当0>x 时,x x f x2017log 2017)(+=,则在R 上,函数)(x f 零点的个数为( )A .1个B .2个C .3个D .4个 9.如图,网格纸上小正方形的边长为1,粗实线 画出的是某多面体的三视图,则该多面体的各条 棱中,最长的棱的长度为( )A .25B .24C .4D .610.已知点),1,0(),0,1(),0,1(C B A -直线)0(≥+=k b kx y 将ABC ∆分割为面积相等 的两部分,则b 的取值范围是( )A .)1,0(B .)21,31[ C .]31,221[- D .)21,221[-第Ⅱ卷(非选择题)二、填空题 (本大题共4小题,每小题4分,共16分,请将答案写在答题卡上.)11.如图,长方体1111D C B A ABCD -中,4,3==BC AB , 51=CC ,则沿着长方体表面从A 到1C 的最短路线MN长为 ________.12.若幂函数)()(为常数ααx x f =的图象恒过定点A , 直线0312=+++-k y kx 恒过定点,B 则直线 AB 的倾斜角是________.13.一个工厂生产某种产品每年需要固定投资100万元,每生产1件该产品还需要增加投资 1万元,年产量为)(*∈N x x 件.当20≤x 时,年销售总收入为)33(2x x -万元; 当20>x 时,年销售总收入为260万元. 则该工厂的年产量为________件时,所得 年利润最大. (年利润=年销售总收入-年总投资).14.已知函数⎩⎨⎧≥--<-=)1()2)((4)1( 2)(x a x a x x a x f x . 若0)(=x f 恰有2个实数根, 则实数a 的取值范围是_______________. 三、解答题(本大题共5小题,共44分.)15.(本小题8分)如图,在三棱柱111C B A ABC -中,侧棱垂直于底面,AC AB =, H F E ,, 分别是AC BC C A ,,11 的中点. (1)求证:平面ABE HF C 平面//1 . (2)求证:11BCC B AEF 平面平面⊥16.(本小题8分)(1)已知直线062:1=++y ax l 和直线01)1(:22=-+-+a y a x l .当21//l l 时,求a 的值.(2)已知点)1,2(-P ,求过P 点且与原点距离最大的直线l 的方程,并求出最大距离.17. (本小题8分) 如图,长方体1111D C B A ABCD -中, 41==DC D D ,2=AD ,C D E 1为的中点.ABC1A 1C 1B EFH1C(1)求三棱锥ADE D -1的体积. (2)AC 边上是否存在一点M ,使得MDE A D 平面//1?若存在,求出AM 的长; 若不存在,请说明理由.18. (本小题10分) 如图,在四棱锥ABCD P -中, ABCDPA 平面⊥,AD AB ⊥,CDAC ⊥,60=∠ABC ,BC AB PA ==,E 是PC 的中点.(1)求PB 和平面PAD 所成的角的大小. (2)求二面角C PD A --的正弦值.19. (本小题10分)设二次函数a ax x x f ++=2)(.(1) 若方程0)(=-x x f 的两实根1x 和2x 满足1021<<<x x . 求实数a 的取值范围.(2) 求函数x x a x af x g 2)1()()(2-+-=在区间]1,0[上的最小值.兰州一中2016-2017-1学期期末考试高一数学答题卡 第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 答案第Ⅱ卷(非选择题)二、填空题 (本大题共4小题,每小题4分,共16分.)11.________________ 12.______________________13.________________ 14.______________________三、解答题(本大题共5小题,共44分.)15.(本小题8分)16.(本小题8分) 17. (本小题8分)ABC 1A1C1BEFH1C18.(本小题10分)19. (本小题10分)兰州一中2016-2017-1学期期末考试高一数学答案一、选择题(本大题共10小题,每小题4分,共40分.) 题号 1 2 3 4 5 6 7 8 9 10 答案CBDCBAACDD二、填空题 (本大题共4小题,每小题4分,共16分.)11.74 12. 150 13. 16 14.),2[)1,21[+∞⋃ 提示: 8. 别漏了(0,0)9. 构造正方体模型(如左下图)该多面体为三棱锥BCD -10. 221, 0-==b k 时; , 0时>k 如右上图, (,0),1M b k b N y k k +-=+令11(1)212MNBb k b S k k ∆+=+⋅=+,得210212<∴>-=b b b k 14. 当0≤a 时,方程0)(=x f 无实根;当10<<a 时,要使0)(=x f 恰有2个实数根,须12≥a ,121<≤∴a 当1≥a 时, 要使0)(=x f 恰有2个实数根,须021≤-a 2≥∴a 综上,所求为),2[)1,21[+∞⋃三、解答题(本大题共5小题,共44分.)15.(本小题8分)如图,在三棱柱111C B A ABC -中,侧棱垂直于底面,AC AB =,H F E ,, 分别是AC BC C A ,,11 的中点. (1)求证:平面ABE HF C 平面//1 . (2)求证:11BCC B AEF 平面平面⊥ADCB1A 1C 1B EANOMCB证明: (1)H F , 分别是AC BC ,的中点,AB HF //∴. 又H E , 分别是AC C A ,11的中点, AH EC //1∴ 又AH EC =1 HA EC 1四边形∴为平行四边形.AE H C //1∴,又A AB AE H HF H C =⋂=⋂,1 ,所以平面ABE HF C 平面//1 .(2)AC AB = ,中点为BC F ,BC AF ⊥∴ABC B B 平面⊥1 ,ABC AF 平面⊂,AF B B ⊥∴1,1B BC B B =⋂ 11BCC B AF 平面⊥∴又AEF AF 平面⊂ ,11BCC B AEF 平面平面⊥∴16.(本小题8分) (1)已知直线062:1=++y ax l 和直线01)1(:22=-+-+a y a x l .当21//l l 时,求a 的值.(2)已知点)1,2(-P ,求过P 点且与原点距离最大的直线l 的方程,并求出最大距离. 解: (1)由01221=-B A B A ,得021)1(=⨯--a a ,由01221≠-C B C B ,得0)1(6)1(22≠---a a ,1-=∴a (2)过P 点且与原点距离最大的直线,是过P 点且与OP 垂直的直线, 由OP l ⊥ 得1-=OP l k k .所以2=l k .由直线方程的点斜式得)2(21-=+x y ,即052=--y x ,所以直线052=--y x 是过P 点且与原点距离最大的直线,最大距离为555d -==.17. (本小题8分) 如图,长方体1111D C B A ABCD -中, 41==DC D D ,2=AD ,C D E 1为的中点. (1)求三棱锥ADE D -1的体积.(2)AC 边上是否存在一点M ,使得MDE A D 平面//1? 若存在,求出AM 的长;若不存在,请说明理由.解: (1)11DED A ADE D V V --= 长方体中, CD D AD 1平面⊥ ,AD ∴是三棱锥DE D A 1-的高. C D E 1为 的中点,且41==DC D D ,41=∴∆DE D S 又2=AD ,所以3811==--DED A ADE D V V . 1B 1C 1D 1ECDBA(2)取AC 中点M ,连接DM EM ,,因为C D E 1为的中点,M 是AC 的中点,A D EM 1//∴.又MDE EM 平面⊂ ,MDE A D 平面⊄1,MDE A D 平面//1∴.5=∴AM .即在AC 边上存在一点M ,使得MDE A D 平面//1,此时M 是AC 的中点5=AM .18. (本小题10分)如图,在四棱锥ABCD P -中, ABCD PA 平面⊥, AD AB ⊥,CD AC ⊥,60=∠ABC ,BC AB PA ==,E 是PC 的中点.(1)求PB 和平面PAD 所成的角的大小. (2) 求二面角C PD A --的正弦值.解: (1)在四棱锥ABCD P -中,ABCD PA 平面⊥ ,ABCD AB 平面⊂,AB PA ⊥∴.又AD AB ⊥,A AD PA =⋂,PAD AB 平面⊥∴. 故PB 在平面PAD 内的射影为PA ,从而APB ∠为PB 和平面PAD 所成的角. 在PAB Rt ∆中,PA AB =,故 45=∠APB . 所以PB 和平面PAD 所成的角的大小为 45.(2) 在四棱锥ABCD P -中,ABCD PA 平面⊥ ,ABCD CD 平面⊂,CD PA ⊥∴. 由条件CD AC ⊥,A AC PA =⋂,PAC CD 平面⊥∴. 又PAC AE 平面⊂ ,AE CD ⊥∴.由BC AB PA ==,60=∠ABC ,可得PA AC =.∵E 是PC 的中点,AE PC ⊥∴.又C PC CD =⊥ ,PCD AE 平面⊥∴. 过点E 作PD EM ⊥,垂足为M ,连接AM ,如图所示. PCD AE 平面⊥ ,AM 在平面PCD 内的射影是EM , PD AM ⊥∴.AME ∠∴是二面角C PD A --的平面角. 由已知 30=∠CAD ,1=∴CD 设,3==AC PA 则,7,6,2===PD PC AD . PAC Rt ∆中, 2621==PC AE . 在ADP Rt ∆中,PD AM ⊥ ,AD AP PD AM ⋅=⋅∴,得7212=AM . 在AEM Rt ∆中,414sin ==∠AM AE AME .所以二面角C PD A --的正弦值为414. 19.(本小题10分)设二次函数a ax x x f ++=2)(.甘肃省兰州市第一中学高一数学上学期期末考试试题11 / 11 (1)若方程0)(=-x x f 的两实根1x 和2x 满足1021<<<x x .求实数a 的取值范围;(2)求函数x x a x af x g 2)1()()(2-+-=在区间]1,0[上的最小值.解: (1)令a x a x x x f x m +-+=-=)1()()(2. 依题意,⎪⎪⎩⎪⎪⎨⎧>><-<>∆0)0(0)1(12100m m a 得2230-<<a ,故实数a 的取值范围为 )223,0(- . (2) x ax x g 2)(2-=①当0=a 时,x x g 2)(-=在]1,0[上递减,2)1()(min -==∴g x g .②当0>a 时,函数a a x a x g 1)1()(2--=图象的开口方向向上,且对称轴为10x a =>. 若111≥≤a a 即,函数)(x g 在]1,0[a 上递减,在]1,1[a 上递增.aa g x g 1)1()(min -==∴. 若1011<<>a a即,函数)(x g 在]1,0[上递减.2)1()(min -==∴a g x g . ③当0<a 时,函数a a x a x g 1)1()(2--=的图象的开口方向向下,且对称轴01<=ax , )(x g 在]1,0[上递减, 2)1()(min -==∴a g x g综上所述,⎪⎩⎪⎨⎧≥-<-=)1( 1)1( 2)(min a aa a x g。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
甘肃兰州一中2011—2012学年度上学期期末考试
高一数学试题
一、选择题:本题共12小题,每小题3分,共36分;在每小题给出的四个选项中,只有一项是符合要求的.将每题正确选项的序号填在答题卡的相应位置. 1.点(tan2011°,cos2011°)位于
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.如果一扇形的圆心角为72°,半径等于20cm ,则扇形的面积为
A .40πcm
2
B .40cm
2
C .80πcm
2
D .80cm 2
3.设向量a =(1,sin θ),b =(3sin θ,1),且a ∥b ,则cos2θ等于
A .
13
B .
23
C .-13
D .-23
4.已知0<α<π,3sin2α=sin α,则cos(α-π)等于
A .
13
B .-13
C .
16
D .-
16
5.若向量a =(1,2),b =(-3,4),则(a ·b )(a +b )等于
A .20
B .54
C .(-10,30)
D .(-8,24)
6.函数f (x )=cos(
12
6
x π
-
)的图象相邻的两条对称轴间的距离是 A .4π
B .2π
C .π
D .
2
π
7.下列坐标所表示的点不是..
函数y =tan(26
x π
-
)的图象的对称中心的是
A .(
3
π
,0) B .(
23
π,0) C .(43
π,0) D .(-53
π,0)
8.若向量a 、b 满足a +b =(2,-1),a =(1,2),则向量a 与b 的夹角等于 A .45° B .60° C .120°
D .135°
9.已知α∈(2
π,π),tan(α+4
π
)=17,则sin α+cos α的值为
A .-
15
B .
75
C .-
75
D .
3
4
10.如图所示为函数f (x )=2cos(ωx +ϕ)(ω>0,0≤ϕ≤π)的部分图象,其中|AB
|=5,f (0)=1,那么ω和ϕ
的值分别为
A .ω=6
π,ϕ =3π
B .ω=
3
π
,ϕ =
6
π
C .ω=3
π
,ϕ =
3
π
D .ω=6,ϕ =6
π
11.设a =
2
2(sin17°+cos17°),b =2cos 213°-1,c =
2
,则
A .c <a <b
B .b <c <a
C .a <b <c
D .b <a <c
的最高点,B 是图象与x 轴的交点,则tan ∠OPB =
A .10
B .8
C .
87
D .
47
二、填空题:本题共4小题,每小题4分,共16分;答案填在答题卡的相应位置上.
13.如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆交于点A ,点A 的纵坐标为
45
,则cos α=_________.
14.两个非零向量a ,b 互相垂直,给出下列各式:
①a ·b =0;②a +b =a -b ;③|a +b |=|a -b |; ④|a |2+|b |2=(a +b )2;⑤(a +b )·(a -b )=0.
以上结论正确的是______________(写出所有正确结论的编号). 15.将函数f (x )=sin(ωx +ϕ)(ω>0)的图象向左平移2
π
个单位,若所得的图象与原图象重合,则ω的最
小值是_________.
16.某城市一年中12个月的平均气温与月份x 的关系可近似地用三角函数y =a
+A cos[
6
π
(x -6)](x =1,
2,3,…,12)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值为_____℃.
三、解答题:4小题,共48分;写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分10分)
求(cos 2
20°-12
)·tan10°)的值.
18.(本小题满分10分)
已知函数y =A sin(ωx +ϕ)(A >0,ω>0,0<ϕ<π)最大值是2,最小正周期是
2
π
,直线x =0是其图象
A
α
x
y O
19.(本小题满分14分)
给定两个长度为1的平面向量O A 和OB
,它们的夹角为
120°.如图所示,点C 在以O 为圆心的圆弧 AB 上变动.若
O C xO A yO B =+
,其中x ,y ∈R ,试求x +y 的最大值.
20.(本小题满分14分)
已知函数f (x )=2sin 2
(4
π
+x )-x .
(1)求f (x )的值域;
(2)求f (x )的周期及单调递减区间.
参考答案
二、填空题:本题共4小题,每小题4分,共16分. 13 .3
5-. 14.①③④. 15.4. 16.20.5.
三、解答题:本大题共6小题,共74分.
17.解:原式=12
(2cos 2
20°-1)·
cos1010cos10︒+︒
︒
…………3分
=cos 40sin 40cos10︒︒
︒ …………6分
=sin 802cos 10︒︒ …………9分
=
12
. …………10分
18.解:(A =2,T =
22
π
π
ω
=
,ω=4,∴y =2sin(4x +ϕ). ……………6分
∴2sin(0+ϕ)=±2,即sin ϕ=±1,∵0<ϕ<π,∴ϕ=2
π
, …………8分
∴y =2sin(4x +
2
π
).[或2cos4x ] ……………10分
19.解:设C (cos θ,sin θ),0≤θ≤
23
π, ……………3分
A (1,0),
B (-
12
,
2
), ……………5分
由O C xO A yO B =+ 得,x -12y =cos θ,2
y =sin θ, ……………9分
∴
32
y θ,∴x +y =cos θ+θ=2sin(θ+
6
π
), ……………12分
∴x +y 的最大值是2. ……………14分
20.解:(1)f (x )=1-cos2(4
π+x x =1+sin2x x =1+2sin(2x -3
π
).…5分
∴f (x )的值域为[-1,3]. ……………7分 (2)f (x )的周期T =π.……………9分
由32222
3
2
k x k πππππ+≤-≤+得51112
12
k x k ππ
ππ+≤≤+,………12分
所以f (x )单调增区间是511[,]12
12
k k ππππ+
+
(k ∈Z ). ……………14分。