七年级3月月考数学试卷
河北省石家庄市赵县2022-2023学年七年级下学期3月月考数学试题(含答案解析)

河北省石家庄市赵县2022-2023学年七年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列命题是假命题的是()A .同旁内角互补,两直线平行;B .如果两条直线都和第三条直线平行,那么这两条直线也互相平行;C .同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;D .同位角互补,两直线平行;2.“小小竹排江中游,巍巍青山两岸走”,所描绘的图形变换主要是()A .平移变换B .翻折变换C .旋转变换D .以上都不对3.下列四个图形中,1∠与2∠是对顶角的是()A .B .C .D .4.2(0.7)-的平方根是()A .−0.7B .+0.7C .0.7±D .0.495.下列图形中,∠1与∠2是同位角的是()A .B .C .D .6.如图所示,直线AB 与CD 相交形成了1∠、2∠、3∠和4∠中,若要确定这四个角的度数,至少要测量其中的()A .1个角B .2个角C .3个角D .4个角7.在如下所示的条件中,可以判断两条直线互相垂直的是()①两直线相交所成的四个角都是直角;②两直线相交,对顶角互补;③两直线相交所成的四个角都相等.A .①②B .①③C .②③D .①②③8.下列图形中,线段MN 的长度表示点M 到直线l 的距离的是()A .B .C .D .9.试说明“若180A B ∠+∠=︒,180C D ∠+∠=︒,A C ∠=∠,则B D ∠=∠”是真命题.以下是排乱的推理过程:①因为A C ∠=∠(已知);②因为180A B ∠+∠=︒,180C D ∠+∠=︒(已知);③所以180B A ∠=︒-∠,180D C ∠=︒-∠(等式的性质);④所以B D ∠=∠(等量代换);⑤所以180B C ∠=︒-∠(等量代换).正确的顺序是()A .①→③→②→⑤→④B .②→③→⑤→①→④C .②→③→①→⑤→④D .②→⑤→①→③→④10.如图,ABC 沿直线BC 向右平移得到DEF △,已知2EC =,8BF =,则CF 的长为()A .3B .4C .5D .611.若2253a b ==,,则a b +=()12.如图,//AB CD ,BF 交CD 于点E ,AE BF ⊥,34CEF ∠=︒,则A ∠的度数是()A .34°B .66°C .56°D .46°13.若2m -4与3m -1是同一个正数的平方根,则m 的值是()A .-3B .-1C .1D .-3或114.如图,长方形ABCD 的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形A B C D '''',则阴影部分面积是()A .12B .10C .8D .615.如图,,AB CD EC CD ⊥∥于C ,CF 交AB 于B ,已知229∠=︒,则1∠的度数是()A .58︒B .59︒C .61︒D .62︒16.如图,P 是∠ABC 内一点,点Q 在BC 上,过点P 画直线a ∥BC ,过点Q 画直线b ∥AB ,若∠ABC =115°,则直线a 与b 相交所成的锐角的度数为()A .25°B .45°C .65°D .85°二、填空题17.81的平方根是__________.18.如图,甲、乙两只蚂蚁在两条平行马路同一侧的A,B两点处,比赛看谁先横过马路.如果它们同时出发,速度一样,都走最近的道路,结果是______,依据是________________________.19.如图,若12∠=∠,则AD______BC,依据是__________________.三、解答题20.求下列各数的平方根:(1)121;(2)0.01;(3)72 9;(4)()213-.21.如图,已知:点A、点B及直线l.(1)请画出从点A到直线l的最短路线,并写出画图的依据.(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.22.如图,1∠与2∠互补,C EDF∠=∠.那么AED C∠=∠.证明如下:∵12180∠+∠=︒(已知),∴DF ______()∴C DFB ∠=∠()∵C EDF ∠=∠(已知)∴DFB EDF ∠=∠()∴______ ______()∴AED C ∠=∠()23.如图,AB 和CD 相交于点O ,OD 平分BOF ∠,OE CD ⊥于点O ,40AOC ∠=︒,求EOF ∠的度数.24.如图,AB 、CD 交于点O ,∠1=∠2,∠3:∠1=8:1,求∠4的度数.25.如图,EF //AD ,AD //BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.26.已知,在下列各图中,点O 为直线AB 上一点,∠AOC =60°,直角三角板的直角顶点放在点O处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC 的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB 的下方,此时∠BON的度数为°;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC 与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为°;∠AOM﹣∠CON的度数为°参考答案:1.D【分析】利用平行线的性质及判定分别判断后即可确定正确的选项.【详解】解:A 、同旁内角互补,两直线平行;是真命题,不合题意;B 、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不合题意;C 、同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,是真命题,不合题意;D 、同位角相等,两直线平行;故同位角互补,两直线平行是假命题,符合题意,故选D .【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.2.A【分析】根据平移是图形沿某一直线方向移动一定的距离,可得答案.【详解】解:“小小竹排水中游,巍巍青山两岸走”所描绘的图形变换主要是平移变换,故选:A .【点睛】本题考查了平移变换,利用了平移的定义.3.D【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.【详解】解:由对顶角的定义可知,四个图形中D 中∠1与∠2为对顶角.故选:D .【点睛】本题考查了对顶角的定义,属于基础题,熟练掌握对顶角的概念是解决本题的关键.4.C【分析】根据平方根的定义解答.【详解】22(0.7)0.70.49-== ,0.7=±,2(0.7)∴-的平方根是0.7±.故选C .【点睛】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.5.B【分析】根据同位角的定义即两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角则可得出答案.【详解】解:A 、∠1与∠2的对顶角是同位角,故本选项不符合题意;B 、∠1与∠2是同位角,故本选项符合题意;C 、∠1与∠2是内错角,故本选项不符合题意;D 、∠1与∠2是同旁内角,故本选项不符合题意.故选:B .【点睛】本题考查了相交直线及其所成角的相关知识点,熟练区分同位角、内错角、同旁内角是解题的关键.6.A【分析】根据对顶角的定义解答即可.【详解】根据题意可得13∠=∠,24∠∠=,12180∠+∠= ∴要确定这四个角的度数,至少要测量其中的1个角即可.故选A【点睛】本题考查了对顶角的定义,是基础题,熟记概念并准确识图是解题的关键.7.D【分析】利用两条直线垂直的定义,结合补角、周角的定义、对顶角的性质逐一分析即可得出结论.【详解】解:∵因为两直线相交所成的四个角都是直角,即四个角都是90︒,∴所以两条直线互相垂直.∴①结论符合题意.两直线相交,对顶角互补,(对顶角相等)∴两条直线相交所成的对顶角是180=902︒︒.∴所以两条直线互相垂直.∴②结论符合题意.两直线相交所成的四个角都相等,∴四个角都是360=904︒︒.∴所以两条直线互相垂直.∴③结论符合题意.故选:D .【点睛】本题考查两条直线垂直的定义的理解与判断能力.如果两条直线相交所成的四个角中的任意一个角等于90︒,那么这两条直线垂直.理解对顶角相等、两条直线垂直的定义是解本题的关键.8.A【详解】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离;图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A .9.C【分析】写出正确的推理过程,进行排序即可.【详解】证明:因为180A B ∠+∠=︒,180C D ∠+∠=︒(已知),所以180B A ∠=︒-∠,180D C ∠=︒-∠(等式的性质);因为A C ∠=∠(已知),所以180B C ∠=︒-∠(等量代换).所以B D ∠=∠(等量代换).∴排序顺序为:②→③→①→⑤→④.故选C .【点睛】本题考查推理过程.熟练掌握推理过程,是解题的关键.10.A【分析】根据平移的性质可得=BC EF ,根据CF EF EC =-即可求解.【详解】解:∵ABC 沿直线BC 向右平移得到DEF △,∴=BC EF ,∵CF BC EC =-,∴()==+CF BF BC BF CF EC --,∴()()1182322CF BF EC =-=-=,故选A .【点睛】本题考查了平移的性质,解一元一次方程,掌握平移的性质是解题的关键.11.D【分析】根据平方根和绝对值的意义先得出a b ,的值,再求出a b +即可得出答案.【详解】解:225a = ,||3b =,5a ∴=,3b =;5a =-,3b =;5a =,3b =-;5a =-,3b =-,则8a b +=±或2±.故选:D .【点睛】本题考查了平方根和绝对值的意义和有理数的加法,理解概念,掌握运算法则是解题关键.12.C【分析】由余角的定义得出AEC ∠的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵AE BF ⊥,34CEF ∠=︒,∴903456AEC ∠=-= ,∵//AB CD ,∴56A AEC ∠=∠= ,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.13.D【分析】根据平方根的性质列方程求解即可;【详解】当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.【点睛】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.14.C【分析】利用平移的性质得到AB ∥A ′B ′,BC ∥B ′C ′,则A ′B ′⊥BC ,延长A ′B ′交BC 于F ,AD 交A ′B ′于E ,CD 交B ′C ′于G ,根据平移的性质得到FB ′=2,AE =2,易得四边形ABFE 、四边形BEDG 都为矩形,然后计算出DE 和B ′E 后可得到阴影部分面积.【详解】解:∵长方形ABCD 先向上平移2个单位,再向右平移2个单位得到长方形A ′B ′C ′D ′,∴AB ∥A ′B ′,BC ∥B ′C ′,∴A ′B ′⊥BC ,延长A ′B ′交BC 于F ,AD 交A ′B ′于E ,CD 交B ′C ′于G ,∴FB ′=2,AE =2,易得四边形ABFE 、四边形BEDG 都为矩形,∴DE =AD -AE =6-2=4,B ′E =EF -B ′F =AB -B ′F =4-2=2,∴阴影部分面积=4×2=8.故选C .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.C【分析】延长DC 到F ,根据垂直的性质得到90DCE ∠=︒,根据余角的性质得到361∠=︒,根据平行线的性质由AB CD ∥,可得161∠=︒.【详解】延长DC 到F ,∵EC CD ⊥,∴90DCE ∠=︒,∵229∠=︒,∴361∠=︒,∵AB CD ∥,∴3161∠=∠=︒.故选C .【点睛】本田考查了平行线的性质,准确添加辅助线,熟练掌握知识点是解题关键.16.C【分析】首先根据题意画出图形,再根据两直线平行,同旁内角互补可得∠1=65°,再根据两直线平行,内错角相等可得∠2的度数.【详解】解:∵b∥AB,∴∠1+∠B=180°,∵∠ABC=115°,∴∠1=65°,∵a∥BC,∴∠2=∠1=65°,故选:C.【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补;两直线平行,内错角相等.17.±92【详解】81的平方根是;4,4的算术平方根即为2;故填±9;2.【点睛】前面题目可以根据平方根的定义求出结果;后面题目先根据算术平方根的定义化简18.同时到达平行线间的距离处处相等【分析】根据垂线段最短,以及平行线间的距离处处相等,进行作答即可.【详解】解:∵点到直线之间,垂线段最短,∴两只蚂蚁走的都是垂线段,∵平行线间的距离处处相等,它们同时出发,速度一样,∴它们同时到达;故答案为:同时到达,平行线间的距离处处相等.【点睛】本题考查平行线间的距离.熟练掌握平行线间的距离处处相等,是解题的关键.19. 内错角相等,两直线平行【分析】根据内错角相等,两直线平行,进行作答即可.【详解】解:若12∠=∠,AD BC∥,依据是内错角相等,两直线平行.故答案为: ,内错角相等,两直线平行.【点睛】本题考查平行线的判定.熟练掌握内错角相等,两直线平行,是解题的关键.20.(1)11±(2)0.1±(3)5 3±(4)13±【分析】(1)根据平方根的定义,进行求解即可;(2)根据平方根的定义,进行求解即可;(3)根据平方根的定义,进行求解即可;(4)根据平方根的定义,进行求解即可.【详解】(1)解:11=±;(2)0.1±;(3)53 ==±;(4)13=±.【点睛】本题考查求一个数的平方根.熟练掌握平方根的定义,是解题的关键.21.(1)如图所示:点E为所求见解析,根据垂线段最短;(2)如图所示见解析,根据两点之间线段最短.【分析】(1)过A作AE⊥l;(2)连接AB,与l交点就是O.【详解】(1)如图所示:点E为所求,根据垂线段最短;(2)如图所示:根据两点之间线段最短.【点睛】本题考查了垂线段最短,线段的性质:两点之间线段最短,熟练掌握这些知识点是本题解题的关键.22.见解析【分析】根据平行线的判定和性质,进行作答即可.【详解】证明:∵12180∠+∠=︒(已知),∴DF AC ∥(同旁内角互补,两直线平行),∴C DFB ∠=∠(两直线平行,同位角相等),∵C EDF ∠=∠(已知),∴DFB EDF ∠=∠(等量代换),∴DE BC ∥(内错角相等,两直线平行),∴AED C ∠=∠(两直线平行,同位角相等).【点睛】本题考查平行线的判定和性质.熟练掌握平行线的判定方法,证明两直线平行,是解题的关键.23.130︒【分析】OE CD ⊥,得到90COE DOE ∠=∠=︒,对顶角得到BOD AOC ∠=∠,根据OD 平分BOF ∠,得到DOF BOD ∠=∠,再用DOE DOF ∠+∠进行计算即可得解.【详解】解:∵OE CD ⊥,∴90COE DOE ∠=∠=︒,∵AB 和CD 相交于点O ,∴40BOD AOC ∠=∠=︒,∵OD 平分BOF ∠,∴40DOF BOD ∠=∠=︒,∴130EOF DOE DOF ∠=∠+∠=︒.【点睛】本题考查几何图形中的角度计算.正确的识图,理清角之间的和差关系,是解题的关键.24.∠4=36°【分析】利用∠1=∠2,∠3:∠1=8:1的关系,结合平角的定义,可得∠1,∠2的度数,运用对顶角相等得∠4的度数.【详解】∵∠1+∠2+∠3=180°,又∵∠1=∠2,∠3:∠1=8:1,即∠3=8∠1,∴∠1+∠1+8∠1=180°,即∠1=18°,∴∠4=∠1+∠2=36°.【点睛】本题考查对顶角的性质以及平角的定义,是一个需要熟记的内容.25.20°【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【详解】∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB−∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.【点睛】本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.26.(1)120;150;(2)30°;(3)30,=;(4)150;30.【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON 的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∴∠BOM=12∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.故答案为30,=;(4)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.。
人教版七年级下册数学第三次月考试题及答案

人教版七年级下册数学第三次月考试卷一、单选题1.在﹣3,0,π)A.0 B.﹣3 C.πD2.若x是9的算术平方根,则x是()A.3 B.-3 C.9 D.81 3.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 334.下列计算不正确的是()A=±2 B9C0.4 D 65.方程1ax yx by+=⎧⎨+=⎩的解是11xy=⎧⎨=-⎩,则a,b为( )A.1ab=⎧⎨=⎩B.1ab=⎧⎨=⎩C.11ab=⎧⎨=⎩D.ab=⎧⎨=⎩6.在数轴上表示不等式组21xx>-⎧⎨≤⎩的解集,其中正确的是()A.B.C.D.7.下列语句中,是假命题的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.互补的两个角是邻补角D.垂线段最短8.实数a,b在数轴上的位置如图所示,则下列各式表示正确的是()A.b﹣a<0 B.1﹣a<0 C.b﹣1>0 D.﹣1﹣b<09.如图直线a∥b,射线DC与直线a相交于点C,过点D作DE⊥b于点E,已知∠1=25°,则∠2的度数为( )A.115°B.125°C.155°D.165°10.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”,小刚却说:“只要把你的13给我,我就有10颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,则列出方程组正确的是()A.210330x yx y+=⎧⎨+=⎩B.210310x yx y+=⎧⎨+=⎩C.220310x yx y+=⎧⎨+=⎩D.220330x yx y+=⎧⎨+=⎩二、填空题112的相反数是____________,绝对值是_________________.12.87.19.(不用计算器)13.将方程2x+3y=6写成用含x的代数式表示y,则y=________.14.不等式3x﹣5≤1的正整数解是_______.15.在一本书上写着方程组21x pyx y+=⎧⎨+=⎩的解是0.5xy=⎧⎨=⎩,其中,y的值被墨渍盖住了,不过,我们可解得出p=___________.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则1∠=________度.17.一个立方体的体积是64m3,若把这个立方体体积扩大1000倍,则棱长为______.三、解答题183|.19.解方程组4421x y x y -=⎧⎨+=-⎩.20.如图,经过平移,四边形ABCD 的顶点A 移到点A′,作出平移后的四边形.21.求不等式组34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩的整数解.22.已知2a b +(1)求2a -3b 的平方根;(2)解关于x 的方程2420ax b +-=.23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD (1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.某电器超市销售每台进价分别200元,170元的A ,B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入-进货成本)(1)求A,B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台;(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a-3b|+(a+b-4)²=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.参考答案1.D【分析】从四个数中先找出无理数,再根据实数大小比较的法则进行比较即可得出答案.【详解】∵﹣3,0是有理数,∴无理数有π∴故选:D.【点睛】本题考查实数大小的比较,解题的关键是掌握实数大小比较的基本方法.2.A【详解】试题解析:∵32=9,,故选A.3.B【详解】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.4.A【分析】根据平方根和立方根的求解方法对原式各项计算得到结果,即可作出判断.【详解】A、原式=2,错误;B、原式=|﹣9|=9,正确;C、原式=0.4,正确;D、原式=﹣6,正确.故选:A.【点睛】本题考查平方根和立方根,解题的关键是掌握平方根和立方根的计算法则. 5.B【解析】由题意得:1011ab-=⎧⎨-=⎩,解得:1ab=⎧⎨=⎩,故选B.6.A【分析】先根据题意得出不等式组的解集,再在数轴上表示出来即可.【详解】由题意不等式组的解集为;﹣2<x≤1,在数轴上表示为:.故选:A.【点睛】本题考查解一元一次不等式组和在数轴上表示解集,熟练掌握解不等式组的方法是解此题的关键.7.C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、所有的实数都可用数轴上的点表示,正确是真命题,B、等角的补角相等,正确是真命题,C、互补的两个角不一定是邻补角,错误是假命题,D、垂线段最短,正确是真命题,故选:C.【点睛】此题主要考查命题的真假,涉及到补角和垂线段的知识,难度一般.8.A【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得b<a<0,再根据有理数的加减法法则可得答案.【详解】解:由题意,可得b<a<0,则b﹣a<0,1﹣a>0,b﹣1<0,﹣1﹣b与0无法比较,表示正确的是A;故选:A.【点睛】本题考查实数与数轴,关键是掌握在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.也考查了有理数的加减法法则.9.A【分析】如图,过点D作c∥a.由平行线的性质进行解题.【详解】如图,过点D作c∥a.则∠1=∠CDB=25°.又a ∥b ,DE ⊥b , ∴b ∥c ,DE ⊥c , ∴∠2=∠CDB+90°=115°. 故选A . 【点睛】本题考查了平行线的性质.能正确作出辅助线是解决此题的关键. 10.D 【详解】试题解析:根据把小刚的珠子的一半给小龙,小龙就有10颗珠子,可表示为102xy +=, 化简得220x y +=;根据把小龙的13给小刚,小刚就有10颗,可表示为103y x +=,化简得3x+y=30. 列方程组为220330.x y x y +=⎧⎨+=⎩ 故选D.11.2 2【详解】2的相反数是-2)=2,根据绝对值的2的绝对值是22.故答案为22. 考点:相反数;绝对值. 12.4.487 【详解】试题分析:被开方数的小数点每移动两位,其算术平方根的小数点移动一位..87,.487 考点:算术平方根 13.6−2x 3(或2−23x )【分析】将x 看做已知数求出y 即可. 【详解】解:方程2x+3y=6, 解得:y=6−2x 3=2−23x . 故答案为6−2x 3(或2−23x )14.2或1 【分析】解出不等式3x ﹣5≤1的解集,即可得到不等式3x ﹣5≤1的正整数解. 【详解】 解:3x ﹣5≤1 3x≤6 x≤2,∴不等式3x ﹣5≤1的正整数解是2或1, 故答案为:2或1. 【点睛】本题考查解一元一次不等式和正整数的定义,解题的关键是掌握解一元一次不等式. 15.3 【详解】解:将x=0.5代入第二个方程可得:0.5+y=1,则y=0.5,将x=0.5和y=0.5代入第一个方程可得:0.5+0.5p=2,解得:p=3. 故答案为:3. 16.65 【分析】根据两直线平行内错角相等,以及折叠关系列出方程求解则可. 【详解】解:如图,由题意可知, AB ∥CD , ∴∠1+∠2=130°,由折叠可知,∠1=∠2,∴2∠1=130°,解得∠1=65°.故答案为:65.【点睛】本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17.40m【分析】根据体积扩大1000倍,可得立方体的体积,根据开方运算,可得答案.【详解】解:64×1000=64000m3,40,故答案为:40m.【点睛】本题考查立方根,解题的关键是先求体积再开方.18.2【分析】根据立方根和平方根的定义以及去绝对值法则,对式子化简即可得到答案.【详解】3|=2+0﹣3+3=2.【点睛】本题主要考查了立方根和二次根式的化简以及去绝对值法则,熟练掌握各知识点是解题的关键.19.7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【分析】方程组利用代入消元法求出解即可.【详解】解:4421x yx y-=⎧⎨+=-⎩①②,由①得:x=y+4,代入②得:4y+16+2y=﹣1,解得:y=﹣176,将y=﹣176代入①得:x=76,则方程组的解为7617-6xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题主要考查方程组的解法,解题的关键是掌握代入消元法的应用.20.见解析.【分析】根据题意分别作BB′、CC′、DD′与AA′平行且相等,即可得到B、C、D的对应点,顺次连接即可.【详解】解:如图:四边形A′B′C′D′即为所求.【点睛】本题考查的是平移变换作图.注意掌握作平移图形时,找关键点的对应点也是关键的一步.21.不等式组的所有整数解为3,4.【分析】根据题意先求出不等式的解集,再求出不等式组的解集,即可得出答案.【详解】 解:34361232x x x x -⎧>-⎪⎪⎨+⎪+<⎪⎩①②, ∵解不等式①得:x <92, 解不等式②得:x >52, ∴不等式组的解集为52<x <92, ∴不等式组的所有整数解为3,4.【点睛】本题考查解一元一次不等式以及解一元一次不等式组,不等式组的整数解的应用,能求出不等式组的解集是解此题的关键.22.(1)23a b -的平方根为4±;(2)3x =±.【分析】(1)先由相反数的定义列出等式,再根据绝对值的非负性、算术平方根的非负性求出a 、b 的值,然后代入,根据平方根的定义求解即可;(2)先将a 、b 的值代入,再利用平方根的性质求解即可.【详解】(1)由相反数的定义得:02a b =+由绝对值的非负性、算术平方根的非负性得:203120a b b +=⎧⎨+=⎩ 解得24a b =⎧⎨=-⎩则23223(4)41216a b -=⨯-⨯-=+=故23a b -的平方根为4±;(2)方程2420ax b +-=可化为224(4)20x +⨯--=整理得22180x -=29x=x=±.解得3【点睛】本题考查了相反数的定义、绝对值的非负性、算术平方根的非负性、平方根的定义等知识点,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【详解】分析:(1)根据同位角相等两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.本题解析:(1)证明:∵∠CED=∠GHD,∴CE∥GF(2)答:∠AED+∠D=180°理由:∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE∥GF,∴∠C=180°﹣130°=50°∵AB∥CD,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°.点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.(1)A、B两种型号电风扇的销售单价分别为250元,210元;(2)A型号电风扇最多能采购10台;(3)在(2)的条件下,超市不能实现利润为1400元的目标,理由见解析【分析】(1)设A种型号的电风扇的销售单价为x元,B种型号的电风扇的销售单价为y元,根据总价=单价×数量结合近两周的销售情况统计表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A种型号的电风扇采购a台,则B种型号的电风扇采购(30-a)台,根据进货总价=进货单价×进货数量结合超市准备用不多于5400元的金额采购两种型号的电风扇共30台,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论;(3)先求出超市销售完这30台电风扇实现利润为1400元时的A种型号电风扇采购台数a,再结合(2)的取值范围判断即可.【详解】(1)设A、B两种型号的电风扇销售单价分别为x元、y元.⎧⎨⎩3518004103100x yx y+=+=解得:250210xy=⎧⎨=⎩答:A、B两种型号电风扇的销售单价分别为250元,210元.(2)设采购A种型号电风扇a台.200a+170(30-a)≤5400 解得:a≤10答:A型号电风扇最多能采购10台.(3)依题意解(250-200)a+(210-170)(30-a)=1400解得:a=20 ∵a≤10∴在(2)的条件下,超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键:找准等量关系,正确列出二元一次方程组;根据各数量之间的关系,正确列出一元一次不等式.25.(1)a=3,b=1;(2)A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD.【分析】(1)根据非负数的性质列方程组求解即可;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况:①在灯A射线到达AN之前;②在灯A射线到达AN之后,分别列出方程求解即可;(3)设A灯转动时间为t秒,则∠CAN=180°−3t,∠BAC=∠BAN−∠CAN=3t−135°,过点C作CF∥PQ,则CF∥PQ∥MN,得出∠BCA=∠CBD+∠CAN=180°−2t,∠BCD=∠ACD−∠BCA=2t−90°,即可得出结果.【详解】解:(1)∵|a-3b|+(a+b-4)²=0,∴3040a ba b-=⎧⎨+-=⎩,解得:31ab=⎧⎨=⎩,故a=3,b=1;(2)设A灯转动t秒,两灯的光束互相平行,①在灯A射线到达AN之前,由题意得:3t=(20+t)×1,解得:t=10,②在灯A射线到达AN之后,由题意得:3t−180°=180°−(20+t)×1,解得:t=85,综上所述,A灯转动10秒或85秒时,两灯的光束互相平行;(3)∠BAC与∠BCD的数量关系不发生变化,2∠BAC=3∠BCD;理由:设A灯转动时间为t秒,则∠CAN=180°−3t,∴∠BAC=∠BAN−∠CAN=45°−(180°−3t)=3t−135°,∵PQ∥MN,如图2,过点C作CF∥PQ,则CF∥PQ∥MN,∴∠BCF=∠CBD,∠ACF=∠CAN,∴∠BCA=∠BCF+∠ACF=∠CBD+∠CAN=t+180°−3t=180°−2t,∵CD⊥AC,∴∠ACD=90°,∴∠BCD=∠ACD−∠BCA=90°−(180°−2t)=2t−90°,∴2∠BAC=3∠BCD.【点睛】本题考查了非负数的性质、解二元一次方程组、平行线的性质等知识,熟练掌握平行线的性质是解题的关键.。
七年级上册数学第三次月考试卷【含答案】

七年级上册数学第三次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定还是质数。
()2. 一个三角形的内角和一定是180度。
()3. 长方体的六个面都是相同的。
()4. 分子和分母相同的分数是最简分数。
()5. 如果a是正数,那么-a一定是负数。
()三、填空题(每题1分,共5分)1. 2的平方根是______。
2. 一个等边三角形的三个角都是______度。
3. 长方体的体积公式是______。
4. 如果一个分数的分子和分母同时乘以同一个数,那么这个分数的值______。
5. 如果a=2,那么3a-4的值是______。
四、简答题(每题2分,共10分)1. 请解释质数和合数的区别。
2. 请写出三角形的内角和定理。
3. 请解释长方体和正方体的区别。
4. 请解释分数的约分。
5. 请解释代数式的值是如何计算的。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10cm、6cm、8cm,求它的体积。
2. 如果一个三角形的两边长分别是5cm和12cm,求第三边的长度。
3. 请将分数3/9约分到最简。
4. 如果a=4,求2a+3的值。
5. 请计算(3+4)×2的值。
六、分析题(每题5分,共10分)1. 请分析一个长方体的表面积和体积的关系。
人教版数学七年级上册第三次月考试卷

人教版数学七年级上册第三次月考试题一、单选题1.﹣6的倒数是()A .﹣16B .16C .﹣6D .62.单项式253t -的系数是()A .5B .-5C .53D .53-3.已知3n y 和6n y +是同类项,则n 是()A .1B .2C .3D .44.若3x =-是方程5x a +=的解,则a 的值是()A .8B .-8C .-4D .45.下列等式变形正确的是()A .由126x -=,得261x =-B .由22m n -=-,得m n =C .由0.56x =,得3x =D .由nx ny =,得x y=6.已知方程280x -=,那么39x +的值为()A .21B .14C .11D .257.公元820年左右,中亚细亚的一位数学家曾写过一本名叫《对消与还原》的书,重点讨论方程的解法,这部书对后来数学的发展产生了很大影响.这位数学家是()A .牛顿B .笛卡尔C .欧几里得D .阿尔-花拉子米8.在加固某段河坝时,需要动用15台挖土、运土机械,每台机械每小时能挖土318m 或运土312m ,为了使挖出的土能及时运走,若安排x 台机械挖土,则可列方程()A .181215x x -=B .()181215x x =-C .()12315x =-D .181215x x +=9.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A .120元B .100元C .80元D .60元10.计算:1211-=,2213-=,3217-=,42115-=,52131-=,…,归纳各计算结果中的个位数字的规律,猜测1821-的个位数字是()A .1B .3C .5D .7二、填空题11.写出一个绝对值小于4.6的整数______.12.已知112m =,则比m 小3的数为______.13.当x =_____时,代数式31x +与58x -的值相等.14.若长方形的一边长为3a ,另一边比它大2a ,且这个长方形的周长为24,则可列方程为______.15.定义“☆”运算为2b a a a b =+☆,例如:3132151=⨯+⨯=☆.若)22(3)(3x x =-☆☆,则x =___.三、解答题16.(1)计算:23324[5(1)]-+÷--(2)解方程:13352x x +-=-17.设11324()()2323A x x y x y =---+-+(1)当2x =-,3y =时,求A 的值.(2)若32x y -+=,则A =______.18.当x 等于什么数时,13x x --的值:(1)是1.(2)与1互为相反数.19.如图,一只蚂蚁从点M 沿数轴向右爬行2个单位长度到达点N ,点M 表示的数a 是32-,设点N 表示的数为b .(1)求b 的值;(2)对2222(3)[5()2]ab a a ab a ab -----+进行化简,并求值.20.装修公司给小红家的窗户设计了如图所示的装修方案,上方布料窗眉(阴影部分)由两个半径相同的四分之一圆组成.(1)分别用整式表示窗眉用布和窗户透光的面积.(窗框的面积忽略不计).(2)观察(1)中的结果,它们是单项式还是多项式?次数分别是多少?21.为了进行资源的再利用,学校准备对所有库存的桌凳进行维修,现有甲、乙两木工组,甲组每天修桌凳14套,乙组每天比甲组多修7套,甲组单独修完这些桌凳比乙组单独修完多用20天.请问乙组单独修完需要多少天?学校共库存多少套桌凳?22.某水果店用500元购进甲、乙两种水果共50kg ,这两种水果的进价、售价如下表所示品名甲种乙种进价(元/kg)712售价(元/kg)1016()1求这两种水果各购进多少千克?()2如果这批水果当天售完,水果店除进货成本外,还需其它成本0.1元/kg,那么水果店销售完这批水果获得的利润是多少元?(利润=售价-成本)23.阅读下面的例题:例:解方程x2﹣2|x|﹣3=0解:(1)当x≥0时,原方程可化为x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3(2)当x<0时,原方程可化为x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.综上所述,原方程的根是x1=3,x2=﹣3.解答问题:(1)如果我们将原方程化为|x|2﹣2|x|﹣3=0求解可以吗?请你大胆试一下写出求解过程.(2)依照题目给出的例题解法,解方程x2+2|x﹣2|﹣4=0.参考答案1.A 【解析】解:﹣6的倒数是﹣16.故选A .2.D 【解析】【分析】根据单项式系数的概念进行求解即可得到答案.【详解】根据单项式系数的概念可得单项式253t -的系数是53-,故选择D.【点睛】本题考查单项式系数的概念,解题的关键是掌握单项式系数的概念.3.C 【解析】【分析】根据同类项的定义可得63n n +=,再计算即可得到答案.【详解】根据同类项的定义可得63n n +=,解得3n =,故选择C.【点睛】本题考查同类项的定义,解题的关键是掌握同类项的定义.4.A 【解析】【分析】将3x =-代入方程5x a +=,再进行一元一次方程的求解,即可得到答案.【详解】将3x =-代入方程5x a +=得到35a -+=,解得8a =,故选择A.【点睛】本题考查解一元一次方程,解题的关键是将3x =-代入方程5x a +=进行求解.【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A.由1−2x=6,得2x=1−6,故本选项错误;B.由22m n -=-,得m−2+2=n−2+2,则m n =,故本选项正确;C.由0.56x =,得x=12,故本选项错误;D.由nx=ny ,得x=y(n≠0),故本选项错误;故选B.【点睛】本题考查等式的性质,解题的关键是掌握等式的性质.6.A 【解析】【分析】先解一元一次方程280x -=,再将解代入39x +计算即可得到答案.【详解】280x -=解得4x =,再将4x =代入39x +得到34921⨯+=,故选择A.【点睛】本题考查解一元一次方程和代数式求值,解题的关键是掌握解一元一次方程和代数式求值.7.D 【解析】【分析】根据有关一元一次方程的解法的历史进行求解即可得到答案.【详解】中亚细亚的数学家阿尔-花拉子米曾写过一本名叫《对消与还原》的书,重点讨论方程的解法,故选择D.【点睛】本题考查有关一元一次方程的解法的历史,解题的关键是了解有关一元一次方程的解法的历史.【解析】【分析】根据安排x台机械挖土,则有(15-x)台机械运土,x台机械挖土的总数为18x m3,则(15-x)台机械运土总数为12(15-x)m3,进而得出方程.【详解】设安排x台机械挖土,则有(15-x)台机械运土,x台机械挖土的总数为18x立方米,则(15-x)台机械运土总数为12(15-x)立方米,根据挖出的土等于运走的土,得:18x=12(15-x).故选:B.【点睛】此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出土方量是解题关键.9.C【解析】【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=80.∴该商品的进价为80元/件.故选C.10.B【解析】【分析】通过观察可发现2n-1的个位数字的规律是以1、3、7、5四个数字为一个周期依次循环,再计算18÷4,看余数是几即可得出答案.【详解】∵21−1=1,22−1=3,23−1=7,24−1=15,25−1=31,26−1=63,27−1=127,28−1=255,∴2n−1的个位数字的规律是以1、3、7、5四个数字为一个周期依次循环,∵18÷4=4…2,∴1821-的个位数字与221-的个位数字相同是3,【点睛】本题考查数字类规律,解题的关键是掌握数字类规律求解基本步骤.11.1【解析】【分析】根据绝对值的求法再结合整数的定义得到0,±1,±2,±3,±4,再任意写一个即可.【详解】∵互为相反数的两个数的绝对值相等,∴绝对值小于4的整数是0,±1,±2,±3,±4,故答案为1.【点睛】本题考查绝对值和整数的定义,解题的关键是掌握求绝对值和整数的定义.12.-1【解析】【分析】先解一元一次方程112m=,由题意再将解代入m-3求值.【详解】解112m=得到2m=,由“比m小3的数”得到m-3,将2m=代入m-3得到2-3=-1.【点睛】本题考查解一元一次方程和代数式求值,解题的关键是掌握解一元一次方程和代数式求值.13.9 2【解析】【分析】根据题意得出方程31x+=5x-8,求出方程的解即可.【详解】根据题意得:31x+=5x−8,∴3x−5x=−8−1,∴x=92,故答案为92.【点睛】本题考查解一元一次方程和列代数式,解题的关键是掌握解一元一次方程和列代数式.14.2(53)24a a +=【解析】【分析】由题意可得另一边等于325a a a +=,再由长方形的周长为24可得2(53)24a a +=.【详解】因为长方形的一边长为3a ,另一边比它大2a ,所以另一边等于325a a a +=,又因为这个长方形的周长为24,所以可得2(53)24a a +=.【点睛】本题考查列代数式,解题的关键是读懂题意,掌握列代数式的方法.15.2【解析】【分析】先根据新定义的运算法则2b a a a b =+☆,将)22(3)(3x x =-☆☆化为关于x 的一元一次方程,然后解方程即可.【详解】∵2b a a a b =+☆,∴)22(3)(3x x =-☆☆即32322(32)x x x +⨯=-+化简,移项可得35226x x +=-则可得816x =解得x=2.本题考查解一元一次方程,解题的关键是掌握解一元一次方程.16.(1)-5;(2)1x =.【解析】【分析】(1)先根据指数幂化简得到924(51)-+÷+,再进行有理数的四则运算即可得到答案;(2)先分母得到16610x x +-=-,再移项,合并同类项得到55x =,系数化为1即可得到答案.【详解】(1)23324[5(1)]-+÷--=924(51)-+÷+=9246-+÷=94-+=-5(2)13352x x +-=-先分母得到16610x x +-=-,再移项得到16106x x -+=-,合并同类项得到55x =,系数化为1可得1x =.【点睛】本题考查解一元一次方程、指数幂和有理数的四则运算,解题的关键是掌握解一元一次方程、指数幂和有理数的四则运算.17.(1)A =18;(2)4.【解析】【分析】(1)对11324()()2323A x x y x y =---+-+去括号进而合并同类项,再把2x =-,3y =代入求出答案;(2)将62A x y =-+变形得到2(3)A x y =-+,把32x y -+=代入2(3)A x y =-+求出【详解】(1)11324()()2323A x x y x y =---+-+去括号得到143242323A x x y x y =--+-+,合并同类项得到62A x y =-+,将2x =-,3y =代入62A x y =-+得到6(2)23A =-⨯-+⨯=18.(2)62A x y =-+变形得到2(3)A x y =-+,把32x y -+=代入2(3)A x y =-+得到224A =⨯=.【点睛】本题考查整式的加减−化简求值和合并同类项,掌握合并同类项是解题关键.18.(1)1x =.(2)x =−2.【解析】【分析】(1)由题意列式得到13x x --=1,再去分母合并同类项求解即可得到答案;(2)互为相反数的含义是两个代数式的和为0.由已知,“13x x --的值与1互为相反数”,可以得到13x x --+1=0,从而解得x 的值.【详解】(1)由题意列式得到13x x --=1,去分母得到3(1)3x x --=,去括号,移项合并同类项得到22x =,解得1x =.(2)由题意可得,13x x --+1=0,解得x =−2.当x =−2时,13x x --的值与1互为相反数.【点睛】本题考查解一元一次方程、相反数和列代数式,解题的关键是掌握解一元一次方程、相反数和列代数式.19.(1)b =12;(2)ab .当a =32-,b =12时,原式=-34.【分析】(1)根据向右移动加列式计算即可得解;(2)根据去括号合并同类项得到ab ,把a =32-,b =12代入ab 计算即可得到答案.【详解】(1)由题意列式得b =32-+2=12;(2)2222(3)[5()2]ab a a ab a ab -----+=22226552ab a a ab a ab-+-+--=ab .当a =32-,b =12时,原式=313224-⨯=-.【点睛】本题考查数轴、整式的加减−化简求值和列代数式,理解数轴上的数向右移动加是解题的关键.20.(1)窗户中能射进光线的部分面积ab−18πb 2;装饰物的面积18πb 2.(2)ab−18πb 2是多项式,次数为2,;18πb 2为单项式,次数为2.【解析】【分析】(1)根据长方形的面积公式:S =ab ,圆的面积公式:S =πr 2,把数据代入公式求出长方形与两个四分之一的圆、长方形与四个半圆的面积差即可,装饰物的面积为一个半圆的面积.(2)根据单项式和多项式的定义,以及次数的概念进行求解即可得到答案.【详解】(1)窗户中能射进光线的部分面积:ab−π(2b )2×12=ab−18πb 2;装饰物的面积:π(2b )2×12=18πb 2.(2)ab−18πb 2是多项式,次数为2,;18πb 2为单项式,次数为2.【点睛】本题考查圆的面积公式、长方形的面积公式、单项式和多项式的定义,以及次数的概念,解题的关键是掌握单项式和多项式的定义,以及次数的概念.21.乙组单独修完需要30天,该学校库存桌椅700套.【解析】【分析】设乙单独修需要x 天,则甲单独修需要(x+20)天,根据总数列出方程进行求解.【详解】设乙单独修完需x 天,则甲单独修完需(x+20)天.甲每天修14套,乙每天修21套,根据题意,列方程为:14(x+20)=21x ,解得:x=30(天),经检验,符合题意,∴共有桌椅:14×(30+20)=700(套).答:乙组单独修完需要30天,该学校库存桌椅700套.【点睛】本题考查列代数式和一元一次方程的实际应用,解题的关键是掌握列代数式和一元一次方程的实际应用.22.(1)购进甲种水果20千克,乙种水果30千克;(2)175元.【解析】【分析】(1)设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据总价格甲种水果单价×购进甲种水果质量+乙种水果单价×购进乙种水果质量即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据总利润=每千克甲种水果利润×购进甲种水果质量+每千克乙种水果利润×购进乙种水果质量,净利润=总利润-其它销售费用,代入数据即可得出结论.【详解】解:()1设甲种水果购进了x 千克,则乙种水果购进了()50x -千克,根据题意得:()7x 1250x 500+-=,解得:x 20=,则50x 30-=.答:购进甲种水果20千克,乙种水果30千克;()()()210720*********(-⨯+-⨯=元).1800.150175(-⨯=元).答:水果店销售完这批水果获得的利润是175元.【点睛】本题考查一元一次方程的应用,根据数量关系总价单价数量列出一元一次方程是解题关键.23.(1)x 1=3,x 2=﹣3;(2)x 1=0,x 2=2.【解析】【分析】当绝对值内的数不小于0时,可直接去掉绝对值,而当绝对值内的数为负数时,去绝对值时,绝对值内的数要变为原来的相反数.本题要求参照例题解题,要先对x 的值进行讨论,再去除绝对值将原式化简.【详解】(1)当x ≥0时,原方程可化为x 2﹣2x ﹣3=0,解得x 1=﹣1(舍去),x 2=3当x <0时,原方程可化为x 2+2x ﹣3=0,解得x 1=1(舍去),x 2=﹣3.综上所述,原方程的根是x 1=3,x 2=﹣3.(2)当x ≥2时,原方程可可化为x 2+2x ﹣4﹣4=0,解得x 1=-4(舍去),x 2=2.当x <2时,原方程化为x 2﹣2x +4﹣4=0,,解得x 1=0,x 2=2(舍去).综上所述,原方程的根x 1=0,x 2=2.【点睛】本题考查绝对值的性质和一元二次方程的解法,解题的关键是掌握绝对值的性质和一元二次方程的解法.。
人教版七年级上册数学第三次月考试卷

人教版七年级上册数学第三次月考试题评卷人得分一、单选题1.下面各数是负数的是()A .0B .﹣2013C .2013-D .120132.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A .0.1008×106B .1.008×106C .1.008×105D .10.08×1043.下列方程中,是一元一次方程的是()A .243x x -=B .35-=xy C .312-=x x D .21x y +=4.下列各式中,与2a 是同类项的是()A .3aB .2abC .−32D .a 2b5.下列运算正确的是()A .3a²-2a²=a²B .3a²-2a²=1C .3a²-a²=3D .3a²-a²=2a6.某种速冻水饺的储藏温度是182C C -± ,四个冷藏室的温度如下,不适合储藏此种水饺是()A .17C- B .22C- C .18C- D .19C- 7.在数轴上表示-1的点与表示3的点之间的距离是()A .4B .-4C .2D .-28.一个数的平方等于16,则这个数是()A .+4B .-4C .±4D .±89.若|m|=2,|n|=3,且在数轴上表示m 的点与表示n 的点分居原点的两侧,则下列哪个值可能是m +n 的结果()A .5B .-5C .-3D .110.若2c a b-=3,则代数式22523c a b a b c ----的值是()A .43B .223C .5D .4评卷人得分二、填空题11.﹣8的相反数是_____,﹣6的绝对值是_____.12.单项式22-3x y的系数是___________,次数是_________.13.若3x2y m-1与-x n y3是同类项,则m-n的值是______.14.写出一个只含有字母x,y的二次三项式___.15.如图是王明家的楼梯示意图,其水平距离(即AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a-b)米,则王明家楼梯的竖直高度(即BC的长度)为________米.16.数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在该数轴上随意画出一条长为2016cm的线段AB,则线段AB盖住的整点有____________个.评卷人得分三、解答题17.计算题(1)-8.5+243-1.5-263.(2)(12-14-16)×12.18.化简(1)12st-3st+6.(2)3(-ab+2a)-(3a-b)+3ab19.解一元一次方程(1)2x+2=3x-1.(2)1-12x=3-16x.20.先化简,再求值:7a2b+(-4a2b+5ab2)-2(2a2b-3ab2),其中(a-2)2+|b+12|=0.21.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.22.在数轴上表示下列各数:0,-4,212,-2,|-5|,-(-1),并用“<”号连接.23.观察下来等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b 的式子表示这类“数字对称等式”的规律是_______.24.已知数轴上三点M,Q,N对应的数分别为-2,0,4,点P为数轴上任意一点,其对应的数为x.(1)如果点P到点M,点N的距离相等,那么x的值是______;(2)数轴上是否存在点P,使点P到点M,点N的距离之和是7?若存在,请求出x的值;若不存在,请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P 到点M、点N的距离相等?参考答案1.B【解析】试题分析:根据正数和负数的定义分别进行解答:A、0既不是正数,也不是负数,故本选项错误;B、﹣2013是负数,故本选项正确;C、|﹣2013|=2013,是正数,故本选项错误;D、12013是正数,故本选项错误.故选B.2.C【解析】试题分析:100800=1.008×105.故选C.考点:科学记数法—表示较大的数.3.C【解析】【分析】根据一元一次方程的定义逐个判断即可.【详解】A、是一元二次方程,不是一元一次方程,故本选项不符合题意;B、是二元二次方程,不是一元一次方程,故本选项不符合题意;C、是一元一次方程,故本选项符合题意;D、是二元一次方程,不是一元一次方程,故本选项不符合题意;故选:C.【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数是一次的整式方程,叫一元一次方程.4.A【解析】同类项是所含的字母相同,并且相同字母的指数也相同的项.因此,2a中的字母是a,a的指数为1,A、3a中的字母是a,a的指数为1,故A选项正确;B、2ab中字母为a、b,故B选项错误;C、中字母a的指数为2,故C选项错误;D、字母与字母指数都不同,故D选项错误.故选A.5.A【解析】【分析】根据合并同类项的法则,结合选项计算进行选则.【详解】解:A、3a2-2a2=a2,原式计算正确,故本选项正确;B、3a2-2a2=a2,原式计算错误,故本选项错误;C、3a2-a2=2a2,原式计算错误,故本选项错误;D、3a2-a2=2a2,原式计算错误,故本选项错误.故选:A.【点睛】本题考查了合并同类项,解题的关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.6.B【解析】【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【详解】解:-18-2=-20℃,-18+2=-16℃,温度范围:-20℃至-16℃,故选:B.【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度.7.A【解析】【分析】可借助数轴直接得结论,亦可用右边点表示的数减去左边点表示的数得结论【详解】解:表示-1的点与表示3的点间距离为:3-(-1)=4.故选:A.【点睛】本题考查了数轴上两点间的距离,数轴上两点间的距离=右边点表示的数-左边点表示的数.8.C【解析】∵(±4)2=16,∴所以一个数的平方等于16,则这个数是±4.故选C.【方法点睛】此题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.9.D【解析】【分析】根据绝对值的意义确定m、n的值,然后根据在数轴上表示m和n的点位于原点的两侧分类讨论即可确定正确的选项.【详解】解:∵|m|=2,|n|=3,∴m=±2,n=±3,∵在数轴上表示m的点与表示n的点分居原点的两侧,∴m=2时n=-3,m+n=2-3=-1;m=-2时n=-3,m+n=-2+3=1;故选D.【点睛】本题考查了数轴和绝对值的知识,解题的关键是能够根据绝对值的意义确定m的取值并能够分类讨论.绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.10.D【解析】【分析】将2c a b -代入原式得原式152333=⨯--,进一步计算可得.【详解】解:当2ca b-=3时,原式152333=⨯--=6-2=4,故选D .【点睛】本题主要考查代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.11.8,6.【解析】【分析】首先根据相反数的含义和求法,可得-8的相反数是8;然后根据负有理数的绝对值是它的相反数,可得-6的绝对值是6.【详解】解:-8的相反数是8,-6的绝对值是6.故答案为:8,6.【点睛】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.(2)此题还考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“-”.12.23-3【解析】【分析】根据单项式次数与系数的定义分析得出即可.【详解】解:单项式223x y-的系数是:23-,次数是:213+=;故答案为23-,3.【点睛】此题主要考查了单项式的次数与系数,熟练掌握相关的定义是解题关键.13.2【解析】【分析】根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,得出m,n的值,进而解答即可.【详解】解:因为3x2y m-1与-x n y3是同类项,可得:n=2,m-1=3,解得:n=2,m=4,所以m-n=4-2=2,故答案为:2.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可先求得m和n的值,从而求出它们的和.14.2x y(答案不唯一)【解析】【分析】根据要求,多项式必须是3项,而且含有x,y,且最高次项的次数是2.【详解】依题意可得,只含有字母x,y的二次三项式可以是x2+2xy+1等.故答案为x2+2xy+1【点睛】本题考核知识点:多项式.解题关键点:理解多项式次数和项数. 15.(a﹣2b)【解析】试题分析:根据平移可得蚂蚁所爬的距离=AB+BC,即3a-b=2a+b+BC.考点:代数式的减法计算16.2016或2017个【解析】2016厘米,从整数点开始,有2017个点,不从整数开始可以盖2016个.所以填2016或2017个.17.(1)-12;(2)1.【解析】【分析】(1)利用加法的交换律和结合律,依据加法法则计算可得;(2)运用乘法分配律计算可得.【详解】(1)原式=-8.5-1.5+224633⎛⎫-⎪⎝⎭=-10-2=-12;(2)原式=6-3-2=1【点睛】本题考查加法的交换律(两个加数交换位置,和不变),加法结合律(先把前两个数相加,或先把后两个数相加,和不变)和乘法分配律(两个数的和,乘以一个数,可以拆开来算,积不变),熟练掌握是解题的关键.18.(1)﹣52st+6;(2)3a+b.【解析】【分析】(1)根据合并同类项的法则计算可得;(2)去括号,再合并同类项即可得.【详解】(1)12st﹣3st+6=(12﹣3)st+6=﹣52st+6;(2)原式=﹣3ab+6a﹣3a+b+3ab=3a+b.【点睛】此题考查整式的加减,掌握去括号法则和合并同类项的方法是解决问题的关键.(1)整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.(2)去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“-”时,去括号后括号内的各项都要改变符号.19.(1)x=3;(2)x=﹣6.【解析】【分析】解方程的一般步骤为去分母,去括号,移项,合并同类项,系数化为1,根据一般步骤进行解题即可.【详解】解:(1)移项,得3x﹣2x=3,合并同类项,得x=3;(2)移项,得﹣12x+16x=3﹣1,合并同类项,得﹣13x=2,系数化1,得x=﹣6.【点睛】本题考查了一元一次方程的求解,属于简单题,熟悉解题步骤是解题关键.20.71 2.【解析】【分析】利用非负数的性质求出a、b的值,再根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【详解】7a2b+(﹣4a2b+5ab2)﹣2(2a2b﹣3ab2)=7a2b﹣4a2b+5ab2﹣4a2b+6ab2=﹣a2b+11ab2.∵(a﹣2)2+|b+12|=0.(a﹣2)2≥0,|b+12|≥0,∴a=2,b=﹣1 2,∴原式=﹣22×(﹣12)+11×2×(﹣12)2=71 2【点睛】本题考查了整式的化简求值,去括号是解题关键,括号前是正数去括号不变号,括号前是负数去括号要变号.21.小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.【解析】试题分析:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设小明1月份的跳远成绩为xm,则5月份﹣2月份=3(2月份﹣1月份),据此列出方程并解答.试题解析:设小明1月份的跳远成绩为xm,则根据题意得:4.7﹣4.1=3(4.1﹣x),解得x=3.9.则每个月的增加距离是4.1﹣3.9=0.2(m).答:小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.考点:一元一次方程的应用22.在数轴上表示下列各数如图所示见解析,﹣4<﹣2<0<﹣(﹣1)<212<|﹣5|.【解析】【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【详解】在数轴上表示下列各数如图所示.﹣4<﹣2<0<﹣(﹣1)<212<|﹣5|.【点睛】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.23.(1)275,572;(2)(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【解析】【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a,三位数是100a+10(a+b)+b;右边的两位数是10a+b,三位数是100b+10(a+b)+a;“数字对称等式”为:(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].故答案为275,572;(10b+a)[100a+10(a+b)+b]=(10a+b[100b+10(a+b)+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.24.(1)1;(2)-2.5或4.5;(3)2.【解析】【分析】(1)根据点P到点M,点N的距离相等,可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(2)根据两点间的距离公式结合点P到点M,点N的距离之和是7,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)设运动时间为t分钟,则点P表示的数为-3t,点M表示的数为-t-2,点N表示的数为-4t+4,根据两点间的距离公式结合点P到点M,点N的距离相等,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【详解】解:(1)根据题意得:|x-4|=|x-(-2)|,解得:x=1.故答案为1.(2)根据题意得:|x-4|+|x-(-2)|=7,解得:x1=-2.5,x2=4.5.∴数轴上存在点P,使点P到点M,点N的距离之和是7,x的值为-2.5或4.5.(3)设运动时间为t分钟,则点P表示的数为-3t,点M表示的数为-t-2,点N表示的数为-4t+4,根据题意得:|-3t-(-t-2)|=|-3t-(-4t+4)|,∴-3t-(-t-2)=-3t-(-4t+4)或-3t-(-t-2)=3t+(-4t+4),解得:t1=2,t2=-2(舍去).答:2分钟时点P到点M,点N的距离相等.【点睛】本题考查了一元一次方程的应用以及数轴,找准等量关系,正确列出一元一次方程是解题的关键.。
江苏省南京市鼓楼区鼓楼实验中学2023-2024学年七年级下学期3月月考数学试题

江苏省南京市鼓楼区鼓楼实验中学2023-2024学年七年级下学期3月月考数学试题一、单选题1.2000多年前,有一位著名的数学家对前人在数学上的成果进行了系统整理,把人们公认的一些真命题作为公理,并以此为出发点,用推理的方法证实了一系列命题,编纂成了人类文明史上具有里程碑意义的数学巨著——《原本》.这位数学家是( )A .阿基米德B .泰勒斯C .欧几里得D .苏格拉底 2.如图,下列条件中,能判定AB CD P 的是( )A .24∠∠=B .13∠=∠C .5ADC ∠∠=D .180ADC BCD ∠+∠=︒ 3.下列运算结果正确的是( )A .2510a a a ⋅=B .()22222ab a b =C .()330a a a -=≠D .()()3224a b ab a b -÷=- 4.在下面的正方形分割方案中,可以验证()()224a b a b ab +=-+的图形是( )A .B .C .D .5.下列选项中,可以用来说明命题“若24x >,则2x >”是假命题的反例是( ) A .3x = B .=1x - C .2x = D .3x =-6.若264A x y =++,226B y x =-+-,则A ,B 的大小关系为( )A .AB ≥ B .A B <C .A B >D .A B =二、填空题7.经测算,一个水分子的直径约为0.0000000004m ,数据0.0000000004用科学记数法表示为 .8.命题“对顶角相等”的逆命题是.9.已知x 与y 互为相反数,并且26x y -=,则y x 的值为.10.若82733x x ÷=,则x 的值是 .11.若一个长方体的长、宽、高分别是34x -,2x +和2x ,则它的体积是 .12.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程27kx y +=的解,则k 的值是 . 13.如图,将ABC V 沿BC 方向平移8cm 得到DEF V ,若7BF CE =,则BC 的长为 cm .14.若220240a a +-=,代数式()()220241a a -+的值是 .15.如图,AB CD ∥,点,E F 为AB 与CD 之间两点,AE EF ⊥,若28A ∠=︒,88F ∠=︒,则D ∠=°.16.在数学实验课上,刚开始,张老师将一副三角板中的两个直角顶点C 叠放在一起,CD 与CB 在同一直线上,CA 与CE 在同一直线上,其中=60B ∠︒,45E ∠=︒.如图,若三角板ABC 不动,将三角板CDE 绕直角顶点C 顺时针转动一周,转过的角度为α.当α=时,DE AB ∥.三、解答题17.计算:(1)()()2020*******π-⎛⎫-++- ⎪⎝⎭;(2)423822(2)a a a a a ⋅+-+÷18.计算:(1)()()()2239423a a a ++-;(2)()()3232a b a b +--+.19.用两种不同方法计算()3m n a a ⋅.20.解方程组:(1)23325x y x y +=⎧⎨-=⎩;(2)4155x y y x +=⎧⎨=+⎩.21.大课间结束后,“功不唐捐”学习小组的几个同学立即开始讨论数学问题:小明说:在同一平面内,平行于同一直线的两条直线也平行.小丽说:在同一平面内,垂直于同一直线的两条直线也垂直.小军说:你们两人说的命题都是真命题吗?小红说:我感觉他们两人说的命题好像不都是真命题…数学老师早就注意到他们的讨论,走过来说:这两个命题中,如果是真命题,请画图,写出已知、求证,并证明(注明理由);如果是假命题,请举反例画图说明.下面请你一起完成数学老师所说的任务.22.上周末,小金研究的一道几何题如下:如图,点G 在CD 上,已知180BAG AGD ∠+∠=︒,EA 平分BAG ∠,FG 平分AGC ∠,请说明AE GF ∥的理由.(1)小金的思路是:先根据“同角的补角相等”得到BAG AGC ∠=∠,再根据“角平分线的定义”,得到3=4∠∠,然后根据“内错角相等,两直线平行”,得到AE GF ∥.你认为小金的思路是的(“正确”或“错误”).(2)请你用整合教材学到的“框图”方式分析本题(不写说明过程).23.请用直尺、三角板、圆规等数学工具画图(保留痕迹,不写画法,有些画图步骤可写适当的文字说明).已知:如图,直线l 与直线l 外一点P .求作:直线m ,使得直线m 过点P ,且与直线l 平行.24.我们在解题时,经常会遇到“数的平方”,那么你有简便方法吗?这里,我们以“两位数的平方”为例,请你细心观察下列各式,探究其中的规律,回答问题:2213(133)103169=+⨯+=,2225(255)205625=+⨯+=,2234(344)3041156=+⨯+=,2262(622)6023844=+⨯+=,…(1)请根据上述规律填空:241==;(2)我们知道,任何一个两位数都可以表示为10a b +(个位数字为小于10的自然数b ,十位数字为小于10的正整数a ),根据上述规律写出:2(10)a b +=,并说明你写的规律是正确的.25.已知关于x ,y 的二元一次方程3ax y b +=(a ,b 均为常数,且0a ≠).(1)当2,1a b =-=时,用x 的代数式表示y ;(2)若223x a b y b b=-⎧⎨=+⎩是该二元一次方程的一个解, ①探索a 与b 的数量关系,并说明理由;②无论a 、b 取何值,该方程有一个固定的解,则这个解是 .26.【阅读材料】周末,小红自学苏科版初中数学七年级下册的课本第9章内容,然后独立做完了第73页上一道例题:例2计算:(3)(2)m n m n +-.小红忽然看到弟弟在用竖式乘法计算:3425⨯,过程如图1;小红想:是否可以用这个方法计算(3)(2)m n m n +-?她尝试写了解题过程如图2,结果正确.小红还联想到多项式除以多项式是否也可以运用竖式除法的方法进行,于是她先做了一道多位数除以多位数的除法计算题如图3,接着她尝试做了一道多项式除以多项式的习题如图4,爸爸亲自检验结果正确,并表扬了她善于思考、勇于探索的学习精神.【问题解决】下面请你从用中所学到的方法解决以下问题:(1)小红把多位数竖式乘法运算方法运用在多项式乘法运算上,这里运用的数学思想是.A.数形结合B.方程C.类比D.分类讨论(2)请你尝试用小红的竖式乘法运算方法计算:22+-+;x y x xy y()()(3)请计算32()()3452++-÷+的商式与余式.x x x x(4)若2320x x+-=,那么43++-的值是.x x x22356。
2023-2024学年江苏省苏州市张家港梁丰中学雏鹰班七年级(下)3月月考数学试卷+答案解析

2023-2024学年江苏省苏州市张家港梁丰中学雏鹰班七年级(下)3月月考数学试卷一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各式计算正确的是()A. B.C. D.2.中国大陆芯片领域的龙头企业“中芯国际”目前已经实现工艺芯片的量产,使中国集成电路制造技术与世界最先进工艺拉近了距离.数据用科学记数法表示为()A. B. C. D.3.若,则下列不等式一定成立的是()A. B. C. D.4.下列式子从左到右的变形是因式分解的是()A. B.C. D.5.如图,有A、B、C三种类型的卡片若干张,如果要拼成一个长为,宽为的大长方形,则需要A类、B类、C类卡片的张数分别为()A.5,3,6B.6,7,2C.6,2,7D.5,2,66.下列各对数值中,哪一组是方程的解()A. B. C. D.7.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕每只各重多少斤?”设每只雀重x 斤,每只燕重y 斤,可列方程组为()A. B.C.D.8.有4张长为a 、宽为的长方形纸片,按如图的方式拼成一个边长为的正方形,图中阴影部分的面积为,空白部分的面积为若,则a 、b 满足()A.B. C. D.9.若不等式组有解,则m 的取值范围是()A.B.C.D.10.若关于x 的不等式的解集是,则关于x 的不等式的解集是()A.B.C. D.11.用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的已知这个铁钉被敲击3次后全部进入木块木块足够厚,且第一次敲击后铁钉进入木块的长度是2cm ,若铁钉总长度为acm ,则a 满足()A.B.C.D.12.已知非负数x ,y ,z 满足,设,则W 的最大值与最小值的和为()A. B.C.D.13.对x,y定义一种新的运算G,规定,若关于正数x的不等式组恰好有4个整数解,则m的取值范围是()A. B. C. D.14.叶子是植物进行光合作用的重要部分,研究植物的生长情况会关注叶面的面积.在研究水稻等农作物的生长时,经常用一个简洁的经验公式来估算叶面的面积,其中a,b分别是稻叶的长和宽如图,k是常数,试验小组采集了某个品种的稻叶的一些样本,发现绝大部分稻叶的形状比较狭长如图,大致都在稻叶的处“收尖”.根据图2进行估算,对于此品种的稻叶,经验公式中k的值约为()A. B.C. D.15.试确定关于x,y的方程的整数解的个数为()A.0B.1C.2D.3二、填空题:本题共15小题,每小题3分,共45分。
人教版七年级上册数学第三次月考试题

人教版七年级上册数学第三次月考试卷一、单选题1.-32的倒数是()A .23B .32-C .23-D .322.下列计算正确的是()A .3a+4b=7abB .3a-2a=1C .22232a b ab a b -=D .222235a a a +=3.在代数式225252-6a s m n mn xy t +、、、、π中,整式的个数是()A .2B .3C .4D .54.如果x =1是关于x 的方程5x +2m ﹣7=0的解,那么m 的值是()A .﹣1B .1C .6D .﹣65.下列说法正确的有()①若|a |=-a,则a<0;②如果mx=my ,那么x=y ;③1.32×104是精确到百分位;④多项式233412xy x y -+是四次三项式.A .1个B .2个C .3个D .4个6.若关于x 的方程1(2)50m m x --+=是一元一次方程,则m 的值为()A .2B .-2C .2或-2D .-2或17.若5x =,3-64y =,且0x y +>,则2x-y 的值为()A .14B .6C .-6D .-148.已知代数式223a a +的值是4,则代数式2232019a a ++值是()A .2023B .2026C .2029D .20319.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的34.若设甲一共做了x 天,则所列方程为()A .13584x x ++=B .-13584x x +=C .13-584x x +=D .-13-584x x =10.如图是一个树形图的生长过程,自上而下一个空心圆生成一个实心圆,一个实心圆生成一个实心圆和一个空心圆,依此生长规律,第10行的实心圆的个数是()A .27B .29C .32D .3411.已知关于的方程441632ax x x -+-=-的解是正整数,则符合条件的所有整数的和是()A .-1B .1C .4D .9二、填空题12.按图中程序运算,如果输入−1,则输出的结果是________.13.今年国庆黄金周,重庆游客出游人数排全国第六,接待游客逾3859万人次,请把数38590000用科学记数法表示为___________________.14.单项式3572x y -的系数是______________.15.我们规定能使等式2424m n m n++=+成立的一对数(m,n )为“好友数对”.例如当m=2,n=-8时,能使等式成立,则(2,﹣8)是“好友数对”.若(a ,6)是“好友数对”,则a =_____.16.若关于x 、y 的代数式32323(2)mx nxy x xy xy ---+中不含三次项,则m-6n 的值为_______.17.已知数,,a b c 的大小关系如图所示:则下列各式:①()0b a c ++->;②()0a b c --+>;③1a cca b b ++=;④0bc a ->;⑤2a b c b a c b --++-=-.其中正确的有_____(请填写编号).18.长江水质勘探队为考察某地水质,需要坐船逆流而上,途中不小心把勘探工具掉入水中(工具随水漂流),当有人发现后将船立即掉头,将船的静水速度变为原来的2倍追勘探工具,已知船从掉头到追上工具共用了8分钟,那么从工具掉入水里到追上共用的时间是_________分钟(船掉头时间忽略不计).三、解答题19.计算:(1)-42×|12-1|-(-5)+2(2)()53456111647⎛⎫⎛⎫-⨯-÷-⨯ ⎪ ⎪⎝⎭⎝⎭20.解方程:(1)5x-8=3(x+2)(2)252146x xx +--=+21.化简求值:2232[54(1)3]2xy x x xy x ---+-,其中x,y 满足2-1x y a b +与3-3y ab -是同类项.22.已知方程9462x x+=的解与关于的方程63(1)2ax x-=-的解互为相反数,求a的值.23.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>6且x<14,单位km)(1)这辆出租车第三次行驶完后在离出发点的方向;经过连续4次行驶后,这辆车所在的位置(结果用表示);(2)这辆出租车一共行驶了多少路程(结果用表示);当x=8时,出租车行驶的路程是多少.24.“双十一购物狂欢节”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业.某网络直播平台推销A、B两种商品,每件A商品售价为200元,B商品售价为150元.(1)已知一件A商品的进价为120元,B商品的进价为100元,该直播平台在“双十一”前一天卖出A、B商品共200件,总利润为13600元,求A、B商品各卖出去多少件;(2)“双十一”当天,该平台决定将A商品的售价下调10%,B商品的售价保持不变,结果与(1)中的销售量相比,A商品的销售量增加了2a%,而B商品的销售量增加了a%,当天最终的销售额比前一天的销售额增加了14160元,求a的值.25.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数小1,那么我们把这样的自然数叫做“相连数”,例如:234,4567,56789,......都是“相连数”.(1)请直接写出最大的两位“相连数”与最小的三位“相连数”,并求它们的和;(2)若某个“相连数”恰好等于其个位数的576倍,求这个“相连数”.26.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣6,点B表示10,点C表示14,我们称点A和点C在数轴上相距20个长度单位.动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要时间为秒;P、Q两点相遇时,求出相遇点M 所对应的数是;(2)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.参考答案1.C 【解析】乘积为1的两个数互为倒数故答案选:C 2.D 【解析】【分析】根据整式运算法则计算即可.【详解】A .3a 和4b 不是同类型不可合并,该选项错误B .3a-2a=a ,该选项错误C .3a 2b 和2ab 2不是同类型不可合并,该选项错误D .2a 2+3a 2=5a 2正确故选D 【点睛】本题考查整式计算中合并同类项的知识点,熟记同类项的定义是解题关键.3.C 【解析】【分析】根据整式的定义将各项甄别出来即可.【详解】整式有:225252-6a m n mn xy +、、、π,共有4个故选C 【点睛】本题考查整式的定义,熟记概念是本题关键,注意π是实数并非字母.4.B 【解析】试题解析:把1x =代入方程5270x m +-=,得5270.m +-=解得: 1.m =故选B.5.B 【解析】【分析】根据整式的相关性质判断即可.【详解】①当a=0时,也满足|a |=-a ,该说法错误;②当a=0时,也满足mx=my ,该说法错误③1.32×104是精确到百分位,该说法正确;④233412xy x y -+最高次项是四次,因此该多项式是四次三项式,该说法正确.故选B 【点睛】本题考查整式相关性质概念的判断,出错点在于多项式的判别方式.6.B 【解析】【分析】由题意可以知道|m|-1=1且m-2≠0,解出即可.【详解】由题意得:1120m m ⎧-=⎨-≠⎩解得:m=-2故选B.【点睛】本题考查一元一次方程的定义,注意一次项系数不能为零.7.A 【解析】【分析】根据题意可得x =±5,y =-4,再根据0x y +>,得出x =5,再代入式子即可解出.【详解】∵5x =,3-64y =∴x =±5,y =-4∵0x y +>∴x =5∴2x -y =2×5-(-4)=14故选A 【点睛】本题考查代数求解,关键在于限制条件得出确定值.8.D 【解析】【分析】先解出2a 2+3a 的值,再整体代入.【详解】∵2243a a +=∴2a 2+3a =12∴22320192031a a ++=故选D 【点睛】本题考查代数的整体代入,关键在于观察题目所求的代数式与条件中代数式的关系,若求出a 的值反而变得复杂.9.B 【解析】【分析】题目默认总工程为1,设甲一共做x 天,由于甲先做了1天,所以和乙合作做了(x-1)天,根据甲的工作量+乙的工作量=总工作量的四分之三,代入即可.【详解】由题意得:甲的工作效率为15,乙的工作效率为18设甲一共做了x 天,乙做了(x-1)天∴列出方程:x x 13584-+=故选B 【点睛】本题考查一元一次方程的应用,工程问题的关键在于利用公式:工程量=工作时间×工作效率.10.D 【解析】【分析】通过图形可以得出第3行开始,实心球的个数等于上面两行实心球个数的和,依次计算即可.【详解】由题意得第5行有实心球3个,第6行有实心球5个,∴第7行有实心球3+5=8个第8行有实心球5+8=13个第9行有实心球13+8=21个第10行有实心球21+13=34个故选D 【点睛】本题为找规律题型,关键在于找到图形中的规律.11.B 【解析】【分析】利用解一元一次方程的一般步骤解出方程,根据题意求出a 的值,计算即可.【详解】441632ax x x -+-=-去分母,得:6x -4+ax =2x +8-3移项、合并同类项,得:(4+a )x =9解得:94x a=+∵方程的解为正整数∴a =-3,-1,5所有整数的和是1故选B 【点睛】本题考查一元一次方程的解法,本题关键在于题目中限制条件,需要找到所有满足题意的值.12.3【解析】试题解析:把x=-1代入得:-1+4-(-3)-5=-1+4+3-5=1<2,.把x=1代入得:1+4-(-3)-5=1+4+3-5=3>2,.则输出的结果是3.13.3.859×107【解析】【分析】根据科学记数法的规定即可.【详解】38590000=3.859×107故答案为:3.859×107【点睛】本题考查科学计数法的使用,关键在于熟练运用科学记数法.14.72-【解析】【分析】根据单项式系数的概念即可.【详解】3572x y -的系数是72-故答案为:72-【点睛】本题考查单项式系数的概念,关键熟记单项式的概念.15.32-【解析】【分析】根据题意列出式子662424a a ++=+,解出即可.【详解】由题意得:662424a a ++=+解得:32a =-故答案为:32-【点睛】本题考查学生阅读理解能力,关键在理解新定义,列出式子.16.0【解析】【分析】先将代数式降次排序,再得出式子解出即可.【详解】32323(2)mx nxy x xy xy---+=()()32213m x n xy xy-+-+∵代数式关于x 、y 不含三次项∴m -2=0,1-3n =0∴m =2,n =13∴162603m n -=-⨯=故答案为:0【点睛】本题考查代数式次数概念及代入求值,关键在于对代数式概念的掌握.17.②③⑤【解析】【分析】有数轴判断a 、b 、c 的符号和它们绝对值的大小,再判断所给出的式子的符号,写出正确的答案.【详解】由数轴知b<0<a<c ,|a|<|b|<|c|,①b+a+(−c)<0,故原式错误;②(−a)−b+c>0,故正确;③()1111c a b ca b ++=+-+=,故正确;④bc−a<0,故原式错误;⑤2a b c b a c a b c b c a b --++-=---+-=-,故正确;其中正确的有②③⑤.【点睛】此题考查数轴、绝对值,解题关键在于数轴结合绝对值的综合运用.18.16【解析】【分析】设x 分钟后发现掉了物品,船的静水速度V 1水速为V 2,根据等量关系:轮船顺水8分钟走的路程=物品(x+8)分漂流的路程+轮船逆水x 分走的路程,代入数值计算即可.【详解】设x 分钟后发现掉了物品,船在静水中的速度V 1,水速V 2由题意得:(x +8)V 2+x (V 1-V 2)=8(V 1+V 2)xV 2+8V 2+xV 1-xV 2=8V 1+8V 2xV 1=8V 1∵V 1≠0∴x =8.共用时间为:8+8=16,故答案为16【点睛】本题考查行船问题,关键在于对静水速度,水速,顺水速度,逆水速度的理解.19.(1)-1;(2)-24;【解析】【分析】根据有理数的运算法则即可.【详解】(1)原式=116522-⨯++=﹣8+5+2=﹣1(2)原式=2174 561647⎛⎫⎛⎫-⨯-÷-⨯⎪ ⎪⎝⎭⎝⎭=2144 561677⎛⎫⎛⎫-⨯-⨯-⨯⎪ ⎪⎝⎭⎝⎭=4214 567167⎛⎫⎛⎫-⨯⨯-⨯-⎪ ⎪⎝⎭⎝⎭=3 324 -⨯=﹣24【点睛】本题考查有理数的计算,关键在于按照运算法则计算.20.(1)x=7;(2)165 x=-【解析】【分析】(1)先去括号,再移项、合并同类项,解出即可.(2)先去分母,再去括号,移项、合并同类项,解出即可.【详解】(1)5x-8=3(x+2)去括号得:5x-8=3x+6移项、合并同类项得:2x=14解得:x=7(2)252146x x x +--=+去分母得:3(x+2)-12=2(5-2x)+12x去括号得:3x+6-12=10-4x+12x移项、合并同类项得:﹣5x=16解得:165x =-【点睛】本题考查解方程,关键在于分数类需要先去分母.21.原式=0【解析】【分析】根据同类项的概念可以解出x 与y 的值,再将值代入化简后的式子中解出来即可.【详解】由题意得:x+2=1;y-1=3-y解得:x=-1;y=22232[54(1)3]2xy x x xy x---+-()2222222[5643]256434124xy x x xy xxy x x xy xxy =--++-=-+---=--=--⨯-=【点睛】本题考查同类型的概念,关键在于牢记概念,化简细心.22.a =-2【解析】【分析】先由第一个方程算出3x ,再将相反数代入第二个方程解出a 即可.【详解】解:9462x x+=9412x x+=34x =63(1)2ax x -=-126(1)x a x -=-66x a =-由题意得两解互为相反数,则将34x =-代入66x a =-中86a -=-a =-2【点睛】本题考查方程的解,关键在于计算准确,能整体代入.23.(1)正东;(182x -)km ;(2)(9162x -)km ;20km ;【解析】【分析】(1)将前三次加起来判断其正负即可判断方向;将四次加起来即可.(2)求路程需要将代数的绝对值加起来;代入式子即可.【详解】(1)将前三次的和加起来:134422x x x x -+-=-∵x >6且x <14∴3402x ->∴第三次行驶完在离出发点的正东方向;将四次的和加起来:()11426822x x x x x-+-+-=-经过连续4次行驶后,这辆车所在的位置为:(182x -)km(2)出租车共行驶的路程为:()19|||||4||26|1622x x x x x +-+-+-=-这辆出租车一共行驶了(9162x -)km当x=8时,原式=36-16=20km【点睛】本题考查正负意义的应用,关键在于对式子正负的判断.24.(1)A 商品卖出了120件,B 商品卖出了80件.(2)a 的值为30.【解析】【分析】(1)设A的商品为x件,则B的商品为(200-x)件,根据题意列出式子解出来即可.(2)根据题意算出第一天的销售额,用第二天的销售额减去第一天的销售额就是增加的销售额,列出式子解出来即可.【详解】(1)设卖出去A商品x件,则卖出去B商品(200-x)件(200-120)x+(150-100)(200-x)=1360030x=3600x=120200-x=80(件)答:A商品卖出去120件,B商品卖出去80件.(2)由题意得:第一天的销售额为:200×120+150×80=36000(元)200(1-10%)×120(1+2a%)+150×80(1+a%)-36000=1416021600(1+2a%)+12000(1+a%)=5016055200a%=16560a=30答:a的值为30.【点睛】本题为一元一次方程销售问题,关键在于根据销售公式和利润公式列出方程式. 25.(1)212;(2)这个“相连数”为:3456;【解析】【分析】(1)根据题意得出数字,相加即可.(2)先由题意得出x的范围,再分类讨论列出式子即可.【详解】(1)由题意得:最大的两位“相连数”:89;最小的三位“相连数”:123;它们的和:89+123=212;(2)设这个“相连数”的个位数为x.∵1≤x≤9∴1×576≤这个“相连数”≤9×576=5211∴这个数可能为三位数或四位数①当这个数为三位数时:100(x-2)+10(x-1)+x=576x 100x-200+10x-10+x=576x465x=﹣210x=210 465不符合题意,舍去②当这个数为四位数时:1000(x-3)+100(x-2)+10(x-1)+x=576x1000x-3000+100x-200+10x-10+x=576x535x=3210x=6∴这个“相连数”为:3456【点睛】本题考查代数式的应用,关键在于理解题意,分类讨论.26.(1)15;4(2)t的值为2、3.5或5.【解析】【分析】(1)根据路程除以速度等于时,可得答案;根据相遇时P,Q的时间相等,可得方程,解出即可.(2)根据PO与BQ的时间相等,可得方程,解出即可.【详解】(1)点P运动至点C时,所需时间t=6÷2+10÷1+4÷2=15(s),答:动点P从点A运动至C点需要15秒;由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则6÷2+x÷1=4÷1+(10-x)÷2,x=4,答:M所对应的数为4.(2)P点运动完时间:6÷2+10÷1+4÷2=15(s)Q点运动完时间:4÷1+10÷2+6÷1=15(s)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有以下可能:①动点Q在CB上,动点P在AO上,则:4-1t=6-2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:4-1t=1×(t-3),解得:t=3.5.③动点Q在BO上,动点P在OB上,则:2(t-4)=1×(t-3),解得:t=5.④动点Q在OA上,动点P在OB上,则:1×(t-9)+10=1×(t-3),无解④动点Q在OA上,动点P在BC上,则:1×(t-9)+10=2×(t-13)+10,解得:t=17>15,综上所述:t的值为2、3.5或5.【点睛】本题考查动点问题,关键在于分段讨论,弄清楚每一段的时间及点所在的位置.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级3月月考数学试卷
(测试范围:相交线与平行线,实数) 姓名分数
一、选择题(每小题3分,共30分)
1.若三条直线交于一点,则共有对顶角(平角除外)()
A.6对B.5对C.4对D.3对
2.如图a∥b,∠3=108°,则∠1的度数是()
A.72°B.80°C.82°D.108°
3.的平方根是()
A.3 B.±3 C.D.±
4.如图,点E在BC的延长线上,由下列条件不能得到AB∥CD的是()
A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D .∠D+∠DAB=180°
5.如图,AB∥CD,那么∠A,∠P,∠C的数量关系是()
A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180 °C.∠A+∠P+∠C=360°D.∠P+∠C=∠A
6.下列式子中,计算正确的是()
A.﹣=﹣0.6 B.=﹣13 C.=±6 D.﹣=﹣3 2题图4题图5题图9题图
7.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是()A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°
C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次右拐50°
8.下列命题中,错误的是()
A.邻补角是互补的角B.互补的角若相等,则此两角是直角
C.两个锐角的和是锐角D.一个角的两个邻补角是对顶角
9.已知:AB∥CD,∠ABE=120°,∠C=25°,则∠α度数为()
A.60°B.75°C.85°D.80°
10.下列说法正确的个数是()
①同位角相等;②过一个点有且只有一条直线与已知直线垂直;12题图
③三条直线两两相交,总有三个交点;④若a∥b,b∥c,则a∥c;⑤若a⊥b,b⊥c,则a⊥c.
A.1个B.2个C.3个D.4个
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题(每小题3分,共18分)
11.计算:49的平方根为,3的算术平方根为,﹣=.
12.如图直线AB,CD,EF相交于点O,图中∠AOE的对顶角是,∠COF的邻补角是.13.命题“垂直于同一条直线的两条直线平行”的条件是,结论是.
14.如图,已知a∥b,∠1=70°,∠2=40°,则∠3=度.
15.如图:在一张长为8cm,宽为6cm的长方形上,请画出三个形状大小不同的腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与长方形的一个顶点重合,其余两顶点在长方形的边上).
16.我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.
14题图15题图
三、解答题(共72分)
17.(10分)求下列各式中x的值.
①x2﹣25=0 ②4(x+1)2=16.
18.(8分)如图,∠1=47°,∠2=133°,∠D=47°,那么BC与DE平行吗?AB与CD呢?为什么?
19.(8分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.
解:∵EF∥AD(已知)
∴∠2=
又∵∠1=∠2(已知)
∴∠1=(等量代换)
∴AB∥
∴∠BAC+ =180°()
∵∠BAC=70°(已知)
∴∠AGD=.
20.(8分)若一个正数的平方根是2a﹣3和4﹣a,求a的值及这个正数.
21.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.
22.(8分)如图:CD∥BE,试判断∠1、∠2、∠3之间的关系,并说明理由.
23.(10分)已知:AD⊥AB,DE平分∠ADC,CE平分∠BCD,∠1+∠2=90°,求证:BC⊥AB.
24.(12分)已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F.
(1)如图1,若∠E=80°,求∠BFD的度数.
(2)如图2中,∠ABM=∠ABF,∠CDM=∠CDF,写出∠M与∠E之间的数量关系并证明你的结论.(3)若∠ABM=∠ABF,∠CDM=∠CDF,设∠E=m°,直接用含有n,m°的代数式表示写出∠M=.
2014-2015学年湖北省武汉市部分学校七年级(下)月考数学试卷
(4月份)
参考答案
一、选择题(每小题3分,共30分)
1.A;2.A;3.D;4.C;5.C;6.D;7.B;8.C;9.C;10.A;
二、填空题(每小题3分,共18分)
11.±7;;﹣10;12.∠BOF;∠COE、∠FOD;13.两条直线垂直于同一条直线;这两条直线互相平行;14.70;15.;16.;
三、解答题(共72分)
17.;18.;19.∠3;∠3;DG;∠AGD;(两直线平行,同旁内角互补);110°;20.;21.;22.;23.;24.;。