江苏省盐城市滨海县2016-2017学年七年级第一学期9月月考数学试卷(含解析)

合集下载

2016-2017年江苏省盐城中学九年级(下)第一次月考数学试卷(解析版)

2016-2017年江苏省盐城中学九年级(下)第一次月考数学试卷(解析版)

2016-2017学年江苏省盐城中学九年级(下)第一次月考数学试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.(3分)﹣的倒数是()A.1B.﹣1C.2017D.﹣20172.(3分)下列运算正确的是()A.3a+2a=5a2B.a6÷a2=a3C.(﹣3a3)2=9a6D.(a+2)2=a2+43.(3分)2016年盐城全市地区生产总值达到4576亿元,457600000000用科学记数法可表示为()A.4.576×1011B.4.576×1010C.45.76×1010D.0.4576×10124.(3分)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68B.67、67C.68、68D.68、675.(3分)已知方程3x2﹣4x﹣5=0的两个实数根分别为x1,x2.则x1+x2等于()A.1B.3C.﹣D.6.(3分)用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所求的b个正六边形,则的值为()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)7.(3分)的算术平方根是.8.(3分)因式分解:ax2﹣4axy+4ay2=.9.(3分)在函数y=中,自变量x的取值范围是.10.(3分)甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是,,那么甲、乙两人成绩较为稳定的是.11.(3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是.12.(3分)二次函数y=x2﹣4x+1的顶点坐标为.13.(3分)不等式组的整数解是.14.(3分)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′.已知BB′=2OB′,则△A′B′C′与△ABC的面积比为.15.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD=20,DA=10,则BD的长为.16.(3分)如图,在直角坐标系xOy中,直线l:y=﹣x+b交x轴,y轴于点E,F,点B的坐标是(3,3),过点B分别作x轴,y轴的垂线,垂足为A,C,点G是线段CO的动点,以BG为对称轴,作与△BCG成对称的△BC′G.当点G由C到O的运动过程中,直线l经过点A时,线段BC′扫过的图形与△OAF重叠部分的周长是.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:﹣|﹣5|+()﹣1.18.(6分)解方程:x﹣2=x2﹣4.19.(8分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.20.(8分)如图,AB,CD相交于点O,AB=CD,(1)请你添加一个条件使得△AOB≌△COD.(2)证明你的结论.21.(8分)新学期开学时,某中学对初一年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作了如下不完整的图表:请根据上述统计图表,解答下列问题:(1)在表中,a=,b=,c=;(2)补全频数直方图;(3)如果测试成绩不低于80分者为“优秀”,请你估计全校初一年级的3000名学生中,“优秀”等次的学生约有多少人?22.(10分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.23.(10分)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)24.(10分)某地2014年为做好“精准扶贫”工作,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年基础上增加投入1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于600万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每户每天补助5元,按租房400天计算,试求2016年该地至少有多少户享受到优先搬迁租房奖励?25.(10分)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点D在射线BA上,且BC2=AB•BE①若tan∠ACD=,BC=10,求CE的长.②试判定直线CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.26.(12分)定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为1时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.(1)若P(1,1),Q(4,1).①在点A(0,2),B(,3),C(1,0)中,PQ的“等高点”是(填字母);②若点M为PQ的“等高点”,求PQ的“等高距离”的最小值及此时点M的坐标.(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,试求此时点Q的坐标.27.(14分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P在抛物线上且位于x 轴上方.(1)如图1,若P(,),B(1,0)①求抛物线的解析式;②如图2,连接PC,PB,求四边形COBP的面积.③若点D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图3,已知直线P A,PB与y轴分别交于F,E两点,当点P运动时,是否为定值?若是,求出该定值,若不是,请说明理由.2016-2017学年江苏省盐城中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.(3分)﹣的倒数是()A.1B.﹣1C.2017D.﹣2017【解答】解:﹣的倒数是﹣2017;故选:D.2.(3分)下列运算正确的是()A.3a+2a=5a2B.a6÷a2=a3C.(﹣3a3)2=9a6D.(a+2)2=a2+4【解答】解:A、3a+2a=5a,故A错误;B、a6÷a2=a4,故B错误;C、(﹣3a3)2=9a6,故C正确;D、(a+2)2=a2+4a+4,故D错误.故选:C.3.(3分)2016年盐城全市地区生产总值达到4576亿元,457600000000用科学记数法可表示为()A.4.576×1011B.4.576×1010C.45.76×1010D.0.4576×1012【解答】解:457600000000用科学记数法可表示为4.576×1011,故选:A.4.(3分)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68B.67、67C.68、68D.68、67【解答】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68.故选:C.5.(3分)已知方程3x2﹣4x﹣5=0的两个实数根分别为x1,x2.则x1+x2等于()A.1B.3C.﹣D.【解答】解:∵方程3x2﹣4x﹣5=0的两个实数根分别为x1,x2,∴x1+x2=.故选:D.6.(3分)用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所求的b个正六边形,则的值为()A.B.C.D.【解答】解:由题意可得,3+(a﹣1)×2=m,6+(b﹣1)×5=m,∴3+(a﹣1)×2=6+(b﹣1)×5,化简,得=,故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)7.(3分)的算术平方根是.【解答】解:∵的平方为,∴的算术平方根为.故答案为.8.(3分)因式分解:ax2﹣4axy+4ay2=a(x﹣2y)2.【解答】解:原式=a(x2﹣4xy+4y2)=a(x﹣2y)2.故答案是:a(x﹣2y)2.9.(3分)在函数y=中,自变量x的取值范围是x≥﹣4且x≠0.【解答】解:由题意得,x+4≥0且x≠0,解得x≥﹣4且x≠0.故答案为:x≥﹣4且x≠0.10.(3分)甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是,,那么甲、乙两人成绩较为稳定的是甲.【解答】解:∵他们的平均成绩相同,方差分别是,,∴S甲2<S乙2,∴成绩较稳定的同学是甲.故答案为:甲.11.(3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是.【解答】解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率=;故答案为:.12.(3分)二次函数y=x2﹣4x+1的顶点坐标为(2,﹣3).【解答】解:∵y=x2﹣4x+1=(x﹣2)2﹣3,∴其顶点坐标为(2,﹣3),故答案为:(2,﹣3).13.(3分)不等式组的整数解是4.【解答】解:解不等式①得x>3;解不等式②得x<5,故不等式组的解集是:3<x<5,因而不等式组的整数解是:4.故答案为:4.14.(3分)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′.已知BB′=2OB′,则△A′B′C′与△ABC的面积比为1:9.【解答】解:∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△ABC∽△A′B′C′,∵BB′=2OB′,∴=,∴△A′B′C′与△ABC的面积比为1:9,故答案为:1:9.15.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD=20,DA=10,则BD的长为4.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=6,BC=8,∴AC2=AB2+BC2=100,∵CD=20,AD=10,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴===,∴CM=2AB=12,DM=2BC=16,∴BM=BC+CM=20,∴BD==4.故答案为:4.16.(3分)如图,在直角坐标系xOy中,直线l:y=﹣x+b交x轴,y轴于点E,F,点B的坐标是(3,3),过点B分别作x轴,y轴的垂线,垂足为A,C,点G是线段CO 的动点,以BG为对称轴,作与△BCG成对称的△BC′G.当点G由C到O的运动过程中,直线l经过点A时,线段BC′扫过的图形与△OAF重叠部分的周长是π﹣.【解答】解:∵A(3,0),∴代入直线AF的解析式为:y=﹣x+b,∴b=,则直线AF的解析式为:y=﹣x+,∴∠OAF=30°,∠BAF=60°,故∠BAC′=60°,∵在点D由C到O的运动过程中,BC′扫过的图形是扇形,∴当D与O重合时,点C′与A重合,且BC′扫过的图形与△OAF重合部分是弓形当C′在直线y=﹣x+上时,BC′=BC=AB,∠BAC′=60°,∴△ABC′是等边三角形,这时∠ABC′=60°,∴重叠部分的面积是:﹣×32=π﹣;故答案为=π﹣.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:﹣|﹣5|+()﹣1.【解答】解:原式=9﹣1﹣5+2=5.18.(6分)解方程:x﹣2=x2﹣4.【解答】解:x﹣2=x2﹣4.(x﹣2)(x+2﹣1)=0(x﹣2)(x+1)=0解得:x1=2,x2=﹣1.19.(8分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.20.(8分)如图,AB,CD相交于点O,AB=CD,(1)请你添加一个条件使得△AOB≌△COD.(2)证明你的结论.【解答】解:(1)添加条件:∠A=∠C;(2)证明:在△AOB和△COD中,∵,∴△AOB≌△COD(AAS).21.(8分)新学期开学时,某中学对初一年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作了如下不完整的图表:请根据上述统计图表,解答下列问题:(1)在表中,a=0.1,b=0.3,c=18;(2)补全频数直方图;(3)如果测试成绩不低于80分者为“优秀”,请你估计全校初一年级的3000名学生中,“优秀”等次的学生约有多少人?【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵3000×(0.3+0.2)=3000×0.5=1500,即“优秀”等次的学生约有1500人.22.(10分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【解答】解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:=.23.(10分)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【解答】解:他的这种坐姿不符合保护视力的要求,理由:如图2所示:过点B作BD⊥AC于点D,∵BC=30cm,∠ACB=53°,∴sin53°==≈0.8,解得:BD=24,cos53°=≈0.6,解得:DC=18,∴AD=22﹣18=4(cm),∴AB===<,∴他的这种坐姿不符合保护视力的要求.24.(10分)某地2014年为做好“精准扶贫”工作,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年基础上增加投入1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于600万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每户每天补助5元,按租房400天计算,试求2016年该地至少有多少户享受到优先搬迁租房奖励?【解答】1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.25.(10分)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点D在射线BA上,且BC2=AB•BE①若tan∠ACD=,BC=10,求CE的长.②试判定直线CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.【解答】解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)①∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.26.(12分)定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为1时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.(1)若P(1,1),Q(4,1).①在点A(0,2),B(,3),C(1,0)中,PQ的“等高点”是A、C(填字母);②若点M为PQ的“等高点”,求PQ的“等高距离”的最小值及此时点M的坐标.(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,试求此时点Q的坐标.【解答】解:(1)①∵P(1,1),Q(4,1),∴在点A(0,2),C(1,0)到PQ的距离为1.∴PQ的“等高点”是A、C,故答案为:A、C;②如图1,当M在x轴上时,作点P关于x轴的对称点P′,连接P′Q,P′Q与x轴的交点即为“等高点”M,此时“等高距离”最小,最小值为线段P′Q的长.∵P(1,1),∴P′(1,﹣1).设直线P′Q的表达式为y=kx+b,根据题意,有,解得.∴直线P′Q的表达式为y=x﹣.当y=0时,解得x=.∴M(,0),根据题意,可知PP′=2,PQ=3,PQ⊥PP′,∴P′Q==.∴“等高距离”最小值为,当点M在直线y=2上时,同法可得点M的坐标为(,2)时,“等高距离”最小值为.(2)如图2,过PQ的“等高点”M作MN⊥PQ于点N,∴PQ=2,MN=1.设PN=x,则NQ=2﹣x,在Rt△MNP和Rt△MNQ中由勾股定理得:MP2=12+x2=1+x2,MQ2=12+(2﹣x)2=x2﹣4x+5,∴MP2+MQ2=2x2﹣4x+6=2(x﹣1)2+4,∵MP2+MQ2≤(MP+MQ)2,∴当MP2+MQ2最小时MP+MQ也最小,此时x=1,即PN=NQ,∴△MPQ、△MNQ都是等腰直角三角形,∴Q(,),当Q在第二象限时,Q(﹣,)综上所述,Q(,)或Q(﹣,).27.(14分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P在抛物线上且位于x 轴上方.(1)如图1,若P(,),B(1,0)①求抛物线的解析式;②如图2,连接PC,PB,求四边形COBP的面积.③若点D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图3,已知直线P A,PB与y轴分别交于F,E两点,当点P运动时,是否为定值?若是,求出该定值,若不是,请说明理由.【解答】解:(1)①将P(,),B(1,0)代入y=ax2+c,,解得﹣1,抛物线的解析式为y=﹣x2+1,②对于抛物线y=﹣x2+1,令x=0得y=1,令y=0得x=±1,∴A(﹣1,0),B(1,0),C(0,1),∴S四边形COPB=S△POC+S△POB=×1×+×1×=.③如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,∴D与P关于y轴对称,∵P(,),∴D(﹣,);当点D′在OP右侧时,延长PD′交x轴于点G.作PH⊥OB于点H,则OH=,PH=∵∠DPO=∠POB,∴PG=OG.设OG=x,则PG=x,HG=x﹣.在Rt△PGH中,由x2=(x﹣)2+()2得x=.∴点G(,0).∴直线PG的解析式为y=﹣x+,解方程组得或.∵P(1,﹣3),∴D(,﹣).∴点D的坐标为(﹣,)或(,﹣).(2)点P运动时,是定值,定值为2,理由如下,作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.∵PQ∥OF,∴=,∴OF==﹣==amt+at2.同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴=2.。

江苏省盐城市响水实验、一中2016-2017学年七年级上学期第一次学期检测数学试题(原卷版)

江苏省盐城市响水实验、一中2016-2017学年七年级上学期第一次学期检测数学试题(原卷版)

江苏省盐城市响水实验、一中2016-2017学年七年级上学期第一次学期检测数学试题一、精心选一选:(每题3分,共30分)1. -5的相反数是()A. -5B. 5C.D. ±52. 下列结论不正确的是()A. 有理数包括正数和负数B. 无限不循环小数叫做无理数C. 0是自然数D. 互为相反数通常是原点两侧的数3. 计算(-1)2017的结果是()A. 2017B. -2017C. -1D. 14. 2015年响水县某天最高气温为8℃,最低气温为-3℃,那么这天的最高气温比最低气温高()A. -11℃B. -7℃C. 7℃D. 11℃5. 在下列数﹣,+1,6.7,﹣15,0,,﹣1,25%中,属于整数的有()A. 2个B. 3个C. 4个D. 5个6. 下列各对数:+(﹣6)与﹣6,+(+6)与+6,﹣(﹣6)与+(﹣6),﹣(+6)与+(﹣6),+(+6)与﹣(﹣6),+6与﹣6中,互为相反数的有()A. 0对B. 1对C. 2对D. 3对7. 若x的相反数是2,|y|=6,则x+y的值为()A. -8B. 4C. 8或4D. -8或48. 将6-(+3)-(-7)+(-2)写成省略加号的和的形式为()A. -6-3+7-2B. 6-3-7-2C. 6-3+7-2D. 6+3-7-29. 如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A. -2B. -3C. -4D. 010. 如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2016将与圆周上的哪个数字重合()A. 0B. 1C. 2D. 3二、细心填一填:(每空2分,共30分)11. —的倒数是_________,相反数是:_________12. 如果向北走5米记为是+5米,那么向南走10米记为_______________。

【月考试卷】江苏盐城市滨海县2018-2019学年七年级9月月考数学试题(含答案)

【月考试卷】江苏盐城市滨海县2018-2019学年七年级9月月考数学试题(含答案)

初一数学阶段性调研试卷亲爱的同学们,你们从小学生成为初中生已经有一个多月了,你感觉到生活、学习的不同吗?第一次参加中学生考试希望你仔细思考,认真作答,静心尽力,展示自己。

祝福你,明天学习更好! (考试时间100分钟,总分150分)一、选择题(下面每题给出的四个选项中, 只有一个是正确的。

每题3分,计30分) 1、下面比-2小的数 ( )A 、-3B 、0C 、-1D 、52、下列各数中,最大的数是( ) A .2- B .0 C .12D .3 3、如果()2()03+-=,则“()”内应填的有理数是( )A .32B .23C .23-D .32-4、有一种记分方法:以80分为准,88分记为+8分,某同学得74分,则应记为( ) A 、+74分 B 、—74分 C 、+6分 D 、—6分5.下列说法不正确的....是 ( ) A .0既不是正数,也不是负数 B .1是绝对值最小的正数 C .一个有理数不是整数就是分数 D .0的绝对值是06.下列各式正确的...是 ( ) A .3--=3 B .+(-3)=3 C .-(-3)=3 D .-(-3)=-37、下列比较大小正确的...是 ( ) A .(9)(9)--<+- B . 3144-<- C .108--> D .22()33--=--8、两个数的和为正数,那么这两个数是 ( )A.都是正数B.都是负数C.一正一负D.至少有一个为正数9、几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是( ) A.28 B.33 C.45 D.5710.数轴上表示整数的点称为整点,某数轴的单位长度为1㎝,若在数轴上画出一条长2013㎝的线段AB ,则AB 盖住的整点个数是 ( )A .2013或2014B .2012或2013C .2014D .2013二、填空题(每题3分,计30分) 11、3的相反数为________12、如果一个数的绝对值为3,那么这个数为 。

2016——2017 学年第一学期教学质量检测七年级数学试题及答案

2016——2017 学年第一学期教学质量检测七年级数学试题及答案

2016——2017学年第一学期教学质量检测七年级数学试卷说明:本试卷考试时间90分钟,满分100分,答题必须在答题卷上作答,在试题卷上作答无效。

第一部分选择题一、选择题:(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.2-的相反数是()A .2B .12-C .2-D .122.2015年10月29日,中共十八届五中全会公报决定,实施普遍二孩政策,中国从1980年开始,推行了35年的城镇人口独生子女政策真正宣告终结。

“未来中国人口会不会突破15亿?”是政策调整决策中的重要考量,“经过高、中、低方案反复测算,未来中国人口不会突破。

”15亿用科学计数法表示为()A .81510⨯B .8510⨯C .91.510⨯D .91.53.下列调查方式合适的是()A .为了了解冰箱的使用寿命,采用普查的方式B .为了了解全国中学生的视力状况,采用普查的方式C .为了了解人们保护水资源的意识,采用抽样调查的方式D .对“神舟十一号载人飞船”零部件的检查,采用抽样调查的方式4.下列各组代数式中,不是同类项的是()A .22x y 和2yx -B .33-和3C .2ax 和2a xD .3xy 和2xy -5.若从n 边形的一个顶点出发,最多可以引()条对角线A .n B .1n -C .2n -D .3n -6.有理数a 、b 在数轴上的位置如图,则下列各式不成立的是()A .0a b +>B .0a b ->C .b a>D .0ab <7.下面说法,错误的是()A .一个平面截一个球,得到的截面一定是圆B .一个平面截一个正方体,得到的截面可以是五边形C .棱柱的截面不可能是圆D .下边甲、乙两图中,只有乙才能折成正方体8.某件产品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该件产品的进货价为()A .80元B .85元C .90元D .95元9.方程()1230a a x --+=是关于x 的一元一次方程,则a =()A .2B .2-C .1±D .2±10.下列说法正确的是()A .长方形的长是a 米,宽比长短25米,则它的周长可表示为()225a -米B .6h 表示底为6,高为h 的三角形面积C .10a b +表示一个两位数,它的个位数字是a ,十位数字是bD .甲、乙两人分别从相距40千米的两地同时相向出发,其行走的速度分别为3千米/小时和5千米/小时,经过x 小时相遇,则可列方程式为3540x x +=11.关于x 、y 的代数式()()33981kxy y xy x -++-+中不含有二次项,则k =()A .3B .13C .4D .1412.已知3a =,216b =;且a b a b +≠+,则代数式a b -的值为()A .1或7B .1或7-C .1-或7-D .±1或±7第二部分非选择题二、填空题:(本题共4小题,每小题3分,共12分)13.比较大小:8-________9-(填“<”、“=”、“>”).14.若1a b -=,则代数式()2a b --的值是________.15.在时钟的钟面上,九点半的时针与分针的夹角是________.16.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112--=,1-的差倒数是()11112--=,已知113a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,则2015a =________.三、解答题:(本题共7小题,其中第17题11分,第18题8分,第19题6分,第20题6分,第21题6分,第22题7分,第23题8分,共52分)17.计算:(1)(本题3分)()137********⎛⎫--+⨯- ⎪⎝⎭(2)(本题3分)()()()324224⎡⎤-⨯-÷---⎣⎦(3)(本题5分)先化简,再求值:22221223333x x xy y x ⎛⎫--+-- ⎪⎝⎭,其中2x =,1y -=.18.(每小题4分,共8分)解方程:(1)()52323x x ---=(2)34153x x ---=19.(本题6分)校学生会体育部为更好的的开展同学们课外体育活动,现对学生最喜欢的一项球类运动进行了随机抽样调查,根据调查的结果绘制成如图2-①和图2-②所示的两幅不完整统计图,其中A .喜欢篮球B .喜欢足球C .喜欢乒乓球D .喜欢排球。

2017-2018年江苏省盐城市滨海县七年级(下)期中数学试卷(解析版)

2017-2018年江苏省盐城市滨海县七年级(下)期中数学试卷(解析版)

C.(ab)3=a3b3 D.(a3)4=a7
3.(3 分)下列等式从左到右的变形,属于因式分解的是( )
A.a(x﹣y)=ax﹣ay
B.x2+2x+1=x(x+2)+1
C.(x+1)(x+3)=x2+4x+3
D.x3﹣x=x(x+1)(x﹣1)
4.(3 分)下列各组长度的 3 条线段,不能构成三角形的是( )
°,∠O=
°;
(2)探索∠A 与∠O 的数量关系,并说明理由;
(3)若 AB∥CO,AC⊥BO,求∠ACB 的度数.
第 4 页(共 20 页)
27.(12 分)已知,AB∥CD,点 E 为射线 FG 上一点.
(1)如图 1,若∠EAF=30°,∠EDG=40°,则∠AED=
°;
(2)如图 2,当点 E 在 FG 延长线上时,此时 CD 与 AE 交于点 H,则∠AED、∠
2017-2018 学年江苏省盐城市滨海县七年级(下)期中数学试卷
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分 1.(3 分)观察下列图案,在 A、B、C、D 四幅图案中,能通过图案(1)平移得
到的是( )
A.
B.
C.
D.
2.(3 分)下列计算正确的是( )
A.a2+a2=a4
B.3a﹣2a=1
第 5 页(共 20 页)
第 6 页(共 20 页)
2017-2018 学年江苏省盐城市滨海县七年级(下)期中数 学试卷
7.(3 分)已知 2x=43,则 x 的值为( )
A.3
B.4
C.6
D.8
8.(3 分)若 x2+4x+k 是一个完全平方式,则常数 k 的值为( )

2016-2017年江苏省盐城市滨海县初三上学期期末数学试卷及参考答案

2016-2017年江苏省盐城市滨海县初三上学期期末数学试卷及参考答案

2016-2017学年江苏省盐城市滨海县初三上学期期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合題目要求的,请将正确选项前的字母代号填涂在答题卡相应位上.)1.(3分)抛物线y=﹣2x2+3的开口方向()A.向下B.向左C.向上D.向右2.(3分)方程x2=5x的根是()A.x=5B.x=0C.x1=0,x2=5D.x1=0,x2=﹣5 3.(3分)已知a=2厘米,b=10毫米,那么的值为()A.B.C.2D.4.(3分)在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,45.则这组数据的极差为()A.2B.4C.6D.85.(3分)抛物线y=2x2向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为()A.y=2(x+1)2+3B.y=2(x+1)2﹣3C.y=2(x﹣1)2﹣3D.y=2(x﹣1)2+36.(3分)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°7.(3分)如图,如果AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=8.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.(3分)二次函数y=(x﹣5)2+7的最小值是.10.(3分)已知x1、x2是一元二次方程x2﹣2x+1=0的两个根,则2x1+2x2=.11.(3分)已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c=cm.12.(3分)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为.13.(3分)如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是.14.(3分)如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为米.15.(3分)如图,在平行四边形ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为.16.(3分)如图,⊙O的切线PC交直径AB的延长线于点P,C为切点,若∠P=30°,⊙O的半径为1,则PB的长为.17.(3分)如图,在平面直角坐标系xOy中,△ABC与△A′B′C′的顶点的横、纵坐标都是整数.若B(5,2),△ABC与△A′B′C′是位似图形,则位似中心的坐标是.18.(3分)滨海宾馆门前的圆形喷水池的水柱(如图①),如果曲线APB表示落点B离点O最远的一条水流(如图②),其上的水珠的高度y(米)关于水平距离x(米)的函数表达式为y=﹣x2+2x+,那么圆形水池的半径至少为米时,才能使喷出的水流不落在水池外.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步.19.(8分)解下列方程:(1)(x﹣1)2=4(2)x2﹣4x﹣12=020.(8分)某校2016届九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如下:九(1)班:92,93,93,93,93,93,97,98,98,100九(2)班:91,93,93,93,96,97,97,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100a b937.6九(2)班9995.596.5c 6.85(1)表中a=,b=,c=;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)斑的成绩要好,请给出两条支持九(2)班成绩好的理由.21.(8分)已知:如图,AB是⊙O的直径,弦,∠B=60°,OD⊥AC,垂足为D.(1)求OD的长;(2)求劣弧AC的长.22.(8分)已知关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1、x2,且2x1•x2=m2﹣3,求实数m的值.23.(10分)如图,已知在△ABC中,DE∥BC,EF∥AB,AE=2CE,AD=4,BC=9.求:(1)BD和DE的长度.(2)四边形BDEF的周长.24.(10分)已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点的坐标为A(﹣1,0),与y轴的交点的坐标为C(0,﹣3).(1)求此二次函数的解析式;(2)求此二次函数的图象与x轴的另一个交点B的坐标;(3)根据图象回答:当x取何值时,y<0;(4)连接AC、BC,求△ABC的面积.25.(10分)九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,那么选派到的代表是A的概率是;(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.26.(10分)某商场代理销售某品牌的玩具车,其进价是20元/台.若以40元/台的价格销售,则每天可售出20台;若以30元/台的价格销售,则每天可售出70台.通过调查验证,发现每天的销售量y(台)与销售价x(元/台)之间存在一次函数关系.若供货商规定这种玩具车的售价不能低于25元/台,代理销售商每天要完成不低于65台的销售任务.(1)试确定每天的销售量y(台)与销售价x(元/台)之间的函数关系式;并求出自变量x的取值范围.(2)设商场每天销售这种玩具车所获得的利润为w(元),请写出w与x之间的函数关系式;(3)当售价x(元/台)定为多少时,商场每天销售这种玩具车所获得的利润w (元)最大?最大利润是多少?27.(12分)如图,在平面直角坐标系中,点A(0,4),点M是x轴正半轴上的一个动点,连结AM,取AM的中点C,将线段MC绕着点M按顺时针方向旋转90°,得到线段MB.过点M作x轴的垂线交直线AB于点N.设M坐标是(t,0)(1)当t=2时,求直线AM的函数表达式;(2)当t=3时,求点B的坐标及四边形AOMB的面积;(3)是否存在点M,使△AMN是以AM为底的等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.28.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A(﹣3,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的函数表达式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDBN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.2016-2017学年江苏省盐城市滨海县初三上学期期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合題目要求的,请将正确选项前的字母代号填涂在答题卡相应位上.)1.(3分)抛物线y=﹣2x2+3的开口方向()A.向下B.向左C.向上D.向右【解答】解:∵a=﹣2<0,∴抛物线的开口向下,故选:A.2.(3分)方程x2=5x的根是()A.x=5B.x=0C.x1=0,x2=5D.x1=0,x2=﹣5【解答】解:把方程移项得,x2﹣5x=0即x(x﹣5)=0,解得x1=0,x2=5.故选:C.3.(3分)已知a=2厘米,b=10毫米,那么的值为()A.B.C.2D.【解答】解:∵a=2厘米,b=10毫米=1厘米,∴=2.故选:C.4.(3分)在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,45.则这组数据的极差为()A.2B.4C.6D.8【解答】解:∵46,44,45,42,48,46,47,45中,最大的数是48,最小的数是42,∴这组数据的极差为48﹣42=6,故选:C.5.(3分)抛物线y=2x2向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为()A.y=2(x+1)2+3B.y=2(x+1)2﹣3C.y=2(x﹣1)2﹣3D.y=2(x﹣1)2+3【解答】解:由“左加右减、上加下减”的原则可知,把抛物线y=2x2的图象向左平移1个单位,再向下平移3个单位,则平移后的抛物线的表达式为y=2(x+1)2﹣3.故选:B.6.(3分)如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC等于()A.30°B.60°C.90°D.45°【解答】解:∵△ABC正三角形,∴∠A=60°,∴∠BPC=60°.故选:B.7.(3分)如图,如果AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=【解答】解:连接AF,交CD于H,∵AB∥CD∥EF,∴=,A错误;=,B正确;C错误;=,D错误;故选:B.8.(3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()A.B.C.D.【解答】解:根据勾股定理,AB==2,BC==,AC==,所以△ABC的三边之比为:2:=1:2:,A、三角形的三边分别为2,=,=3,三边之比为2::3=::3,故A选项错误;B、三角形的三边分别为2,4,=2,三边之比为2:4:2=1:2:,故B选项正确;C、三角形的三边分别为2,3,=,三边之比为2:3:,故C选项错误;D、三角形的三边分别为=,=,4,三边之比为::4,故D选项错误.故选:B.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.)9.(3分)二次函数y=(x﹣5)2+7的最小值是7.【解答】解:∵二次函数y=(x﹣5)2+7中a=1>0,∴当x=5时,y取得最小值7,故答案为:7.10.(3分)已知x1、x2是一元二次方程x2﹣2x+1=0的两个根,则2x1+2x2=4.【解答】解:∵x1、x2是一元二次方程x2﹣2x+1=0的两个根,∴x1+x2=2,则2x1+2x2=2(x1+x2)=4,故答案为:4.11.(3分)已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c=6cm.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得:x=±6,(线段是正数,负值舍去),则线段c=6cm;故答案为:6.12.(3分)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为(﹣2,﹣2).【解答】解:∵x=﹣3、x=﹣1时的函数值都是﹣3,相等,∴函数图象的对称轴为直线x=﹣2,顶点坐标为(﹣2,﹣2).故答案为:(﹣2,﹣2).13.(3分)如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是.【解答】解:观察这个图可知:黑白石子的面积相等,即其概率相等,各占.14.(3分)如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为9米.【解答】解:∵DE∥AB,DF∥AC,∴△DEF∽△ABC,∴=,即=,∴AC=6×1.5=9米.故答案为:9.15.(3分)如图,在平行四边形ABCD中,E是AB的中点,EC交BD于点F,则△BEF与△DCF的面积比为1:4.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∵E是AB的中点,∴BE=AB=CD;∵BE∥CD,∴△BEF∽△DCF,∴△BEF与△DCF的面积比=,故答案为:1:4.16.(3分)如图,⊙O的切线PC交直径AB的延长线于点P,C为切点,若∠P=30°,⊙O的半径为1,则PB的长为1.【解答】解:如图:连接OC∵PC是⊙O的切线,点C是切点∴OC⊥PC∵∠P=30°,OC⊥PC∴OP=2OC=2×1=2∵BP=OP﹣OB∴BP=2﹣1=1故答案为117.(3分)如图,在平面直角坐标系xOy中,△ABC与△A′B′C′的顶点的横、纵坐标都是整数.若B(5,2),△ABC与△A′B′C′是位似图形,则位似中心的坐标是(8,0).【解答】解:直线AA′与直线BB′的交点坐标为(8,0),所以位似中心的坐标为(8,0).故答案为:(8,0)18.(3分)滨海宾馆门前的圆形喷水池的水柱(如图①),如果曲线APB表示落点B离点O最远的一条水流(如图②),其上的水珠的高度y(米)关于水平距离x(米)的函数表达式为y=﹣x2+2x+,那么圆形水池的半径至少为米时,才能使喷出的水流不落在水池外.【解答】解:当y=0时,即﹣x2+2x+=0,解得x1=,x2=﹣(舍去).答:水池的半径至少米时,才能使喷出的水流不落在水池外.故答案为:.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步.19.(8分)解下列方程:(1)(x﹣1)2=4(2)x2﹣4x﹣12=0【解答】解:(1)x﹣1=±2∴x=﹣1或x=3(2)(x﹣6)(x+2)﹣0,x=﹣2或x=620.(8分)某校2016届九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如下:九(1)班:92,93,93,93,93,93,97,98,98,100九(2)班:91,93,93,93,96,97,97,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100a b937.6九(2)班9995.596.5c 6.85(1)表中a=95,b=93,c=93;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)斑的成绩要好,请给出两条支持九(2)班成绩好的理由.【解答】解:(1)a=(92+93+93+93+93+93+97+98+98+100)=95、b==93;∵93出现了3次,出现的次数最多,∴众数c是93,故答案为:95、93、93;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;故支持九(2)班成绩好.21.(8分)已知:如图,AB是⊙O的直径,弦,∠B=60°,OD⊥AC,垂足为D.(1)求OD的长;(2)求劣弧AC的长.【解答】解:(1)∵AB是⊙O的直径,∴∠C=90°,又∵OD⊥AC,∴AD=CD=,∠ADO=90°,∵∠B=60°∴∠A=30°,在Rt△AOD中,OA=2,OD=1;(2)连接OC,则∠AOC=120°,∴的长l===.22.(8分)已知关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1、x2,且2x1•x2=m2﹣3,求实数m的值.【解答】解:(1)∵方程有两个不相等的实数根,∴b2﹣4ac=1﹣4m>0,即m<;(2)由根与系数的关系可知:x1•x2=m,∴2m=m2﹣3,整理得:m2﹣2m﹣3=0,解得:m=﹣1或m=3,∵m<,∴所求m的值为﹣1.23.(10分)如图,已知在△ABC中,DE∥BC,EF∥AB,AE=2CE,AD=4,BC=9.求:(1)BD和DE的长度.(2)四边形BDEF的周长.【解答】解:(1)∵DE∥BC,∴,∵AE=2CE,∴,∵AD=4,∴BD=2,∵DE∥BC,∴△ADE∽△ABC,∴,∵BC=9,∴DE=6;(2)∵EF∥AB,DE∥BC∴四边形BDEF是平行四边形,∴BD=EF=2,DE=BF=6,∴四边形BDEF的周长2(2+6)=16.24.(10分)已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点的坐标为A(﹣1,0),与y轴的交点的坐标为C(0,﹣3).(1)求此二次函数的解析式;(2)求此二次函数的图象与x轴的另一个交点B的坐标;(3)根据图象回答:当x取何值时,y<0;(4)连接AC、BC,求△ABC的面积.【解答】解:(1)由二次函数y=x2+bx+c的图象经过(﹣1,0)和(0,﹣3)两点,得,解得.则抛物线的解析式为y=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,或y=(x﹣3)(x+1),则该抛物线与x轴的交点坐标是:A(﹣1,0),B(3,0);(3)根据图象知,当x<﹣1或x>3时,y<0;(4)∵A(﹣1,0),B(3,0),C(0,﹣3),∴AB=4,OC=3,∴△ABC的面积是:AB•OC=×4×3=6.25.(10分)九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛.(1)如果选派一位学生代表参赛,那么选派到的代表是A的概率是;(2)如果选派两位学生代表参赛,求恰好选派一男一女两位同学参赛的概率.【解答】解:(1)∵九年级(1)班现要从A、B两位男生和D、E两位女生中,选派学生代表本班参加全校“中华好诗词”大赛,∴如果选派一位学生代表参赛,那么选派到的代表是A的概率是:;故答案为:;(2)画树状图得:∵共有12种等可能的结果,恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.26.(10分)某商场代理销售某品牌的玩具车,其进价是20元/台.若以40元/台的价格销售,则每天可售出20台;若以30元/台的价格销售,则每天可售出70台.通过调查验证,发现每天的销售量y(台)与销售价x(元/台)之间存在一次函数关系.若供货商规定这种玩具车的售价不能低于25元/台,代理销售商每天要完成不低于65台的销售任务.(1)试确定每天的销售量y(台)与销售价x(元/台)之间的函数关系式;并求出自变量x的取值范围.(2)设商场每天销售这种玩具车所获得的利润为w(元),请写出w与x之间的函数关系式;(3)当售价x(元/台)定为多少时,商场每天销售这种玩具车所获得的利润w (元)最大?最大利润是多少?【解答】解:(1)设y(台)与销售价x(元/台)之间的函数关系为:y=kx+b,根据题意可得:,解得:.则y=﹣5x+220,由题意得,解得25≤x≤31.故y(台)与销售价x(元/台)之间的函数关系为:y=﹣5x+220(25≤x≤31);(2)w=(x﹣20)(﹣5x+220),w=﹣5x2+320x﹣4400,∴w与x之间的函数关系式为w=﹣5x2+320x﹣4400(25≤x≤31);(3)w=(x﹣20)(﹣5x+220),w=﹣5(x﹣32)2+720,∵25≤x≤31,当x<32时,y随x的增大而增大,=﹣5×(31﹣32)2+720=715,∴当x=31时,y最大∴当售价x(元/台)定为31元/台时,商场每天销售这种玩具车所获得的利润w (元)最大,最大利润是715元.27.(12分)如图,在平面直角坐标系中,点A(0,4),点M是x轴正半轴上的一个动点,连结AM,取AM的中点C,将线段MC绕着点M按顺时针方向旋转90°,得到线段MB.过点M作x轴的垂线交直线AB于点N.设M坐标是(t,0)(1)当t=2时,求直线AM的函数表达式;(2)当t=3时,求点B的坐标及四边形AOMB的面积;(3)是否存在点M,使△AMN是以AM为底的等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)当t=2时,M(2,0),设直线AM的解析式为y=kx+b,把A(0,4)、M(2,0)代入,得:,解得:,∴直线AM的解析式为y=﹣2x+4;(2)过点B作BE⊥x轴于点E,∴∠AOM=∠MEB=90°,又∵∠AMB=90°,∠AMO+∠BME=90°,∠AMO+∠MAO=90°,∴∠BME=∠MAO,∴△AOM∽△MEB,∴===2,∵t=3时OM=3,∴==2,∴BE=、ME=2,∴点B的坐标为(5,),=×3×4+×5×=;∴S四边形AOMB(3)存在,由题意知AN=MN,∵MN∥y轴,∴∠OAM=∠AMN、∠AMN=∠MAN,∴∠OAM=∠MAN,又∵∠AOM=∠AMB=90°,∴△AOM∽△AMB,∴==,∴=,∴t=2,即M(2,0).28.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A(﹣3,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的函数表达式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDBN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.【解答】解:(1)∵抛物线y=ax2﹣2x+c与x轴交于点A(﹣3,0)和点B,与y 轴相交于点C(0,3),∴,得,∴y=﹣x2﹣2x+3=﹣(x+1)2+4,∴该函数的解析式为y=﹣x2﹣2x+3,对称轴是直线x=﹣1,顶点M的坐标为(﹣1,4);(2)如右图1所示,∵点C关于直线l的对称点为N,∴点N(﹣2,3),CN=2,∵直线y=kx+b经过点C、M两点,∴,得,∴y=﹣x+3,∵y=﹣x+3与x轴交于点D,∴点D(0,3),令y=0,则﹣x2﹣2x+3=0,得x1=﹣3,x2=1,即点B(1,0),∴BD=CN=2,又∵BD∥CN,∴四边形ADAN是平行四边形;(3)设点P(﹣1,a),过点P作PH⊥DM于H,连接PB,如右图2所示,则MP=4﹣a,又∵∠HMP=45°,∴HP=BP==,在Rt△BPE中,BP2=BE2+PE2,即,解得,a1=﹣4+2,a2=﹣4﹣2,∴P1(﹣1,﹣4+2),P2(﹣1,﹣4﹣2).。

(新)江苏省盐城市东台市2016_2017学年七年级数学下学期第一次月考试题苏科版

(新)江苏省盐城市东台市2016_2017学年七年级数学下学期第一次月考试题苏科版

所谓的光辉岁月,并不是以后,闪耀的日子,而是无人问津时,你对梦想的偏执。

…………………………密……………封……………线……………内……………不……………准……………答……………题…………………………… 学校班 级姓 名考试号东台市2016--2017学年第二学期月考七年级数学试卷 (考试形式:闭卷 考试时间:100分钟 满分:100分) 题号 一 二 三 总分 1-10 11-20 21 22 23 24 25 26 得分 一、选择题(下列各题所给的答案中,只有一个是正确的,请把你认为正确的选项序号填入相应题后的括号内,本大题10小题,每题3分,共30分。

) 1.如图,∠1和∠2不是同位角的是( ) 2. 如图,∠1与∠2是同旁内角,若∠1=53°,则∠2的大小是( ) A.127° B.53° C.127°或53° D.不能确定 3. 若一个多边形的每一个外角都是30°,则这个多边形的内角和等于( ) A.1440° B.1620° C.1800° D.1980° 4. 在△ABC 中,若∠A :∠B :∠C =3:4:5,则△ABC 的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.都有可能 5. 下列图形中,正确画出钝角△ABC 的边AC 上高的是( )6. 下列运算正确的是( )A. 235·x x x =B. 235()x x =C. 623x x x ÷=D. 55102x x x +=7. 如图,纸片△ABC 中,∠A =55°,∠B =75°,将纸片的一角折叠,使C落在△ABC 内的C 处,则∠1+∠2等于( ) A.130° B.50° C.100° D.260°8. 如图,下列判断正确的是( )A.若∠1=∠2,则AD ∥BCB.若∠1=∠2,则AB ∥CDC.若∠A =∠3,则AD ∥BCD.若∠A+∠ADC =180°,则AD ∥BC9. 已知,4433222,3,5a b c ===那么 a b c 、、的大小关系是( )A. a >b >cB. a <b <cC. c >a >bD. b >c >a10. 若n 为正整数,且27n x =,则3222(3)4()n n x x -的值为( ) A.833 B.2891 C.3283 D.1225二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请在横线上直接写出答案。

2016-2017年江苏省盐城中学九年级(下)第一次月考数学试卷和答案

2016-2017年江苏省盐城中学九年级(下)第一次月考数学试卷和答案

百度文库百度文库精品文库百度文库baiduwenku**本文仅代表作者个人观点,与文库无关本文仅代表作者个人观点,与文库无关2016-2017学年江苏省盐城中学九年级(下)第一次月考数学试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.(3分)﹣的倒数是()A.1B.﹣1C.2017D.﹣20172.(3分)下列运算正确的是()A.3a+2a=5a2B.a6÷a2=a3C.(﹣3a3)2=9a6D.(a+2)2=a2+43.(3分)2016年盐城全市地区生产总值达到4576亿元,457600000000用科学记数法可表示为()A.4.576×1011B.4.576×1010C.45.76×1010D.0.4576×10124.(3分)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68B.67、67C.68、68D.68、675.(3分)已知方程3x2﹣4x﹣5=0的两个实数根分别为x1,x2.则x1+x2等于()A.1B.3C.﹣D.6.(3分)用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所求的b个正六边形,则的值为()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)7.(3分)的算术平方根是.8.(3分)因式分解:ax2﹣4axy+4ay2=.9.(3分)在函数y=中,自变量x的取值范围是.10.(3分)甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是,,那么甲、乙两人成绩较为稳定的是.11.(3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是.12.(分)二次函数y=x2﹣4x+1的顶点坐标为.13.(分)不等式组的整数解是.14.(3分)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′.已知BB′=2OB′,则△A′B′C′与△ABC的面积比为.15.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD=20,DA=,则BD的长为.16.(3分)如图,在直角坐标系xOy中,直线l:y=﹣x+b交x轴,y轴于点E,F,点B的坐标是(3,3),过点B分别作x轴,y轴的垂线,垂足为A,C,点G是线段CO的动点,以BG为对称轴,作与△BCG成对称的△BC′G.当点G由C到O的运动过程中,直线l经过点A时,线段BC′扫过的图形与△OAF重叠部分的周长是.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步分)计算:分)先化简,再求代数式()÷的值,其中°.请根据上述统计图表,解答下列问题:(1)在表中,a=,b=,c=;(2)补全频数直方图;(3)如果测试成绩不低于80分者为“优秀”,请你估计全校初一年级的3000名学生中,“优秀”等次的学生约有多少人?22.(10分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.23.(10分)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)24.(10分)某地2014年为做好“精准扶贫”工作,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年基础上增加投入1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于600万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每户每天补助5元,按租房400天计算,试求2016年该地至少有多少户享受到优先搬迁租房奖励?25.(10分)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点D在射线BA上,且BC2=AB•BE①若tan∠ACD=,BC=10,求CE的长.②试判定直线CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.26.(12分)定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为1时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.(1)若P(1,1),Q(4,1).①在点A(0,2),B(,3),C(1,0)中,PQ的“等高点”是(填字母);②若点M为PQ的“等高点”,求PQ的“等高距离”的最小值及此时点M的坐标.(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,试求此时点Q的坐标.27.(14分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P在抛物线上且位于x 轴上方.(1)如图1,若P(,),B(1,0)①求抛物线的解析式;②如图2,连接PC,PB,求四边形COBP的面积.③若点D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图3,已知直线P A,PB与y轴分别交于F,E两点,当点P运动时,是否为定值?若是,求出该定值,若不是,请说明理由.百度文库百度文库精品文库百度文库baiduwenku**百度文库百度文库精品文库百度文库baiduwenku**2016-2017学年江苏省盐城中学九年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.(3分)﹣的倒数是()A.1B.﹣1C.2017D.﹣2017【解答】解:﹣的倒数是﹣2017;故选:D.2.(3分)下列运算正确的是()A.3a+2a=5a2B.a6÷a2=a3C.(﹣3a3)2=9a6D.(a+2)2=a2+4【解答】解:A、3a+2a=5a,故A错误;B、a6÷a2=a4,故B错误;C、(﹣3a3)2=9a6,故C正确;D、(a+2)2=a2+4a+4,故D错误.故选:C.3.(3分)2016年盐城全市地区生产总值达到4576亿元,457600000000用科学记数法可表示为()A.4.576×1011B.4.576×1010C.45.76×1010D.0.4576×1012【解答】解:457600000000用科学记数法可表示为4.576×1011,故选:A.4.(3分)小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68B.67、67C.68、68D.68、67【解答】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68.故选:C.5.(3分)已知方程3x2﹣4x﹣5=0的两个实数根分别为x1,x2.则x1+x2等于()A.1B.3C.﹣D.【解答】解:∵方程3x2﹣4x﹣5=0的两个实数根分别为x1,x2,∴x1+x2=.故选:D.6.(3分)用m根火柴棒恰好可拼成如图1所示的a个等边三角形或如图2所求的b个正六边形,则的值为()A.B.C.D.【解答】解:由题意可得,3+(a﹣1)×2=m,6+(b﹣1)×5=m,∴3+(a﹣1)×2=6+(b﹣1)×5,化简,得=,故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题纸相应位置上)7.(3分)的算术平方根是.【解答】解:∵的平方为,∴的算术平方根为.故答案为.8.(3分)因式分解:ax2﹣4axy+4ay2=a(x﹣2y)2.【解答】解:原式=a(x2﹣4xy+4y2)=a(x﹣2y)2.故答案是:a(x﹣2y)2.9.(3分)在函数y=中,自变量x的取值范围是x≥﹣4且x≠0.【解答】解:由题意得,x+4≥0且x≠0,解得x≥﹣4且x≠0.故答案为:x≥﹣4且x≠0.10.(3分)甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是,,那么甲、乙两人成绩较为稳定的是甲.【解答】解:∵他们的平均成绩相同,方差分别是,,∴S甲2<S乙2,∴成绩较稳定的同学是甲.故答案为:甲.11.(3分)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是.【解答】解:设圆的面积为6,∵圆被分成6个相同扇形,∴每个扇形的面积为1,∴阴影区域的面积为4,∴指针指向阴影区域的概率=;故答案为:.12.(3分)二次函数y=x2﹣4x+1的顶点坐标为(2,﹣3).【解答】解:∵y=x2﹣4x+1=(x﹣2)2﹣3,∴其顶点坐标为(2,﹣3),故答案为:(2,﹣3).13.(3分)不等式组的整数解是4.【解答】解:解不等式①得x>3;解不等式②得x<5,故不等式组的解集是:3<x<5,因而不等式组的整数解是:4.故答案为:4.14.(3分)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′.已知BB′=2OB′,则△A′B′C′与△ABC的面积比为1:9.【解答】解:∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△ABC∽△A′B′C′,∵BB′=2OB′,∴=,∴△A′B′C′与△ABC的面积比为1:9,故答案为:1:9.15.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD=20,DA=10,则BD的长为4.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=6,BC=8,∴AC2=AB2+BC2=100,∵CD=20,AD=10,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴===,∴CM=2AB=12,DM=2BC=16,∴BM=BC+CM=20,∴BD==4.故答案为:4.16.(3分)如图,在直角坐标系xOy中,直线l:y=﹣x+b交x轴,y轴于点E,F,点B的坐标是(3,3),过点B分别作x轴,y轴的垂线,垂足为A,C,点G是线段CO 的动点,以BG为对称轴,作与△BCG成对称的△BC′G.当点G由C到O的运动过程中,直线l经过点A时,线段BC′扫过的图形与△OAF重叠部分的周长是π﹣.【解答】解:∵A(3,0),∴代入直线AF的解析式为:y=﹣x+b,∴b=,则直线AF的解析式为:y=﹣x+,∴∠OAF=30°,∠BAF=60°,故∠BAC′=60°,∵在点D由C到O的运动过程中,BC′扫过的图形是扇形,∴当D与O重合时,点C′与A重合,且BC′扫过的图形与△OAF重合部分是弓形当C′在直线y=﹣x+上时,BC′=BC=AB,∠BAC′=60°,∴△ABC′是等边三角形,这时∠ABC′=60°,∴重叠部分的面积是:﹣×32=π﹣;故答案为=π﹣.三、解答题(本大题共有11小题,共102分.解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:﹣|﹣5|+()﹣1.【解答】解:原式=9﹣1﹣5+2=5.18.(6分)解方程:x﹣2=x2﹣4.【解答】解:x﹣2=x2﹣4.(x﹣2)(x+2﹣1)=0(x﹣2)(x+1)=0解得:x1=2,x2=﹣1.19.(8分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.20.(8分)如图,AB,CD相交于点O,AB=CD,(1)请你添加一个条件使得△AOB≌△COD.(2)证明你的结论.【解答】解:(1)添加条件:∠A=∠C;(2)证明:在△AOB和△COD中,∵,∴△AOB≌△COD(AAS).21.(8分)新学期开学时,某中学对初一年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作了如下不完整的图表:请根据上述统计图表,解答下列问题:(1)在表中,a=0.1,b=0.3,c=18;(2)补全频数直方图;(3)如果测试成绩不低于80分者为“优秀”,请你估计全校初一年级的3000名学生中,“优秀”等次的学生约有多少人?【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵3000×(0.3+0.2)=3000×0.5=1500,即“优秀”等次的学生约有1500人.22.(10分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【解答】解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:=.23.(10分)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【解答】解:他的这种坐姿不符合保护视力的要求,理由:如图2所示:过点B作BD⊥AC于点D,∵BC=30cm,∠ACB=53°,∴sin53°==≈0.8,解得:BD=24,cos53°=≈0.6,解得:DC=18,∴AD=22﹣18=4(cm),∴AB===<,∴他的这种坐姿不符合保护视力的要求.24.(10分)某地2014年为做好“精准扶贫”工作,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年基础上增加投入1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于600万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天补助8元,1000户以后每户每天补助5元,按租房400天计算,试求2016年该地至少有多少户享受到优先搬迁租房奖励?【解答】1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.25.(10分)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点D在射线BA上,且BC2=AB•BE①若tan∠ACD=,BC=10,求CE的长.②试判定直线CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.【解答】解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)①∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.26.(12分)定义:对于平面直角坐标系xOy中的线段PQ和点M,在△MPQ中,当PQ边上的高为1时,称M为PQ的“等高点”,称此时MP+MQ为PQ的“等高距离”.(1)若P(1,1),Q(4,1).①在点A(0,2),B(,3),C(1,0)中,PQ的“等高点”是A、C(填字母);②若点M为PQ的“等高点”,求PQ的“等高距离”的最小值及此时点M的坐标.(2)若P(0,0),PQ=2,当PQ的“等高点”在y轴正半轴上且“等高距离”最小时,试求此时点Q的坐标.【解答】解:(1)①∵P(1,1),Q(4,1),∴在点A(0,2),C(1,0)到PQ的距离为1.∴PQ的“等高点”是A、C,故答案为:A、C;②如图1,当M在x轴上时,作点P关于x轴的对称点P′,连接P′Q,P′Q与x轴的交点即为“等高点”M,此时“等高距离”最小,最小值为线段P′Q的长.∵P(1,1),∴P′(1,﹣1).设直线P′Q的表达式为y=kx+b,根据题意,有,解得.∴直线P′Q的表达式为y=x﹣.当y=0时,解得x=.∴M(,0),根据题意,可知PP′=2,PQ=3,PQ⊥PP′,∴P′Q==.∴“等高距离”最小值为,当点M在直线y=2上时,同法可得点M的坐标为(,2)时,“等高距离”最小值为.(2)如图2,过PQ的“等高点”M作MN⊥PQ于点N,∴PQ=2,MN=1.设PN=x,则NQ=2﹣x,在Rt△MNP和Rt△MNQ中由勾股定理得:MP2=12+x2=1+x2,MQ2=12+(2﹣x)2=x2﹣4x+5,∴MP2+MQ2=2x2﹣4x+6=2(x﹣1)2+4,∵MP2+MQ2≤(MP+MQ)2,∴当MP2+MQ2最小时MP+MQ也最小,此时x=1,即PN=NQ,∴△MPQ、△MNQ都是等腰直角三角形,∴Q(,),当Q在第二象限时,Q(﹣,)综上所述,Q(,)或Q(﹣,).27.(14分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P在抛物线上且位于x 轴上方.(1)如图1,若P(,),B(1,0)①求抛物线的解析式;②如图2,连接PC,PB,求四边形COBP的面积.③若点D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图3,已知直线P A,PB与y轴分别交于F,E两点,当点P运动时,是否为定值?若是,求出该定值,若不是,请说明理由.【解答】解:(1)①将P(,),B(1,0)代入y=ax2+c,,解得﹣1,抛物线的解析式为y=﹣x2+1,②对于抛物线y=﹣x2+1,令x=0得y=1,令y=0得x=±1,∴A(﹣1,0),B(1,0),C(0,1),∴S四边形COPB=S△POC+S△POB=×1×+×1×=.③如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,∴D与P关于y轴对称,∵P(,),∴D(﹣,);当点D′在OP右侧时,延长PD′交x轴于点G.作PH⊥OB于点H,则OH=,PH=∵∠DPO=∠POB,∴PG=OG.设OG=x,则PG=x,HG=x﹣.在Rt△PGH中,由x2=(x﹣)2+()2得x=.∴点G(,0).∴直线PG的解析式为y=﹣x+,解方程组得或.∵P(1,﹣3),∴D(,﹣).∴点D的坐标为(﹣,)或(,﹣).(2)点P运动时,是定值,定值为2,理由如下,作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.∵PQ∥OF,∴=,∴OF==﹣==amt+at2.同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴=2.审题过程,就是破解题意的过程,它是解题的第一步,而且是关键的一步,通过审题分析,能在头脑里形成生动而清晰的物理情景,找到解决问题的简捷办法,才能顺利地、准确地完成解题的全过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省盐城市滨海一中2016-2017学年七年级(上)月考数学试卷(9
月份)
一、选择题(共8小题,每小题3分,满分24分)
1.﹣2的相反数是( )
A.﹣2 B.﹣ C.2 D.
2.下列各数中,在﹣2和0之间的数是( )
A.﹣1 B.1 C.﹣3 D.3
3.一种袋装大米上标有10±0.3kg,则下列四袋大米中,不符合标准的是( )
袋号 一 二 三 四
质量/kg 10.2 9.7 9.9 9.6
A.第一袋 B.第二袋 C.第三袋 D.第四袋
4.把(+5)﹣(+3)﹣(﹣1)+(﹣5)写成省略括号的和的形式是( )
A.﹣5﹣3+1﹣5 B.5﹣3﹣1﹣5 C.5+3+1﹣5 D.5﹣3+1﹣5
5.下列各对数中互为相反数的是( )
A.﹣(+3)和+(﹣3) B.﹣(﹣3)和+(﹣3) C.﹣(﹣3)和+|﹣3| D.+(﹣
3)和﹣|﹣3|
6.在﹣2、3、4、﹣5这4个数中,任意取2个数进行乘法运算,所得的积最小的是( )
A.20 B.﹣20 C.12 D.10
7.如图所示,则下列判断错误的是( )

A.a+b<0 B.a﹣b>0 C.b>a D.|a|<|b|
8.下列说法中:
①有理数的绝对值一定是正数;
②互为相反数的两个数,必然一个是正数,一个是负数;
③若|a|=|b|,则a与b互为相反数;
④绝对值等于本身的数是0;
⑤任何一个数都有它的相反数.
其中正确的个数有( )
A.0 个 B.1 个 C.2 个 D.3 个
二、细心填一填(本大题共10小题,每小题3分,共30分)
9.×2= .
10.如果支出500元记作﹣500元,那么收入800元记作 元.
11.滨海县某天早晨气温是﹣2℃,到中午气温上升了8℃,这天中午气温是 ℃.
12.两个有理数的和为6,其中一个加数是﹣9,那么另一个加数是 .
13.大于﹣15且小于22的所有整数之积为 .
14.用“>”“<”或“=”连接:﹣π ﹣3.14.
15.如果数轴上点A表示的数为2,将点A向右移动3个单位长度,再向左移动7个单位长
度到达点B,那么终点B表示的数是 .
16.一个数的绝对值是2,则这个数是 .
17.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c= .
18.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时
针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开
始跳,第1次跳到数3那个点,如此,则经2016次跳后它停的点所对应的数为 .

三、耐心解一解(本大题共9题,共96分,解答写出文字说明、计算过程或演算步骤.)
19.(8分)把下列各数在数轴上表示,并从小到大的顺序用“<”连接起来.
+(﹣4),4,0,﹣|﹣2.5|,﹣(﹣3).

20.(8分)请把下列各数填入相应的集合中:
﹣1,0,﹣0.15,4,﹣,4. ,2.626626662…,﹣(﹣3),3.1415926,,0.101001
负数集合:{ }
正分数集合:{ }
非负整数集合:{ }

相关文档
最新文档