人教版初二数学上册分式方程教学设计.3.2_分式方程》教案设计陈沛
人教版八年级数学上册《分式方程》教学设计

课题名称分式课型复习课课时 1 备课时间一、教学目标(知识,技能,情感态度、价值观)一、知识与能力:1.能确定分式有意义、无意义和分式的值为零时的条件.2.能熟练应用分式的基本性质进行分式的约分和通分.3.能熟练进行分式的四则运算及其混合运算,并会解决与之相关的化简、求值问题.二、过程与方法:使学生通过分数与分式比较培养学生良好的类比联想的思维习惯和思想方法。
三、情感态度与价值观:让学生体会到数学的应用价值。
提高学生学习数学的兴趣,将数学很好的与生活联系起来。
二、教学重难点能熟练进行分式的四则运算及其混合运算,并会解决与之相关的化简、求值问题. 三、教学策略选择与设计借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
采用启发、诱思、讲解和讨论相结合的方法使学生充分掌握知识。
进行多种题型的训练,使同学们能灵活运用本节重点知识。
四、教学过程设计教师活动学生活动随记一、知识回顾分式的概念分式的概念定义形如________(A、B是整式,且B中含有字母,且B≠0)的式子叫做分式有意义的条件值为0的条件分式的基本性质及相关概念分式的基本性质AB=A×B×M,AB=A÷B÷M(M是不为零的整式)约分把分式的与中的约去,叫做分式的约分应用注意:约分的最终目标是将分式化为最简分式,即分子和分母没有公因式的分式通分利用分式的基本性质,使______和______同时乘适当的整式,不改变分式的值,把异分母化成同分母的分式,这样的分式变形叫做分式的通分应用注意:通分的关键是确定几个分式的公分母学生回忆知识点,根据表格回答。
最简公分母异分母的分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母分式的运算分式的加减同分母分式相加减 分母不变,把分子相加减,即 a bc± =________异分母分式相加减 先通分,变为同分母的分式,然后相加减,即a cb d± =_____ ±____ _=_________分式的乘除乘法法则分式乘分式,用分子的积做积的分子,分母的积做积的分母,即 ac bd=________除法法则 分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即a cb d÷=______×________=________(b ≠0, c ≠0, d ≠0)二、 综合运用1.下列式子中是分式的是( )A .710x B .59x + C .x +20100 D .522.使分式11-+a a 有意义的a 的取值范围是( )学生回忆知识点,根据表格回答。
人教版八年级上册数学《 分式方程》(优质教案)

人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
分式方程教学设计

分式方程教学设计第1篇:分式方程教学设计分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要讨论的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x 2x+2=5+x x=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.例2.一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为(20+v)千米/时,逆流航行的速度为(20-v)千米/时,顺流航行100千米所用的时间为时。
人教版数学八年级上册教学设计15.3《分式方程》

人教版数学八年级上册教学设计15.3《分式方程》一. 教材分析《分式方程》是人教版数学八年级上册的教学内容,本节课主要让学生掌握分式方程的定义、解法以及应用。
通过学习,学生能够理解和掌握分式方程的概念,能够熟练运用解法求解分式方程,并能够将分式方程应用于实际问题中。
二. 学情分析学生在七年级时已经学习了分式的相关知识,对分式的概念、性质和运算有一定的了解。
但是,对于分式方程的概念和解法,学生可能还没有完全掌握。
因此,在教学过程中,需要引导学生复习和巩固分式的知识,并通过例题和练习题帮助学生理解和掌握分式方程的解法。
三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。
2.能够将分式方程应用于实际问题中,提高解决问题的能力。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.分式方程的定义和解法。
2.将分式方程应用于实际问题中。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索;通过案例分析和练习题,让学生理解和掌握分式方程的解法;通过小组合作学习,培养学生的合作意识和团队精神。
六. 教学准备1.PPT课件。
2.练习题和案例。
3.黑板和粉笔。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生复习和巩固分式的知识。
例如:“我们已经学习了分式的哪些知识?分式有哪些性质和运算规则?”2.呈现(15分钟)通过PPT课件展示分式方程的定义和解法,让学生理解和掌握。
同时,通过案例教学法,让学生了解分式方程在实际问题中的应用。
3.操练(15分钟)让学生分组合作,解决一些简单的分式方程问题。
教师巡回指导,解答学生的问题,并给予鼓励和表扬。
4.巩固(10分钟)让学生独立完成一些分式方程的练习题,巩固所学知识。
教师选取部分题目进行讲解和分析,解答学生的问题。
5.拓展(10分钟)让学生思考和探索分式方程在实际问题中的应用,提出一些实际问题,引导学生运用分式方程进行解决。
人教版八年级上册数学《 分式方程》(优质教学设计)

人教版八年级上册数学《分式方程》(优质教学设计)一. 教材分析人教版八年级上册数学《分式方程》这一节内容,是在学生已经掌握了方程和等式的基本性质的基础上进行教学的。
本节课主要让学生了解分式方程的概念,学会解分式方程的方法,并能够应用分式方程解决实际问题。
教材通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
二. 学情分析八年级的学生已经具备了一定的数学基础,对方程和等式有一定的了解。
但是,学生对分式方程的理解和应用还比较薄弱。
因此,在教学过程中,需要通过具体的例子,引导学生理解分式方程的概念,掌握解分式方程的方法,并能够应用分式方程解决实际问题。
三. 教学目标1.让学生了解分式方程的概念,理解分式方程的意义。
2.引导学生掌握解分式方程的方法,并能够熟练运用。
3.通过解决实际问题,培养学生的应用能力。
四. 教学重难点1.重点:分式方程的概念,解分式方程的方法。
2.难点:解分式方程的步骤和技巧。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
同时,运用小组合作学习法,让学生在小组内讨论和分享解题经验,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于展示和解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式方程的概念。
例如,某商店举行打折活动,原价为100元的商品打八折后,顾客实际支付了72元,求打折的力度。
让学生尝试用方程来解决这个问题,从而引出分式方程的概念。
2.呈现(10分钟)展示几个分式方程的例子,让学生观察和分析。
例如:(1)(=2)(2)(=3)引导学生总结解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。
3.操练(10分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程的理解和掌握程度。
教师可适时给予提示和指导。
4.巩固(10分钟)学生进行小组讨论,分享解题经验,总结解分式方程的技巧。
八年级数学上册《分式方程》教案、教学设计

2.注重启发式教学,引导学生主动探究,激发学生的学习兴趣,提高学生的参与度。
3.创设贴近生活的情境,让学生在实际问题中感受分式方程的应用,提高学生的应用意识。
4.加强对分式方程求解方法的讲解与指导,帮助学生克服困难,建立信心。
5.课后阅读:阅读相关数学故事或数学家传记,了解数学发展史,提高学生的数学文化素养。
6.作业要求:
-请同学们按时完成作业,保持字迹清晰、步骤完整。
-遇到问题时,及时与同学、老师沟通交流,共同解决。
-作业完成后,认真检查,确保解答正确。
7.提交时间:作业将于下节课开始前提交,教师将及时批改并反馈。
3.互动提问:针对学生在练习中遇到的问题,进行师生互动、生生互动,共同解决问题。
(五)总结归纳
1.知识点回顾:引导学生回顾本节课所学的分式方程的定义、求解方法及注意事项。
2.课堂小结:对本节课的教学内容进行总结,强调重点和难点,巩固学生的记忆。
3.情感态度与价值观:强调数学知识在实际生活中的应用,激发学生学习数学的兴趣,培养良好的数学素养。
3.设计不同难度的练习题,让学生在独立完成练习的过程中,逐步提高解决问题的能力,培养学生分析问题、解决问题的能力。
4.引导学生总结分式方程求解的规律和技巧,培养学生的逻辑思维能力和抽象思维能力。
5.通过对实际问题的分析,让学生体会数学在实际生活中的应用,提高学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观
八年级数学上册《分式方程》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式方程的定义,掌握分式方程的一般形式,能够识别并写出分式方程。
人教版八年级数学上册分式方程教学设计

6.情感关怀,营造氛围:关注学生的学习情感,营造一个温馨、支持的学习环境,让学生在轻松的氛围中学习。
-教师应以亲切的态度对待学生,鼓励学生提出疑问,给予耐心的解答和帮助。
7.创新思维,拓展视野:在教学过程中,鼓励学生思考问题的多种可能性,培养学生的创新思维和解决问题的能力。
-第3题:将以下实际情境转化为分式方程,并求解。
这些题目旨在帮助学生巩固分式方程的基本概念和求解方法。
2.提高拓展题:选择以下两题进行解答:
-第4题:比较下列分式方程的难易程度,并说明原因。
-第5题:求解一个含有两个未知数的分式方程组,并讨论其解的情况。
这些题目旨在提高学生的分析能力和解题技巧。
3.应用实践题:结合生活实际,自选一个情境,建立分式方程,并解决以下问题:
3.应用实例:结合教材中的例题,讲解分式方程在实际生活中的应用,让学生体会数学的实用性。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
-分式方程与整式方程的联系与区别是什么?
-分式方程在实际生活中的应用有哪些?
2.汇报交流:各小组汇报讨论成果,教师点评并总结,引导学生形成系统化的认识。
针对以上情况,教师应充分了解学生的认知水平和学习需求,采用启发式教学策略,引导学生从已知知识向新知识过渡。在教学中,注重培养学生的逻辑思维能力和问题解决能力,鼓励学生积极参与课堂讨论,提高他们的自主学习能力。同时,关注学生的情感态度,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中,更好地理解和掌握分式方程的知识。
六、课堂小结
1.让学生回顾本节课所学内容,总结分式方程的知识点。
人教版八年级上册数学《 分式方程(二)》教学设计

人教版八年级上册数学《分式方程(二)》教学设计一. 教材分析人教版八年级上册数学《分式方程(二)》的内容主要包括分式方程的解法、分式方程的应用等。
本节课的教学内容是在学生已经掌握了分式方程的基本概念和一元一次方程的解法的基础上进行的。
通过本节课的学习,使学生理解和掌握分式方程的解法,提高解决实际问题的能力。
二. 学情分析学生在七年级时已经学习过一元一次方程和方程的解法,对基本的方程概念和求解方法有一定的了解。
但是,对于分式方程,学生可能还存在着一些困惑,如分式方程的解法步骤、解题思路等。
因此,在教学过程中,需要引导学生进行思考和探索,帮助他们理解和掌握分式方程的解法。
三. 教学目标1.使学生理解和掌握分式方程的解法。
2.培养学生的数学思维能力和解决实际问题的能力。
3.提高学生的学习兴趣和自信心。
四. 教学重难点1.分式方程的解法步骤和思路。
2.分式方程在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设计具有挑战性和实际意义的问题,引导学生进行思考和探索,从而提高他们的数学思维能力和解决实际问题的能力。
同时,通过小组合作学习,培养学生的团队合作意识和沟通能力。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备教案和教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出分式方程的概念,激发学生的学习兴趣。
2.呈现(15分钟)讲解分式方程的解法步骤和思路,通过示例进行演示,让学生理解和掌握。
3.操练(15分钟)让学生独立完成一些分式方程的练习题,巩固所学的知识。
4.巩固(5分钟)对学生的练习进行点评和讲解,解答他们的疑惑,巩固所学知识。
5.拓展(10分钟)通过一些实际问题,引导学生运用所学的分式方程知识进行解决,提高他们的解决实际问题的能力。
6.小结(5分钟)对本节课的学习内容进行总结,强调分式方程的解法步骤和思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1532 分式方程
教学内容:分式方程(2)
知识目标: 1. 会分析题意找出等量关系.
2. 会列出可化为一元一次方程的分式方程解决实际问题
能力目标:通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,使学生能用所学的知识服务于我们的生活。
情感目标:培养学生学习数学的兴趣。
教学重点:利用分式方程组解决实际问题.
教学难点:列分式方程表示实际问题中的等量关系.
教学方法:引导启发、探究交流、讲练结合
教学过程:
r复习•预习
1-解分式方程的步骤有哪些?每一步你最容易出电在哪些方面?
2.剳厉程应用题的五个步興是; ___________ ;______ ; ______ ;_____
3・我们现在所学过的应用题有几种举型7毎种类型趣怡基本公式是件么?
(1)行程问题:基本公式: ______________ .
而行程问题中又分相遇问题、追及问题•它们常用的公式有哪些?
⑵数字问题
在数字问题中要掌握十进制数的表示法.
⑶工程问题
基本公式:______________________________
⑷顺水逆水问题
v顺水= ____________ ; v 逆水= __________________
例、习题的意图分析
本节的例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲
乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程;(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程教科书例4是一道行程问题的应用题也与旧教材的这类题有所不同.(1)本题中涉及到
的用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2 )例题中的分析用填空的形式提示,学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度为(x+v)千米/时,以及提速后列车行驶(x+50)千米所用的时间.
这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程
中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教
师不要替代他们思考,不要过早给出答案
教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和
解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一
些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务•特别是题目中的
数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力
二、例题探解
例3•两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,
这时增加了乙队,两队又共同工作了半个月,总工程全部完成。
哪个队的施工速度快?
1 1
【引导分析】甲队一个月完成总工程的3,设乙队如果单独施工1个月能完成总工程的x ,
1 1
那么甲队半个月完成总工程的 6 ,乙队半个月完成总工程的2x ,两队半个月完成总工程的
1 丄
6 + 2x。
等量关系是:甲队单独做的工作量+两队共同做的工作量=1
1 1 丄
则有3+ 6+ 2x= 1
(小组探究,学生板书解答、检验过程)
例4:某列列车平均提速前千米/a寸。
用相同的时迅列车提速前於菇千米,提速后比提速前多行驶駁壬米,提速前列车的平均速度是多少?
教师引异分析:这里的字母口呂表下已*匾鹅,设提速前的平均速度为北千米册h则
s
提速前列车行驶s千米所用的时间为X小时,提速后列车的平均速度为(x + v)千米/时,
s+50
提速后列车行驶(s+ 50)千米所用的时间为x+V小时。
等量关系:提速前行驶50千米所用的时间=提速后行驶(s+ 50)千米所用的时间
s s+ 50
列方程得:x= X+V
(学生板书解答、检验过程并在班级展示。
)
三、课堂练习
1、课本P31练习1.2题;
2、补充练习:
(1 )要在规定的日期内加工一批机器零件,如果甲单独做,恰好在规定的日期内完成,如果乙单独做,则要超过规定如期3天才能完成,现甲、乙两人合作2天后,再由乙单独做,正好按期完成,问规定的日期是多少天?
(2)甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共
用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自
行车的速度•
学生独立尝试解答;【5千米/时,20千米/时】
3、《练习册》相关练习;
4、课后练习
(1 )某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度
加快5/1,结果于下午4时到达,求原计划行军的速度.
(2)甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完
成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的2/3,求甲、乙两队单独完成各需多少天? 3 .甲容器中有15%的盐水30升,乙容器中有18%的盐水20
升,如果向两个容器个加入等量水,使它们的浓度相等,那么加入的水是多少升?
四、课堂小结:
认知难点和突破方法:
设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,正确地理解
问题情境,分析其中的等量关系是设未知数、列方程的基础•可以多角度思考,借助图形、
表格、式子等进行分析,寻找等量关系,解分式方程应用题必须双检验:(1)检验方程的解是否是原方程的解;(2)检验方程的解是否符合题意•
五、作业
课本154页习题第4、5、6题。
六、板书设计
教学反思:。