传感器原理及应用期末复习资料
传感器原理及应用复习资料

传感器原理及应用复习资料1.传感器由敏感元件、转换元件、基本电路三部分组成; 被测量 敏感元件 转换元件 基本电路 电量输出①敏感元件感受被测量;②转换元件将响应的被测量转换成电参量(电阻、电容、电感);③基本电路把电参量接入电路转换成电量;④核心部分是转换元件,决定传感器的工作原理。
2. 传感器的基本特性:①静态特性:当输入量(X )为静态或变化缓慢的信号时,输入输出关系称静态特性。
静态特性主要包括:线性度、迟滞、重复性、灵敏度、漂移和稳定性②动态特性:当输入量随时间(频率)变化时,输入输出关系称动态特性。
影响传感器动态特性除固有因素外,还与输入信号的形式有关,在对传感器进行动态分析时一般采用标准的正弦信号和阶跃信号。
A.输入信号按正弦变化时,分析动态特性的相位、振幅、频率,称频率响应;B.输入信号为阶跃变化时,对传感器随时间变化过程进行分析,称阶跃响应(瞬态响应).频率响应 阶跃响应3.电阻应变式传感器是将被测的非电量转换成电阻值的变化,再经转换电路变换成电量(电流、电压)输出。
金属电阻应变片的基本原理基于电阻应变效应:即导体在外力作用下产生机械形变时阻值发生变化。
通过弹性元件可将位移、压力、振动等物理量通过应力变化,并转换为电阻的变化进行测量,这是应变式传感器测量应变的基本原理。
4.直流电桥总结:单臂电桥输出电压11R R 4E U ∆•= 电压灵敏度4E K u =半桥差动电路全桥差动电路5. 电桥线路补偿:被测试件位置上安装一个补偿片处于相同的温度场;等臂电桥输出U0 与桥臂参数的关系为()2B 310R R -R R A U=。
如果 R1R3 = RBR4,电桥平衡时输出为零;若R1、RB 温度系数相同,当无应变而温度变化时ΔR1 = ΔRB ,电桥为平衡状态;当有应变时,R1有增量ΔR1,ΔR1=R1k0ε,补偿片无变化,ΔRB = 0;电桥输出为 U0 ∝R1R3 k0ε;可见此时电桥的输出电压与温度无关。
传感器原理与应用复习要点

传感器原理与应用复习要点传感器是一种将非电学量转换为电学信号的装置,广泛应用于各个领域。
其原理可以分为物理效应、化学效应和生物效应三类。
下面是传感器原理与应用的复习要点:1.物理效应传感器:-热敏电阻:利用物质的电阻随温度变化的特性,常用于温度测量。
-压电传感器:利用压电材料电荷随机梯度变化的特性,可用于压力、力和加速度的测量。
-光电传感器:利用光的吸收、散射或发射等特性,常用于光强度、颜色和距离的测量。
-磁敏电阻:利用材料的磁阻随磁场变化的特性,可用于磁场的测量。
2.化学效应传感器:-pH传感器:利用溶液中氢离子浓度对电位的影响,用于测量酸碱度。
-气体传感器:利用气体与特定材料发生化学反应,测量气体浓度或类型。
-电化学传感器:利用电化学反应产生的电位差,测量氧气、氢气等的浓度。
3.生物效应传感器:-生物传感器:利用生物体与特定物质相互作用的特性,测量生物学参数,如酶、抗原和抗体等。
-DNA传感器:利用DNA序列的特定识别反应,用于检测和识别DNA的序列。
传感器的应用:1.工业自动化:传感器可用于测量温度、压力、流量、液位等工业参数,实现工业自动化控制。
2.环境监测:用于监测大气污染物质、水质、土壤质量等环境参数。
3.医疗保健:用于测量心率、体温、血压等生物参数,实现远程医疗监护。
4.智能家居:用于检测温度、湿度、光线等,实现智能调控家居环境。
5.汽车工业:应用于测量车速、转向角度、发动机参数,提升安全性和性能。
6.农业领域:用于监测土壤水分、光照强度、气温等农作物生长参数,实现精确农业。
总结起来,传感器的原理涉及物理、化学和生物效应,应用广泛,包括工业自动化、环境监测、医疗保健、智能家居、汽车工业和农业等领域。
对传感器的深入理解和应用有助于提升各个领域的技术水平和生活质量。
传感器原理及应用期末复习

传感器原理及应用期末复习传感器是一种用于将其中一种物理量转换为可电信号或其他信息形式的装置。
传感器通常由感受元件和转换元件两部分组成。
感受元件负责感知其中一种物理量的变化,并将其转换为电信号或其他信息形式。
转换元件负责将感受元件产生的信号进行放大、滤波、线性化等处理,最终将其转换为符合要求的输出信号。
传感器的原理可以分为电磁原理、光电原理、机械原理、热电原理、化学原理等多种类型。
以下是一些常见的传感器原理及其应用。
1.电磁原理传感器:根据电磁场的变化来感知物理量的变化。
常见的有电位计、变压器、电感、霍尔传感器等,广泛应用于测量位置、速度、加速度、电流、磁场等物理量。
2.光电原理传感器:通过光电效应或光学原理来感知物理量的变化。
例如光敏电阻、光电二极管、光电三极管等传感器,用于测量光强、颜色、距离、位置等。
3.机械原理传感器:利用机械力学原理来感知物理量的变化。
例如应变计、压力传感器、力传感器、加速度传感器等,用于测量压力、重量、力、加速度等。
4.热电原理传感器:利用热电效应来感知物理量的变化。
常见的有热电偶、热电阻、热敏电阻等,广泛应用于测量温度、湿度等。
5.化学原理传感器:利用化学反应来感知物理量的变化。
例如气体传感器、PH传感器、红外传感器等,用于检测气体浓度、溶液酸碱度等。
传感器在各个领域都有广泛的应用。
以下是一些常见的传感器应用:1.工业自动化:传感器在工业自动化中起到了至关重要的作用,可以实现对温度、湿度、压力、流量、液位等工艺参数的监测和控制。
2.交通领域:传感器在交通领域中用于交通流量监测、车辆定位与导航、智能交通信号控制等。
3.医疗健康:传感器在医疗健康领域中用于生命体征的监测,如心率、血压、血氧浓度等。
4.环境监测:传感器在环境监测中用于测量大气污染物、水质污染物、土壤湿度等。
5.智能家居:传感器在智能家居中用于实现智能门锁、智能灯光、智能温控等功能。
6.农业领域:传感器应用于农业领域,可以监测土壤湿度、温度、光照强度等,实现精准灌溉、智能温室等控制。
传感器原理及应用期末考试重点课后题复习

第1章1-1 综合传感器的概念。
答:从广义角度定义:凡是利用一定的物质(物理、化学、生物)法则、定理、定律、效应等进行能量转换与信息转换,并且输出与输入严格一一对应的器件或装置;从狭义角度定义:能把外界非电信号转换成电信号输出的器件或装置;国家标准定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置"。
通常有敏感元件和转换元件组成;1—2 一个可供实用的传感器有那几部分构成?各部分的功能是什么?用框图显示传感器系统。
答:组成——由敏感元件、转换元件、基本电路组成.1.敏感元件:是直接受被测物理量;以确定关系输出另一物理量的元件.2。
转换元件;是将敏感元件输出的非电量转换成电路参数及电流或电压等电信号.3。
基本转换电路则将该电路转换成便于传输处理电量。
1—3 如果家用小车采用超声波雷达,需要那几部分组成?请画出图。
第2章2-1 衡量传感器静态特性的主要指标有哪些?说说它们的含义。
答:1、线性度:表征传感器输出—输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标.2、灵敏度:传感器输出量增量与被测输入量增量之比。
3、分辨力:传感器在规定测量范围内所能检测出的被测输入量的最小变化量。
4、回差:反映传感器在正(输入量增大)反(输入量减小)行程过程中,输出—输入曲线的不重合程度指标.5、重复性:衡量传感器在同一工作条件下,输入量按同一方向作全程连续多次变动时,所得特性曲线间一致程度的指标。
6、阈值:是能使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。
7、稳定性:传感器在相当长时间内仍保持其性能的能力。
8、漂移:指在一定时间间隔内,传感器输出量存在着与被测输人量无关的、不需要的变化。
9、静态误差(精度):指传感器在满量程内任一点输出值相对其理论值的可能偏离(逼近)程度.它表示采用该传感器进行静态测量时所得数值的不确定度。
2—2 计算传感器线性度的方法有哪几种?有什么差别?1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。
传感器原理复习资料

传感器原理复习资料关键信息项:1、复习资料的涵盖范围2、资料的使用方式3、资料的更新频率4、资料的版权归属5、资料的获取途径6、资料的保密要求7、违反协议的责任11 复习资料涵盖范围本协议所涉及的传感器原理复习资料将涵盖各类常见传感器的工作原理、特性、应用场景以及相关的数学模型和计算公式。
具体包括但不限于电阻式传感器、电容式传感器、电感式传感器、压电式传感器、热电式传感器、光电式传感器等。
111 每种传感器的原理讲解将包括其基本物理原理、结构组成、输出信号特点以及影响其性能的主要因素。
112 特性方面将着重阐述灵敏度、分辨率、线性度、重复性、稳定性等重要指标的定义和计算方法。
113 应用场景部分将列举实际工程和生活中该传感器的具体应用案例,并分析其优势和局限性。
12 资料使用方式121 使用者仅可将此复习资料用于个人学习目的,不得用于商业用途、传播或二次销售。
122 可以对资料进行打印、手写笔记和标注,但不得对原始内容进行修改、篡改或删除标注版权的信息。
123 允许在学习小组或课堂讨论中分享和引用资料中的观点,但需注明出处。
13 资料更新频率131 提供方将根据传感器领域的最新研究成果和技术发展,定期对复习资料进行更新。
更新周期暂定为每具体时长进行一次。
132 使用者有权了解更新的内容和时间,并可以根据需要获取最新版本的复习资料。
14 资料版权归属141 本复习资料的版权归提供方所有,未经授权,任何使用者不得以任何形式侵犯版权。
142 使用者在使用过程中应尊重知识产权,不得抄袭、复制或模仿资料中的内容用于其他未经授权的作品或活动。
15 资料获取途径151 使用者可以通过指定的在线学习平台、网盘链接或其他合法的电子渠道获取复习资料。
152 获取时可能需要提供一定的身份验证信息,以确保资料的使用符合本协议的规定。
16 资料保密要求161 使用者应对获取的复习资料进行保密,不得向未授权的第三方透露资料的内容或存在。
传感器原理及应用期末复习资料

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。
1.什么是传感器?广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
2.传感器由哪几个部分组成?分别起到什么作用?传感器一般由敏感元件、转换原件和基本电路组成。
敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。
传感器的核心部分是转换原件,转换原件决定传感器的工作原理。
3.传感器的总体发展趋势是什么?传感器的应用情况。
传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。
未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。
发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。
4.了解传感器的分类方法。
所学的传感器分别属于哪一类?按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器按传感器的输出信号分类:模拟传感器、数字传感器按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器按传感器的功能分类:单功能传感器、多功能传感器、智能传感器按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器电化学传感器按传感器的能源分类:有源传感器、无源传感器国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器含12个小类:力学量、热学量、光学量、磁学量、电学量、声学量、射线、气体、离子、温度传感器以及生化量、生理量传感器。
1.传感器的性能参数反映了传感器的输入输出关系2.传感器的静态特性是什么?由哪些性能指标描述?主要性能参数的意义是什么1线性度:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,线性度RL是表征实际特性与拟合直线不吻合的参数拟合方法:理论线性度(理论拟合)、 c、端基线性度(端点连线拟合)d、独立线性度(端点平移)最小二乘法线性度2迟滞:传感器在正、反行程期间输入、输出曲线不重合的现象称迟滞(迟环)。
《传感器原理及其应用》期末考试

《传感器原理及其应⽤》期末考试⽬录《传感器原理及其应⽤》期末考试题库⼀、填空题(每空⼀分)1、依据传感器的⼯作原理,传感器分为 敏感元件、转换元件、测量电路 三个部分组成。
2、半导体应变计应⽤较普遍的有 体型、薄膜型、扩展型、外延型 等。
3、光电式传感器是将光信号转化为电信号的光敏元件,根据光电效应可以分为 内光电效应、外光电效应、热释电效应 三种。
4、光电流与暗电流的差称为 光电流 。
5、光电管的⼯作点应选在 光电流 与 阳极电压 ⽆关的饱和区域内。
6、⾦属丝应变传感器设计过程中为了减⼩横向效应,可以采⽤ 直线栅式应变计 和 箔式应变计 结构。
7、反射式光纤位移传感器 在 位移 - 输出曲线的前坡呈 线性 关系,在后坡与 距离的平⽅成反⽐ 关系。
8、根据热敏电阻的三种类型,其中 临界温度系数型 最适合开关型温度传感器。
9、画出达林顿光电三极管内部接线⽅式:略10、灵敏度是描述传感器的 输出量 与 输⼊量 敏感程度的特性参数,其定义为:传感器 输出量的变化值 与相应的 被测量变化值 之⽐,⽤公式表⽰为:k(x) = Δy/Δx 。
11、线性度是指传感器的 输出量 与 输⼊量 之间是否保持理想线性特性的⼀种度量。
按照所依据的基准线不同,线性度分为 理论线性度、 端基线性度、 独⽴线性度 、 最⼩⼆乘法线性度 等。
最常⽤的是 最⼩⼆乘法线性度 。
12、根据敏感元件材料的不同,将应变计分为 ⾦属式 和 半导体式 两⼤类。
13、利⽤热效应的光电传感器包含 光---热 、热---电 两个阶段的信息变换过程。
14、应变传感器的设计过程中,通常需要考虑温度补偿,温度的补偿⽅法有 电桥补偿法、 计算机补偿法、 应变计补偿法、 热敏电阻补偿法 。
15、应变传感器⼀般是由 电阻应变⽚ 和 测量电路 两部分组成。
16、传感器的静态特性有 灵敏度、 线性度、 迟滞、 稳定性、 灵敏度界限 。
17、 在光照射条件下,电⼦逸出物体表⾯向外发射的现象称为 外光电效应 ,⼊射光改变物质导电率的物理现象称为 内光电效应 。
传感器期末复习资料

传感器期末复习资料《传感器与检测技术复习资料》⼀、选择题1、随着⼈们对各项产品技术含量的要求的不断提⾼,传感器也朝向智能化⽅⾯发展,其中,典型的传感器智能化结构模式是( B )。
A. 传感器+通信技术B. 传感器+微处理器C. 传感器+多媒体技术D. 传感器+计算机2、传感器的主要功能是(A )。
A. 检测和转换B. 滤波和放⼤C. 调制和解调D. 传输和显⽰3、测量者在处理误差时,下列哪⼀种做法是⽆法实现的( A )A.消除随机误差 B.减⼩或消除系统误差C.修正系统误差 D.剔除粗⼤误差4、传感器的下列指标全部属于静态特性的是( C )A.线性度、灵敏度、阻尼系数 B.幅频特性、相频特性、稳态误差C.迟滞、重复性、漂移 D.精度、时间常数、重复性5、电阻应变⽚配⽤的测量电路中,为了克服分布电容的影响,多采⽤( C )。
A.直流平衡电桥 B.直流不平衡电桥C.交流平衡电桥 D.交流不平衡电桥6、利⽤相邻双臂桥检测的应变式传感器,为使其灵敏度⾼、⾮线性误差⼩( C )。
A.两个桥臂都应当⽤⼤电阻值⼯作应变⽚B.两个桥臂都应当⽤两个⼯作应变⽚串联C.两个桥臂应当分别⽤应变量变化相反的⼯作应变⽚D.两个桥臂应当分别⽤应变量变化相同的⼯作应变⽚7、差动螺线管式电感传感器配⽤的测量电路有( C )。
A.直流电桥 B.变压器式交流电桥C.差动相敏检波电路 D.运算放⼤电路8、下列说法正确的是( D )。
A. 差动整流电路可以消除零点残余电压,但不能判断衔铁的位置。
B. 差动整流电路可以判断衔铁的位置,但不能判断运动的⽅向。
C. 相敏检波电路可以判断位移的⼤⼩,但不能判断位移的⽅向。
D. 相敏检波电路可以判断位移的⼤⼩,也可以判断位移的⽅向。
9、下列不属于电容式传感器测量电路的是( D )A.调频测量电路 B.运算放⼤器电路C.脉冲宽度调制电路 D.相敏检波电路10、测量范围⼤的电容式位移传感器的类型为( D )A.变极板⾯积型 B.变极距型C.变介质型 D.容栅型11、⽯英晶体在沿机械轴y⽅向的⼒作⽤下会( B )A.产⽣纵向压电效应 B. 产⽣横向压电效应C.不产⽣压电效应 D. 产⽣逆向压电效应12、关于压电式传感器中压电元件的连接,以下说法正确的是( A )A.与单⽚相⽐,并联时电荷量增加1倍、电容量增加1倍、输出电压不变B. 与单⽚相⽐,串联时电荷量增加1倍、电容量增加1倍、输出电压增⼤1倍C.与单⽚相⽐,并联时电荷量不变、电容量减半、输出电压增⼤1倍D. 与单⽚相⽐,串联时电荷量不变、电容量减半、输出电压不变13、磁电式传感器测量电路中引⼊积分电路是为了测量( A )A.位移B.速度C.加速度 D.光强14、磁电式传感器测量电路中引⼊微分电路是为了测量( C )A.位移B.速度C.加速度 D.磁场强度15、⼯业上应⽤⾦属热电阻传感器进⾏温度测量时,为了消除或减少引线电阻的影响,通常采⽤( C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。
1.什么是传感器?广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。
狭义:能把外界非电信息转换成电信号输出的器件。
国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
2.传感器由哪几个部分组成?分别起到什么作用?传感器一般由敏感元件、转换原件和基本电路组成。
敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。
传感器的核心部分是转换原件,转换原件决定传感器的工作原理。
3.传感器的总体发展趋势是什么?传感器的应用情况。
传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。
未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。
发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。
4.了解传感器的分类方法。
所学的传感器分别属于哪一类?按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器按传感器的输出信号分类:模拟传感器、数字传感器按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器按传感器的功能分类:单功能传感器、多功能传感器、智能传感器按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器电化学传感器按传感器的能源分类:有源传感器、无源传感器国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器含12个小类:力学量、热学量、光学量、磁学量、电学量、声学量、射线、气体、离子、温度传感器以及生化量、生理量传感器。
1.传感器的性能参数反映了传感器的输入输出关系2.传感器的静态特性是什么?由哪些性能指标描述?主要性能参数的意义是什么1线性度:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,线性度RL是表征实际特性与拟合直线不吻合的参数拟合方法:理论线性度(理论拟合)、c、端基线性度(端点连线拟合)d、独立线性度(端点平移)最小二乘法线性度2迟滞:传感器在正、反行程期间输入、输出曲线不重合的现象称迟滞(迟环)。
3重复性:传感器输入量按同一方向作多次测量时输出特性不一致的程度。
4灵敏度: 在稳定条件下输出微小增量与输入微小增量的比值传感器输出曲线的斜率就是其灵敏度。
灵敏度S 反映输入变量能引起的输出变化量①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。
5分辨率和阈值:分辨率——传感器能够检测到的最小输入增量;阈值——输入小到某种程度输出不再变化的值6 漂移是指传感器的输入被测量不变,而其输出量却发生了改变。
包括零点漂移与灵敏度漂移,7稳定性:传感器在一较长时间内保持性能参数的能力3.传递函数的定义是什么?初始条件为零时输出的拉氏变换与输入的拉氏变换之比。
4.电涡流传感器有较好的线性和灵敏度4.什么是传感器的动态特性? 其特性参数有那些?其意义是什么?动态特性:输入量随时间变化时输出和输入之间的关系。
固有频率:越大曲线上升越快,时间常数:达到稳定的时间越小,阻尼比:越大过冲现象越小。
1.什么是应变效应?什么是压阻效应?什么是横向效应?应变效应:导体产生机械形变时电阻值会发生变化。
压阻效应:某一轴向上的外力会引起扳道器电阻率发生变化。
横向效应:直线电阻丝绕成敏感栅后,虽然长度相同,但应变不同,圆弧部分使灵敏度下降了,这种现象称为横向效应。
2.什么是应变片的灵敏系数?半导体应变片灵敏系数范围是多少,金属应变片灵敏系数范围是多少?说明金属丝电阻应变片与半导体应变片的相同点和不同点。
应变片单位变化引起电阻值的改变;50-100;1.5-2;金属应变片:电阻应变效应,优,受温度影响小、性能稳定、精度比半导体高,缺,不易集成;半导体:半导体材料压阻效应,优,灵敏度高,体积小,耗电小,动态响应好,精度高,测量范围宽,易于微型化和集成化。
缺点,受温度影响较大,制造工艺复杂。
4. 在传感器测量电路中,直流电桥与交流电桥有什么不同,如何考虑应用场合?直流电桥的电源稳定,结构简单,但存在零漂和工频干扰,要求有较高的灵敏度,实际应用中输出端通常会接入放大电路;交流电桥放大电路简单,无零漂,不易受干扰,但不易取得高精度,需专用的测量仪器或电路。
1.电容传感器有哪些类型?分别适合检测什么参数?叙述变极距型电容传感器的工作原理、输出特性。
1)变面积型电容传感器:测量范围大,多用于测线位移、角位移;2)变极距型电容式传感器:适宜做小位移测量;3)变介质型电容传感器:普遍用于液面高度测量、介质厚度测量,可制成料位计等。
变极距工作原理,通过改变两极板间距离引起电容量的变化,因此,只要测得电筒两的变化量就可测得极板间距变化量。
2.为什么电感式和电容式传感器的结构多采用差动形式,差动结构形式的特点是什么?电感两端的电压与通过的电流的变化量成正比,流过电容的位移电流与其两端电压的变化量成正比,而差分方式正好放大的是电压或电流的变化量,故一般采用这种结构。
3.电容传感器的测量电路有哪些?差动脉冲调宽电路用于电容传感器测量电路具有什么特点?交流电桥、二极管双T型电路、差动脉冲调宽电路、运算放大器电路,适用于任何差动电容传感器,并有理论线性度,与双T型相似,该电路不需加解调、检波,由滤波器直接获得直流输出,而且对矩形波纯度要求不高,只需稳定的电源即可。
4.为什么高频工作时的电容式传感器连接电缆的长度不能任意变化?低频时容抗XC较大,传输线的等效电感电阻可忽略,高频时容抗减小,不可忽略。
等效电感接在传感器输出端相当于串联谐振电路,当工作频率等于谐振频率时,串联谐振阻抗最小,电流最大,谐振对传感器的输出起破坏作用,使电路不能正常工作。
1. 变磁阻式传感器的工作原理和主要应用。
传感器运动部分与衔铁部分相连接,衔铁移动时间隙厚度发生变化,仪器磁路的磁阻Rm变化,使电感线圈的电感量发生变化。
应用于压力传感器和测量工具中。
2.什么是零点残余电压?说明差动变压器式传感器产生零点残余电压的原因及减少此电压的有效措施。
差动变压器传感器的铁心处于中间位置是输出电压并不等于零,在零点附近总有一个最小输出电压ΔUo ,将这个铁心处于中间位置是最小不为零电压称为零点残余电压。
原因,两个次级线圈绕组的电气系数不完全相同,几何尺寸也不完全相同,工艺上很难保持完全一致。
措施,除工艺补偿外,一般要进行电路补偿:串联电阻,并联电阻、电容,加反馈支路,相敏检波。
3.差动自感传感器和差动变压器有什么区别?采用哪种转换电路既能直接输出与位移成正比的电压,又能根据电压的正负区别位移的方向?自感的线圈必须相同,但不绕在同一铁心上,而差动变压器必须要绕在同一铁心上,线圈可以不同。
4.什么是电涡流效应?涡流的分布范围。
电涡流传感器可以进行哪些非电量参数测量?一个块状金属导体置于变化的磁场中或在磁场中切割磁力线运动时,导体内部会产生闭合的电流,这种现象称为涡流效应。
范围,径向,线圈外径金属涡流密度最大;线圈中心为零。
轴向,只在表面薄层。
非接触式测量,位移、振动、转速、厚度、材料、温度、电涡流探伤。
5. 电涡流传感器是由哪种电参量转换实现电量输出的?电涡流传感器可以检测金属材料,也可以检测非金属材料吗?电流、不可以检测非金属1.为什么说磁电感应式传感器是一种有源传感器?常用的结构形式有哪些?工作时不需外加电源,导体和磁场发生相对运动是会在导体两端输出感应电动势。
恒磁通式、变磁通式。
2.磁电式传感器是速度传感器,它如何通过测量电路获得相对应的位移和加速度信号?前置放大器分别接积分电路或微分电路,接入积分电路时,感应电动势输出正比于位移信号;接入微分电路时,感应电动势输出正比于加速度信号。
3.什么是霍尔效应?霍尔电势的大小与方向和哪些因素有关?霍尔元件不等位电势产生的原因有哪些?通电的导体放在磁场中,电流方向与磁场方向垂直,在导体另外两侧会产生感应电动势,这种现象称为,原因:霍尔引出电极安装不对称,不在同一等位面上;激励电极接触不良,半导体材料不均匀造成电阻率不均匀。
4.霍尔元件的温度补偿方法有哪些?霍尔元件的常见应用。
外界温度敏感元件进行补偿:两种连接方式,恒流源激励,恒压源激励。
测位移:极性相反磁极共同作用,形成梯度磁场;磁电编码器:金属齿轮计算脉冲数测转速;测压力压差;交流直流钳形数字电流表。
5.半导体磁敏元件有哪些?它们有哪些相同之处和不同之处?它们的电路符号怎样?磁敏电阻:只能测大小不能测方向,磁敏二极管、磁敏三极管:既大小又方向1.什么是压电效应?压电传感器能否用于静态测量?为什么?某些晶体,当沿着一定方向施加力时,内部产生极化现象,两个表面会产生符号相反地电荷,外力去掉后又恢复不带电状态。
作用力方向改变电荷极性也改变。
2.压电陶瓷极化过程是怎样的?若施加一个与极化方向相同的拉力,压电现象是怎样的?给压电陶瓷施加外加电场使电畴规则排列。
3. 石英晶体和压电陶瓷的压电效应有何不同之处?比较几种常用压电材料的优缺点,说出它们各自适用的场合。
压电陶瓷的纵向压电常数要比石英晶体大得多。
压电晶体适用于传感器不用维修的场合,稳定性好,但灵敏度低;压电陶瓷灵敏度高,稳定性差,适用于环境稳定,便于校准修正的场合。
4.压电元件在使用时常采用多片串联或并联的结构形式。
试述在不同接法下输出电压、电荷、电容的关系,它们分别适用于何种应用场合?并联粘贴,引线电极输出电容为单电容的两倍,极板上电荷是单片的两倍,输出电压与单片相等,适合测变化缓慢的信号,接电荷放大器。
串联黏贴:C'=C/2,Q'=Q,U'=2U,适合测量频率较高变化快的信号,电压放大。
5.压电传感器的等效电路怎样?前置放大器起什么作用?电压放大器和电荷放大器各有什么特点?作用,放大微弱信号,阻抗变换;电压放大器是阻抗变换器,输入量是电压;电荷放大器是有深度反馈的高增益放大器,输入量是电荷。
1.什么是外光电效应?内光电效应?(光生伏特效应、光电导效应)。
光电器件中的光照特性、光谱特性分别描述的是光电器件的什么性能?在光线作用下,物体内的点子溢出物体表面向外发射的现象称为外光电效应。
光线照在物体上使物体电导率发生变化或产生光生电动势的现象叫内光电效应。
入射光强改变物质电导率的现象称为光电导效应;光照时物体能产生一定方向电动势的现象叫光生伏特效应。
照度与光电流光电压的关系;波长与灵敏度的关系。