201X秋八年级数学上册第三章位置与坐标3.3轴对称与坐标变化习题课件(新版)北师大版

合集下载

北师大版八年级数学上册《3.3轴对称与坐标变化(2课时)》课件

北师大版八年级数学上册《3.3轴对称与坐标变化(2课时)》课件

解:左右两幅图案关于y轴对称, 所以,两幅图案上各个对应点的 纵坐标相同,横坐标互为相反数。 因此,左图案中的左右眼睛 的坐标分别为(-4,3),(-2, 3);嘴角左右端点的坐标分别为 (-4,1),(-2,1)。
议一议,请踊跃发言:
(1)如果将上图的右图案沿着x轴正方向平移1个 单位长度,那么左右眼睛的坐标将发生什么 变化? 答:左右眼睛的横坐标将分别增加1个单位, 而纵坐标不发生变化。 (2)如果作上图的右图案关于x轴的轴对称 图形,那么左右眼睛的坐标将发生什么变 化?
议一议:如果纵坐标保持不变,
横坐标分别变成原来的倍,再将所得的 点用线段依次连接起来,所得的图案与 原来的图案相比有什么变化?
例2
(二)、 基础训练: 1 、下列说法错误的是 点P(4,-3)关于y轴的对称点为P′(-4,-3) 点P(4,-3)关于x轴的对称点为P′(4,3) 点P(4,-3)关于原点的对称点为P′(-3,4) 点P(4,-3)关于原点的对称点为P′(-4,3) 2 、小兵在直角坐标系中画出一个三角形, (1)若他将三个顶点的纵坐标保持不变,横坐标变成原来的倍, 将所的得三个点用线段依次连接起来,所的得图形与原图形 相比,被 (填“横向”或“纵向”) (“拉长” 或“压缩”)为原来的 倍。 (2)若他将三个顶点的纵坐标保持不变,横坐标变成原来的2倍, 将所的得三个点用线段依次连接起来,所的得图形与原图形 相比,被 (填“横向”或“纵向”) (“拉长” 或“压缩”)为原来的 倍。
3、在直角坐标系中,依次连接点(1,0),(1,3),(7, 3), (7,0), (1,0)和点(0,3),(8,3), (4,5),(0,3),两组图形共同组成了一个 什么图形?如果将上面各点的横坐标都加2纵坐标 不变,所得的图案与原来的图案相比有什么变化?

初中八年级数学北师大版上册《轴对称与坐标变化》ppt课件

初中八年级数学北师大版上册《轴对称与坐标变化》ppt课件
§ 3.3 轴对称与坐标变化
Axisymmetric and coordinate changes
目录
CONTENTS
1
课前热身
3
巩固提升
2
课堂探究
4
学后反思
课前热身
请独立完成课前热身1~2,时间为两分钟
1
课前热身
++
-+
横坐标 纵坐标
--
+-
课堂探究
四个探究问题
1
探究一:关于坐标轴对称的两点坐标
请写出右边两面小旗各个点 的坐标.
A(2,6), B(5,4),
C(2,4), D(2,0)
A1(2,6) B1(5,4) C1(2,4) D1(2,0)
1
探究一:关于坐标轴对称的两点坐标
如右图所示的平面直角坐标系中, 第一、二象限内各有一面小旗.
(-2,6)
(2,6)
(1)两面小旗之间有怎样的位置图形的坐标关系
y
5 与原图形关于x轴对称
图中的鱼是将坐 标为:(0,0)
4
(5,4) (3,0)
(5,1) (5,-1)
3
(3,0) (4,-2)
2
(0,0)的点用线段
依次连接而成的
1
将各坐标的纵坐
0 12345678
x 标都乘以-1,横
–1
坐标保持不变,则
–2
图形怎么变化?
B(5,4),
3
探究三:图形的平移
“牵一发而动全身”
“牵一点而动全图”
4
探y 究四:两个关于坐标轴对称的图形的坐标关系
5
两个图形关于y轴对称 4
在平面直角坐标系中 依次连接下列各点:

数学八年级上册《轴对称与坐标变化》课件

数学八年级上册《轴对称与坐标变化》课件

探索新知
y 4 3 2 1
–5 –4 –3 –2 –1 O 1 2 3 4 5 x –1 –2
如图,所得的图案与原来的图案关于y轴对称.
探索新知
(2)横坐标保持不变,纵坐标分别乘以-1,再将所得 的点用线段依次连接起来,所得的图案与原来的图案相比有 什么变化?
分析:变化后的点的坐标依次为(0,0),(5,-4) ,(3,0),(5,-1),(5,1),(3,0),(4,2) ,(0,0).
5.若点A关于x轴对称的点是(2,3),则点A的坐标 为 (2,-3) ;若点A关于y轴对称的点是(2,3),则点 A的坐标为 (-2,3) .
当堂检测
6.如图,△COB与△AOB关于x轴对称,点A的坐标为 (2,3),则点C的坐标为 (2,-3) .
当堂检测
7.如图,在平面直角坐标系中,线段AB垂直于y轴, 垂足为点B,AB=2,如果将线段AB沿y轴翻折,点A落 在点C处,那么点C的横坐标是-__2__.
解:∵3a-11=-2,∴a=3, 又∵2b-1=-5,∴b=-2, ∴a2-2ab+b2=(a-b)2=25
当堂检测
10.如图,在平面直角坐标系中,已知两点A(0,4),B(8,2), 点P是x轴上的一点,求PA+PB的最小值.
解:如图,A与A′关于x轴 对称.连接A′B交x轴于点P ,则点P即为所求.过点B作 y轴的垂线交y轴于点E,由 勾股定理得A′B=PA+PB= 10.即PA+PB的最小值为10
情景导入
如图,你能画出把鱼往左平移 6 格后所得的图形吗? y
建立如图所示的平面直角 坐标系,平移这个图形, 图形上的点的坐标发生了 什么变化呢?
O
x
探索新知
一 轴对称与坐标变化观来自:如右图所示的平面直角坐 标系中,第一、二象限内各有一 面小旗。

北师大版八年级数学上册第三章 位置与坐标复习(共30张PPT)

北师大版八年级数学上册第三章 位置与坐标复习(共30张PPT)

面示意图.借助刻度尺、量 14
角器,解决如下问题: 13 12
(1)服装区位于入口的 11
什么 方向?到入口的图上
10 9
距离是多少?实际距离是 8
多少?
7
6
(2)用两种不同方法确 5
定总经理室位置;
4
3
(3)确定出口的位置。 2
1
.总经理室
.服装区
.入口
.出口
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
以A点为原点建立直
角坐标系,则B点坐
标为

y
7
6
. 5
A
4
3
2
.1 B
-6 -5 -4 -3 -2 -1-1 1 2 3 4 5 6 x
-2
-3
-4
-5
-6
-7
针对练习
一、确定平面上点的位置的常用方法
1、如图,A、B、C是棋子在方格纸上摆出的三个位置,如果用(2,5) 表示A的位置,则B表示为_(__1_,__4)_____,C表示为__(_4_,__4_)_____。
5
解: (1)
4
3
图形变化前后点的坐标分别为:
2
234 5678
变化前 (3,0) (7,0) (2,2) (3,2) (7,2) (8,2) (5,4)
变化后
( 3 ,0)
2
( 7 ,0) (1,2)
2
(3
2
7
,2) ( 2
,2)
(4,2)
描点,按原来方式连结.
所得图案与原图案相比,被横向压缩了一半.
2、如图是灯塔A的方位图,A的位置需要__两___个数据来确定,它们是 方__位__角_,_A_与_O__点_的__距_离______。

北师大版八年级数学上册3.3轴对称和坐标变化课件(共18张PPT)

北师大版八年级数学上册3.3轴对称和坐标变化课件(共18张PPT)
累 ,但 这 是 一 种人生 体验,战 胜自 我 ,锻 炼 意 志 的最佳 良机。 心里虽 有说不 出的酸 甜苦辣 ,在烈日 酷暑下
1、两面小旗之间有怎样的位置关系?
关于y轴对称
2、对应点A与A1的坐标有什么特点?
纵坐标相同,横坐标互为相反数
3、其它对应的点也有这个特点吗?
同样具有
( 2,6)
4、在这个坐标系里面画 出小旗ABCD关于x轴的对 称图形,它的各个“顶 点”的坐标与原来的点 的坐标有什么关系?
所得图形与原图关于x轴对称;
纵坐标不变,横坐标乘以-1,即横反纵同时,
所得图形与原图关于y轴对称。
关于x轴对称的点 (x,y)
横坐标相同,纵坐标互为相反数 ( x , - y ) 横同纵反
关于y轴对称的点 (x,y)
纵坐标相同,横坐标互为相反数 ( - x , y ) 横反纵同
温馨小贴士:关于哪个轴对称,哪个坐标相等。
横坐标相同,纵坐标互为相反数
图形轴对称
点的坐标特点
1、关于x轴对称的两点,它们的横坐标 相同 , 纵坐标 互为相反数 ;
2、关于y轴对称的两点,它们的横坐标 互为相反数 , 纵坐标 相同 。
1.点 A(-2,-3)关 于 x 轴 对 称 的 点 的 坐 标 是(-2,3) 。
2.点 P(-5,6)与 点 Q 关 于 y 轴 对 称,则 点 Q 的 坐 标 为(5,6)。
C.关于 y轴对称 D.不能构成对称关系
4.点(m,- 1)和点(2,n)关于 x轴对称,则 mn等
于( B )
A.- 2 B.2 C.1
D.- 1
7. 已知A、B两点的坐标分别是(-2,3)和(2,3),
则下面四个结论:

3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

3.3轴对称与坐标变化+课件+2023-2024学年北师大版数学八年级上册

6.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一 点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余 三个点中存在两个点关于一条坐标轴对称,则原点是( B ) A.点A B.点B C.点C D.点D
7.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值 是( D ) A.-5 B.-3 C.3 D.1
即 22+52= 29.
巩固提升
1.在平面直角坐标系中,点A的坐标为(1,2).作点A关于x轴的对称 点,得到点A′,则点A′所在的象限是( D ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.蝴蝶标本可以近似地看作轴对称图形,如图,将一只蝴蝶标本放 在平面直角坐标系中,如果图中点A的坐标为(-5,3),则其关于y轴 对称的点B的坐标为( A ) A.(5,3) B.(5,-3) C.(-5,-3) D.(3,5)
5.如图所示的点A,B,C,D,E中,哪两个点关于x轴对称?哪两个 点关于y轴对称?点C和点E关于x轴对称吗?为什么? 解:因为点A(-3,2),B(-3,-2),E(3,-2), 所以点A,B关于x轴对称,点B,E关于y轴对称. 因为点C(3,3),E(3,-2), 所以点C,E不关于x轴对称.
7.【空间观念、几何直观】△ABC在平面直角坐标系中的位置如图 所示.
(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别为A,B, C的对应点); 解:如图所示,△A′B′C′即为所求.
(2)直接写出A′,B′,C′三点的坐标; 解:A′,B′,C′三点的坐标分别为(2,3),(3,1),(-1,-2). (3)在y轴上找一点P,使得PA+PB最小,画出点P所在的位置(保留作 图痕迹,不写作法),并求出PA+PB的最小值. 解:如图所示,点 P 即为所求,PA+PB 的最小值为线段 A′B 的长,

八年级数学上册第三章位置与坐标3.3轴对称与坐标变化说课稿北师大版

八年级数学上册第三章位置与坐标3.3轴对称与坐标变化说课稿北师大版

《轴对称与坐标变化》说课稿我说课的内容是北师大版八年级上册第三章第三节《轴对称与坐标变化》。

教材分析:教材的地位与作用:这节课的内容体现了轴对称在平面直角坐标系中的应用,从数量关系的角度刻画轴对称的内容。

教材从观察和实验入手,归纳得出坐标平面上一个点关于x轴或y轴对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于x轴或y轴对称的图形。

二、学法指导1、教学方法:根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,这节课我主要采用了自主探究,发现式教学方法,体现教学方法的科学性和时效性.2、学法:根据学法指导自主性和差异性原则,让学生在“观察-—操作——概括——检验—-应用”的学习过程中,使学生掌握知识。

在教学过程中应注意:(1)注重学生的合作和交流活动,在活动中促进知识的学习,并进一步发展学生的合作交流意识。

(2)注重学生动手能力的培养,在动手的过程中体会轴对称变换,并且对上一节课的知识作进一步理解.结合教材及学生的情况,我制订了如下的教学目标:【知识目标】:1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。

【能力目标】:1.经历探究物体与图形的形状、大小、位置关系和变换的过程,掌握空间与图形的基础知识和基本技能,培养学生的探索能力。

【情感目标】1.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维。

2.通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。

3.通过“坐标与轴对称",让学生体验数学活动充满着探索与创造。

教学重点:经历图形坐标变化与图形轴对称之间关系的探索过程,明确图形坐标变化与图形轴对称之间关系。

根据对教材内容的分析,根据八年级学生的认知规律和心理特点,我设计如下的教学过程。

1。

北师大版数学八年级上册第3章位置与坐标复习课课件

北师大版数学八年级上册第3章位置与坐标复习课课件

7. 在平面直角坐标系中,点M(a,b)与点N(3,-1)关于x轴 对称,则a+b的值是____4_____. 8. 若点P(-2a,a-1)在y轴上,则点P的坐标为__(__0_,__-_1_)___, 点P关于x轴对称的点的坐标为__(__0_,__1_)____.
9.已知点P(a-1,-b+2)关于x轴的对称点为M,关于y轴的对称 点为N,若点M与点N的坐标相同. (1)求a,b的值; (2)猜想点P的位置并说明理由.
的点的坐标是( C )
A. (2,3)
B. (-3,2)
C. (-3,-2)
D.(-2,-3)
3. 如图Z3-6,将点A(-1,2)关于x轴作轴对称变换,则变换后 点的坐标是( C ) A.(1,2) B.(1,-2) C.(-1,-2) D.(-2,-1)
பைடு நூலகம்
4.已知△ABC在直角坐标系中的位置如图Z3-7,若△A′B′C′与
7. 已知:如图Z3-5,在△ABC中,AC=BC=5,AB=6,请以点A为原 点,以AB所在的直线为x轴建立平面直角坐标系,并求出△ABC的 各顶点的坐标.
解:建立的直角坐标系如答图Z3-1.
过点C作CD⊥AB于点D,如答图Z3-1.
因为AC=BC=5,AB=6,
所以BD=AD= AB= ×6=3.
第三章 位置与坐标
单元复习课 本章知识梳理
目录
01 课标要求 02 知识导航
课标要求
1.坐标与图形位置: (1)结合实例进一步体会有序数对可以表示物体的位置. (2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给 定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出 它的坐标. (3)在实际问题中,能建立适当的直角坐标系,描述物体的位置 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档