高考理科数学临考练兵测试题(一)
2019年普通高等学校招生全国统一考试 高考模拟调研卷理科数学(一)

2019年普通高等学校招生全国统一考试高考模拟调研卷理科数学(一)2019年普通高等学校招生全国统一考试高考模拟调研卷-理科数学(一)本试卷共4页,满分150分,考试时间120分钟。
第Ⅰ卷一、选择题(共12小题,每小题5分,共60分)1.已知集合A={x|-3x+2≤0},B={x|x²-x≥0},则A∩B的取值范围是(B)[-1,0)2.设复数z满足z+2i=1+i,则z的值为(C)2/3-4i/33.一组数据:1,3,5,7,9,11,则这组数据的方差是(B)104.若二项式(ax+3)的展开式的常数项为160,则实数a的值为(C)35.若函数f(x)=a+x-log₅3的零点落在区间(k,k+1)(k∈Z)内,若2a=3,则k的值为(D)16.设p:4>2;q:log₂x -17.设等差数列{an}的前n项和为Sn,公差为3,a₅=14,若Sm+2=Sm+37,则m的值为(B)68.宋元时期数学名著《算术启蒙》中关于“松竹并生”的问题:a≤b。
松长四尺,竹长一尺,松日自半,竹日自倍,松竹何日而长等。
如图是根据此问题设计的一个程序框图,若输入a=4,b=1,则输出的n=2.9.函数f(x)=3cosx-xe,x∈[-π/2,π/2]的图象大致是(D)10.若存在实数x,y满足不等式组{x-2y-2≥0.x+3y-2≥0.2x+y-9≤0.y=logₐx},则实数a的取值范围是{a|a≥2}11.已知函数f(x)=x³-3x²+2x+1,g(x)=x³-2x²-5x+6,则f(x)与g(x)的零点个数之和为(C)412.已知函数f(x)=sinx+cosx,g(x)=2cosx,则f(x)与g(x)的零点个数之和为(A)3注:第11、12题已被删除。
1)过抛物线y=-2px(p>0)的焦点F的直线l(斜率小于0)交该抛物线于P,Q两点,已知PQ=5FQ(Q在x轴下方),且三角形POQ(O为坐标原点)的面积为10,则p的值为(A)22.(解析:由于Q在x轴下方,所以PQ=5FQ=5p,设P(x1,y1),Q(x2,y2),则有y1=-2px1,y2=-2px2,又F(0,-p),所以PQ=|y2-y1|=2p|x2-x1|=5p,即|x2-x1|=2.5,又由于三角形POQ面积为10,所以|y1-y2|*x1/2=10,解得x1=5,x2=2.5,代入y1=-2px1中可得p=22.)2)若函数f(x)=e^(ax+3),函数y=f(f(x))-2有5个不同的零点,则实数a的取值范围是(B)(-e,e)。
高考数学(理科)模拟试卷及答案3套

高考数学(理科)模拟试卷及答案3套模拟试卷一试卷满分:150分一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填涂在答题卡......上) 1. 2020i = ( )A .1B .1-C .iD .i -2.设i 为虚数单位,复数()()12i i +-的实部为( )A.2B.-2C. 3D.-3 3.若向量,)()3,(R x x a∈=ρ,则“4=x ”是“5=a ρ”的()A.充分而不必要条件B.必要而不充分条件 C 充要条件 D.既不充分也不必要条件 4.下列函数中,在区间(0,+∞)上单调递增的是( )A. B. C.x y 21log = D.5.已知)cos(2)2cos(απαπ+=-,且31)tan(=+βα,则βtan 的值为( ) .A 7- .B 7.C 1.D 1-6.将函数()()()sin 20f x x ϕϕ=+<<π的图象向右平移4π个单位长度后得到函数()sin 26g x x π⎛⎫=+ ⎪⎝⎭的图象,则函数()f x 的一个单调减区间为( )A .5,1212ππ⎡⎤-⎢⎥⎣⎦ B .5,66ππ⎡⎤-⎢⎥⎣⎦ C .5,36ππ⎡⎤-⎢⎥⎣⎦ D .2,63ππ⎡⎤⎢⎥⎣⎦ 7. 如图,在平行四边形ABCD 中,11,,33AE AB CF CD G ==为EF 的中点,则DG =u u u r ( )A .1122AB AD -u u u r u u u r B .1122AD AB -u u u r u u u r C. 1133AB AD -u u u r u u u r D .1133AD AB -u u ur u u u r8. 执行如图所示的程序框图,则输出的a 值为( )A .3-B .13 C.12- D .2 9. 公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自于阴影部分的概率是( )A .384ππ++ B .684ππ++ C. 342ππ++ D .642ππ++10.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,在x 轴上F 的右侧有一点A ,以FA 为直径的圆与椭圆在x轴上方部分交于M 、N 两点,则||||||FM FN FA +等于( )A . 22a b -B 22a b +C 222a b -D 222a b +11. 已知函数21181,2,log 2)(21≤≤<≤⎪⎩⎪⎨⎧+=x x x x f x,若))(()(b a b f a f <=,则ab 的最小值为 A.22B.21C.42D.3512. 已知双曲线C :)0,0(12222>>=-b a by a x ,过其右焦点F 作渐近线的垂线,垂足为B ,交y 轴于点C ,交另一条渐近线于点A ,并且点C 位于点A ,B 之间.已知O 为原点,且a OA 35||=,则=||||FC FAA.45 B.34C.23D.25二、填空题: 本题共4小题,每小题5分,共20分.将答案填在答题卡横线上。
2023届高考理科数学模拟试卷一(含答案及解析)

2023届高考理科数学模拟试题一(含答案及解析)本卷分选择题和非选择题两部分,满分150分,考试时间120分钟。
注意事项:1. 考生务必将自己的姓名、准考证号用黑墨水钢笔、签字笔写在答题卷上;2. 选择题、填空题每小题得出答案后,请将答案填写在答题卷相应指定位置上,答在试题卷上不得分;3. 考试结束,考生只需将答题卷交回。
参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高 如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B *=*第一部分 选择题(共40分)一、选择题(本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 已知复数1z i =+,则2z= A . i 2-B .i 2C .i -1D .i +12. 设全集,U R =且{}|12A x x =->,{}2|680B x x x =-+<,则()U C A B =A .[1,4)-B .(2,3)C .(2,3]D .(1,4)-3. 椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A .14B .12C . 2D .4 4. ABC ∆中,3A π∠=,3BC =,AB =,则C ∠=A .6πB .4π C .34π D .4π或34π5. 已知等差数列{}n a 的前n 项和为n S ,且2510,55S S ,则过点(,)n P n a 和2(2,)n Q n a(n N +)的直线的斜率是A .4B .3C .2D .16.已知函数),2[)(+∞-的定义域为x f ,且1)2()4(=-=f f )()(x f x f 为'的导函数,函数)(x f y '=的图象如图所示, 则平面区域⎪⎩⎪⎨⎧<+≥≥1)2(00b a f b a 所围成的面积是A .2B .4C .5D .87. 一台机床有13的时间加工零件A ,其余时间加工零件B , 加工A 时,停机的概率是310,加工B 时,停机的概率是25,则这台机床停机的概率为( )A . 1130B .307 C .107 D .1018. 在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数()f x 的图象恰好通过()n n N +∈个整点,则称函数()f x 为n 阶整点函数。
高考数学理科模拟试卷一含答案

不妨设y1>0,y2<0,则
tan∠ACF=====,
tan∠BCF=-=-,
∴tan∠ACF=tan∠BCF,所以∠ACF=∠BCF.…8分
(Ⅱ)如(Ⅰ)所设y1>0,tan∠ACF=≤=1,当且仅当y1=p时取等号,
此时∠ACF取最大值,∠ACB=2∠ACF取最大值,
(Ⅱ)建立如图所示的坐标系D—xyz,不妨设AD=2,则
D(0,0,0),A(2,0,0),B(2,,0),
C(0,,0),S(0,0,2),E(1,0,1).
=(2,,0),=(1,0,1),=(2,0,0),=(0,-,2).
设m=(x1,y1,z1)是面BED的一个法向量,则
即
因此可取m=(-1,,1).…8分
并且A(,p),B(,-p),|AB|=2p.…12分
21.解:
(Ⅰ)f(x)=-lnx-ax2+x,
f(x)=--2ax+1=-.…2分
令Δ=1-8a.
当a≥时,Δ≤0,f(x)≤0,f(x)在(0,+∞)单调递减.…4分
当0<a<时,Δ>0,方程2ax2-x+1=0有两个不相等的正根x1,x2,
14.在具有5个行政区域的地图(如图)上,给这5个区域着色共使用了4种不同的颜色,相邻区域不使用同一颜色,则有种不同的着色方法。
15.椭圆 的左、右焦点分别为F1,F2,过F2作 轴的垂线与椭圆的一个交点为P,若 ,则椭圆的离心率 。
16.在 中, 边上的高为 则AC+BC=。
三、解答题:大本题共6小题,共70分,
不妨设x1<x2,
则当x∈(0,x1)∪(x2,+∞)时,f(x)<0,当x∈(x1,x2)时,f(x)>0,
高考数学临考练兵测试题13 文

频率组距0.0375 0.012550 55 60 65 70 75 体重高考数学临考练兵测试题13 文第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卡上 1、设集合2{0}A x x =->1,2{log 0}B x x =>,则AB =A.{}|x x >1B.{}|x x >0C.{}|x x <-1D. {}|x x x <->1或12、设复数212,2z i z z =+-则等于A .3B .-3C .3iD .3i -3、若等差数列{}n a 的前n 项和为n S ,且236a a +=,则4S 的值为 A. 9 B.10 C.11 D. 124、为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1︰2︰3,第2小组的频数为12,则抽取的学生人数为A. 46B. 48C. 50D.605、若一个圆台的的正视图如图所示,则其侧面积...等于 A .6 B .6π C .35π D .65π6、设x 、y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩则11y x ++取值范围是A.1,52⎡⎤⎢⎥⎣⎦B. []1,3C. [1,5]D.[]1,5-7、函数()2sin(2)f x x ϕ=+的图像如图所示,πϕπ-<<,则ϕ的值为A .3π-B .6π-C .233ππ--或D .566ππ--或8、以下命题中:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样。
②由3sin 2y x =的图像向右平移3π个单位长度可以得到函数()3sin 23f x x π⎛⎫=-⎪⎝⎭的图像。
③在回归直线方程122.0ˆ+=x y中,当变量x 每增加一个单位时,变量yˆ增加0.2单位。
理科数学高考模拟试题

普通高等学校招生全国统一考试模拟试题(含答案)理科数学第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求)1.已知全集R U =,集合{}Z x x x A ∈≤≤=,72和{}51<<-=x x B 的关系的韦恩(venn )图如图所示,则阴影部分所表示的集合为( ). A .{}76≤≤x x B .{}50≤≤x x C .{}4,3,2 D .{}7,6,52.i 为虚数单位,复数z 满足iiz -=1,那么z 对应复平面内的点在( )象限. A .第一 B .第二 C .第三 D .第四3.设数列⎭⎬⎫⎩⎨⎧n a n 是公差为d 的等差数列,前n 项和为n S ,若12,363==a a ,则=8S ( )A .10B .11C .12D .13 4.已知一几何体的三视图如图所示,则该几何体的 体积是( )A .6B .9C .12D .18 5.︒︒︒160cos 80cos 40cos =( )A .81B .81-C .41D .41-6.下列程序框图中,输出的A 的值( )A .128 B .129 C .131 D .1347.已知双曲线12222=-b y a x 的离心率为332,则双曲线的两渐近线的夹角为( )A .6π B .4π C .3π D .2π8.若()f x 是R 上周期为5的奇函数,且满足(1)1f =,(2)2f =,则=+)3()4(f f ( )A. 7B. 5 C .-2 D .-39. 如图所示,点A (1,0),B 是曲线132+=x y 上一点,向矩形OABC 内随机投一点,则该点落在图中阴影内的概率为( ) A .21B .32C .73 D .94 10.已知函数()()()⎩⎨⎧≤<<=0,210,log 3x x x x f x ,若()()41=x f f ,则=x ( )A .31B .91C .-9D . -211.已知不等式组220,22,22x y x y ⎧+-≥⎪⎪≤⎨⎪≤⎪⎩表示平面区域Ω,过区域Ω中的任意一个点P ,作圆221x y +=的两条切线且切点分别为,A B ,当APB ∠最大时,PB PA •的值为( ) A .32 B .2C .52 D .3 12.定义在(0,)2π上的函数()f x ,()'f x 是它的导函数,且恒有()()'tan f x f x x >⋅成立.则( )A .)3()6(3ππf f <B .)1(1cos 2)6(3f f ⋅>πC .)4(2)6(6ππf f >D .)3()4(2ππf f > 第II 卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分)13. 4)31(xx -的展开式中常数项为 .(用数字表示) 14.若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则++21ln ln a a …=20ln a ________.15.若圆C :02422=++-+m y x y x 与y 轴交于B A ,两点,且︒=∠120ACB ,则实数m 的值为 .16.已知函数x x f lg )(=,)()(,0b f a f b a =>>,则)12)(1(++b a 的最小值等于 .三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程和清算步骤)17.(本题满分12分)在ABC ∆中,已知内角C B A 、、所对的边分别为c b a 、、,向量),sin 2,3(B m -=)2cos ,12cos 2(2B Bn -=,且m //n ,B 为锐角. (I )求角B 的大小; (II )设2b =,求ABC ∆的面积ABC S ∆的最大值.18.(本题满分12分)在直角梯形ABCP 中,AP BC //,AB AP ⊥,==BC AB,221=AP D 为AP 的中点,,,E F G 分别为PC PD CB 、、的中点,将PCD ∆沿CD 折起,使点P 在平面ABCD 上的射影为点D ,如图:(I )求证:AP //平面EFG .(II )求二面角E FG D --的余弦值.19.(本题满分12分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(I )从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率. (II )从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.1231020 30 40 50 参加人数 活动次数20.(本小题满分12分)已知顶点在坐标原点,焦点在x 轴正半轴的抛物线上有一点1()2A m ,,A 点到抛物线焦点的距离为1.(I )求该抛物线的方程;(II )设00(,)M x y 为抛物线上的一个定点,过M 作抛物线的两条互相垂直的弦MP ,MQ ,求证:PQ 恒过定点00(2,)x y +-.21.(本小题满分12分)设a 为实数,函数()22x f x e x a =-+,x R ∈. (I )求()f x 的单调区间与极值;(II )求证:当ln 21a >-且0x >时,221x e x ax >-+.请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲.如图,⊙O 内切△ABC 的边于AC AB F E D =,,,,连接AD 交⊙O 于点H ,直线HF 交BC 的延长线于点G . (I )证明:圆心O 在直线AD 上; (II )证明:点C 是线段GD 的中点.23.(本小题满分10分)选修4-4:坐标系与参数方程选讲.已知在直角坐标系x0y 中,曲线1C:sin cos x y θθθθ⎧=+⎪⎨=-⎪⎩(θ为参数),在以平面直角坐标系的原点)为极点,x 轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线2C :sin()16πρθ+=.(I )求曲线1C 的普通方程和曲线2C 的直角坐标方程;(II )曲线1C 上恰好存在三个不同的点到曲线2C 的距离相等,分别求这三个点的极坐标.24.(本小题满分10分)选修4-5:不等式选讲.已知函数()|1||22|.f x x x =-++(I )解不等式()5f x >; (II )若不等式()()f x a a <∈R 的解集为空集,求a 的取值范围. B G CDH FAOE普通高等学校招生全国统一考试模拟试题理科数学答案一、选择题。
高考数学(理科)模拟试题含答案(一)精编版

高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
高考数学临考练兵测试题30 文

O 2x1x y x12 高考数学临考练兵测试题30 文第Ⅰ卷 选择题一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}21M x x =∈≤Z ,{}12N x x =∈-<<R ,则MN =( )A . {}1,0,1-B .{}0,1C .{}1,0-D .{}12.已知复数1iz i=+,则复数z 的模为( ) A .2B .2C .12D .12+12i 3.一个几何体的三视图如右图所示(单位长度:cm ), 则此几何体的体积是( ) A .1123cm B .32243cm C .963cmD .2243cm4.在一盒子里装有i 号球i 个(1i =,2,3),现从盒子 中每次取一球,记完号码后放回,则两次取出的球的号码 之积为6的概率是( ) A .12B .15C .13D .165.下列说法中,正确的是( ) A .命题“若22am bm <,则a b <”的逆命题是真命题B .命题“x R ∃∈,02>-x x ”的否定是:“x R ∀∈,02≤-x x ” C .命题“p 或q ”为真命题,则命题“p ”和命题“q ”均为真命题D .已知R x ∈,则“1x >”是“2x >”的充分不必要条件6.已知函数32()f x x bx cx =++的图象如图所示,则2221x x +等于( )A .32B .34 C .38D .3167.已知O 为坐标原点,点A ),(y x 与点B 关于x 轴对称,(0,1)j =,则满足不等式20OA j AB +⋅≤的点A 的集合用阴影表示为( )8.已知1)1,1(=f ,*),(N n m f ∈(m 、*)N n ∈,且对任意m 、*N n ∈都有: ①2),()1,(+=+n m f n m f ;②)1,(2)1,1(m f m f =+.给出以下三个结论:(1)9)5,1(=f ;(2)16)1,5(=f ;(3)26)6,5(=f . 其中正确的个数为( ) A .3 B .2C .1D .0第Ⅱ卷 非选择题二、填空题:本大题共6个小题,每小题5分,共30分. 9.已知(,0)2πα∈-,3sin 5α=-,则cos()πα-= . 10.阅读如图所示的程序框图,运行相应的程序,如果 输入100,则输出的结果为 , 如果输入2-,则输出的结果为 .11.已知直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个顶点和一个焦点,那么这个椭圆的方程为 ,离心率为_______.12.已知△ABC 的三边长分别为7AB =,5BC =, 6CA =,则AB BC ⋅的值为________. 13.从某校随机抽取了100名学生,将他们的体重(单位:kg )数据绘制成频率分布直方图(如图),由图中数据可知m 数是 .14.已知数列{}n a 满足122a =,1n a +的通项公式为 ,na n的最小值为 .三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知函数23cos sin sin 3)(2-+=x x x x f ()R x ∈. (Ⅰ)求)4(πf 的值;(Ⅱ)若)2,0(π∈x ,求)(x f 的最大值;(Ⅲ)在ABC ∆中,若B A <,21)()(==B f A f ,求ABBC 的值.16.(本小题满分13分)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足)(2*2N n a a S n n n ∈+=. (Ⅰ)求321,,a a a ;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若1()2n an b n =,求数列}b {n 的前n 项和n T .17.(本小题满分14分)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD=DC ,E ,F 分别是AB ,PB 的中点.(Ⅰ)求证://EF 平面PAD ; (Ⅱ)求证:EF CD ⊥;(Ⅲ)若G 是线段AD 上一动点,试确定G 点位置,使GF ⊥平面PCB ,并证明你的结论.18.(本小题满分13分)已知椭圆C 中心在原点,焦点在x 轴上,焦距为2,短轴长为3 (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A . 求证:直线l 过定点,并求出定点的坐标.19.(本小题满分14分)已知函数ln ()()a xf x a R x+=∈. (Ⅰ)若4=a ,求曲线)(x f 在点))(,(e f e 处的切线方程; (Ⅱ)求)(x f 的极值;(Ⅲ)若函数)(x f 的图象与函数1)(=x g 的图象在区间],0(2e 上有公共点,求实数a 的取值范围.20.(本小题满分13分)如图111(,)P x y ,222(,)P x y ,,(,)n n n P x y ,12(0,)n y y y n N *<<<<∈是曲线2:3(0)C y x y =≥上的n 个点,点(,0)(1,2,3,,)i i A a i n =在x 轴的正半轴上,1i i i A A P -∆是正三角形(0A 是坐标原点) .(Ⅰ)求123,,a a a ;(Ⅱ)求出点n A (,0)(*)n a n N ∈的横坐标n a 关于n 的表达式.参考答案二、填空题:本大题共6个小题,每小题5分,共30分. 注:两空的题第1个空3分,第2个空2分.三、解答题:本大题共6个小题,共80分.解答题应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)解:(Ⅰ)234cos4sin4sin 3)4(2-+=ππππf 21=. ……………4分 (Ⅱ)2)2cos 1(3)(x x f -=+232sin 21-x x x 2cos 232sin 21-= )32sin(π-=x . ……………6分20π<<x , 32323πππ<-<-∴x . ∴当232x ππ-=时,即125π=x 时,)(x f 的最大值为1. …………8分 (Ⅲ) )32sin()(π-=x x f , 若x 是三角形的内角,则π<<x 0,∴35323π<π-<π-x .令21)(=x f ,得21)32sin(=π-x ,∴632π=π-x 或6532π=π-x ,解得4π=x 或127π=x . ……………10分由已知,B A ,是△ABC 的内角,B A <且21)()(==B f A f ,∴4π=A ,127π=B ,∴6π=--π=B A C . ……………11分又由正弦定理,得221226sin 4sinsin sin ==ππ==C A AB BC . ……………13分16.(本小题满分13分)解:(Ⅰ)3,2,1321===a a a . ……………3分 (Ⅱ) n n n a a S +=22, ①12112---+=n n n a a S , (n ≥2 ) ② ……………5分①—②即得 0))(1(11=+----n n n n a a a a , ……………6分因为01≠+-n n a a , 所以n a a a n n n ==--所以,11(n ∈*N )…………8分(Ⅲ)nn n b )21(=n n T )21(n )21(2212⨯+⋯+⨯+=, 132)21(n )21(2)21(21+⨯+⋯+⨯+=n n T . 两式相减得,112221)21(n )21()21(2121+++-=⨯-+⋯++=n n n n n T所以 nn nT 222+-=. ……………13分17.(本小题满分14分)(Ⅰ)证明:E,F 分别是,AB PB 的中点,//.EF AP ∴,EF PAD AP PAD ⊄⊂又平面平面,//EF PAD ∴平面. ……………………4分 (Ⅱ)证明:四边形ABCD 为正方形,AD CD ∴⊥.PD ABCD ⊥又平面,=PD CD AD PD D ∴⊥,且.CD PAD ∴⊥平面, PA PAD ⊂又平面, CD PA ∴⊥. //EF PA 又,EF CD ∴⊥. ……………………8分 (Ⅲ)解:G 是AD 的中点时,.GF PCB ⊥平面证明如下: ……………………9分取PC 中点H ,连结DH ,HF . ,.PD DC DH PC =∴⊥又,,.BC PDC BC DH DH PCB ⊥∴⊥∴⊥平面平面1////,2HF BC DG DGFH ==∴四边形为平行四边形,//DH GF ∴,.GF PCB ∴⊥平面 ……………………14分18.(本小题满分13分)解: (Ⅰ)设椭圆的长半轴为a ,短半轴长为b ,半焦距为c ,则22222,2,c b a b c =⎧⎪=⎨⎪=+⎩解得2,a b =⎧⎪⎨=⎪⎩ ∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分 (Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k x kmx m +++-=. ………………… 6分 由题意△()()()22284344120km km=-+->,整理得:22340k m +-> ① ………………7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+ . ………………… 8分 由已知,AM AN ⊥, 且椭圆的右顶点为A (2,0), ∴()()1212220x x y y --+=.………………… 10分即 ()()()2212121240k x x km x x m ++-+++=,也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++, 整理得2271640m mk k ++=. 解得2m k =- 或 27km =-,均满足① ……………………… 11分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),不符合题意舍去;当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故直线l 过定点,且定点的坐标为2(,0)7. ……………………… 13分19.(本小题满分14分)解:(Ⅰ) ∵4=a , ∴x x x f 4ln )(+=且ee f 5)(=. ……………………… 1分 又∵22ln 3)4(ln )4(ln )(xxx x x x x x f --='+-'+=', ∴223ln 4()e f e e e --'==-. ……………………… 3分 ∴)(x f 在点))(,(e f e 处的切线方程为:)(452e x ee y --=-,即0942=-+e y e x . ……………………… 4分(Ⅱ))(x f 的定义域为),0(+∞,2)(ln 1)(xa x x f +-=',……………………… 5分 令0)(='x f 得ae x -=1.当),0(1ae x -∈时,0)(>'xf ,)(x f 是增函数;当),(1+∞∈-aex 时,0)(<'x f ,)(x f 是减函数; …………………… 7分∴)(x f 在ae x -=1处取得极大值,即11)()(--==a ae ef x f 极大值.……… 8分(Ⅲ)(i )当21e ea<-,即1->a 时,由(Ⅱ)知)(x f 在),0(1ae -上是增函数,在],(21e e a -上是减函数,∴当ae x -=1时,)(xf 取得最大值,即1max )(-=a e x f .又当ae x -=时,0)(=xf ,当],0(aex -∈时,0)(<x f ,当],(2e ex a-∈时,],0()(1-∈a e x f ,所以,)(x f 的图像与1)(=x g 的图像在],0(2e 上有公共点, 等价于11≥-a e ,解得1≥a ,又因为1->a ,所以1≥a . ……………… 11分(ii )当21e ea ≥-,即1-≤a 时,)(x f 在],0(2e 上是增函数,∴)(x f 在],0(2e 上的最大值为222)(e ae f +=, ∴原问题等价于122≥+ea,解得22-≥e a , 又∵1-≤a ∴无解综上,a 的取值范围是1≥a . ……………… 14分20.(本小题满分13分)解:(Ⅰ)1232,6,12a a a ===. …………………………… 6分 (Ⅱ)依题意11(,0),(,0)n n n n A a A a --,则12n n n a a x -+=,n y =在正三角形1n n n P A A -中,有11||)n n n n n y A A a a --==-. 1)n n a a -=-. 1n n a a -∴-= ………………………… 8分2211122()(2,*)n n n n n n a a a a a a n n N ---∴-+=+≥∈ ①,同理可得2211122()(*)n n n n n n a a a a a a n N +++-+=+∈ ②.②-①并变形得1111()(22)0(2,*)n n n n n a a a a a n n N +-+--+--=≥∈ 11n n a a +->,11220n n n a a a +-∴+--=11()()2(2,*)n n n n a a a a n n N +-∴---=≥∈ .∴数列{}1n n a a +-是以214a a -=为首项,公差为2的等差数列. ………… 10分12(1),(*)n n a a n n N +∴-=+∈ ,n a ∴12132431()()()()n n a a a a a a a a a -=+-+-+-++-,2(123)n =++++2n n =+.(1)(*)n a n n n N ∴=+∈…………… 13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标版高考精选预测(一)第I 卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填在答题卡上 1.311ii-- = A .i B .i - C .i 2 D .i 2-2.圆心在y 轴上,半径为1A .()1222=-+y x C .()1322=-+y x 3.已知圆锥的母线长为2面积..等于 A .π B . π2 4.右图是统计高三年级1000输出的结果是720A .0.28 B .0.38 5.若2sin sin 3=⎪⎭⎫⎝⎛++a a πA .1B .7C .6. 7.32,则展开式中x 的系数为D .40 8.已知函数)24tan(ππ-=x y 的部分图像如右图所示,则⋅=A .1B .2C .3D .49.已知O 为坐标原点,双曲线()0,012222>>=-b a by a x的右焦点为F ,以OF 为直径作圆交双曲线的渐近线于异于原点O 的点P ,若0)(=⋅+,则双曲线的离心率e =A .2B . 3C .2D .310.已知()31+=mx x g ,()x xx f -=33,若对任意的[]2,11-∈x ,总存在[]2,12-∈x , 使得()()21x f x g =,则m 的取值范围是第II 卷二、填空题:本大题共5小题,每小题5分,共2511.设△ABC 的内角C B A ,,所对的边长分别为c b a ,,,且a 则BAtan tan 的值为 . 12..丙二人13.z y x ++=,其中14.k 的值 15.考生注意:请在下列两题中任选一题作答,如果多做,则按所做的第一题评分. A .(不等式选做题)不等式2313x a a --≤-对任意实数x 恒成立,则实数a 的取 值范围为 .B .(坐标系与参数方程选做题)在极坐标系中,直线l 的极坐标方程为3)6sin(=-πθρ,极坐标为)3,2(π的点A 到直线l 上点的距离的最小值为 .三、解答题:本大题共6小题,满分75分。
解答须写出文字说明,证明过程和演算步骤。
16.(本小题满分12分)已知各项均为正数的数列{}n a 的首项11=a ,且1l o g l o g 212+=+n n a a ,数列{}n n a b -是等差数列,首项为1,公差为2,其中*∈N n . (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n S .第8题图17.(本小题满分12分)已知函数()a x a x x f -+=2cos 22sin 3在6π=x 处取到极值.(1)当20π≤≤x 时,求函数()x f 的最小值;(2)若函数()ϕ+=x f y ⎪⎭⎫⎝⎛<<20πϕ的图像关于原点对称,求ϕ的值.18.(本小题满分121==AB PA ,直线PD λ=()10<<λ.(1)若EF ∥平面PAC (2)当BE19.(本小题满分12分)小明打算从A 组和B 组两组花样滑冰动作中选择一组参加比赛。
已知小明选择A 组动作的概率是选择B 组动作的概率的3倍,若小明选择A 组动作并正常发挥可获得10分,没有正常发挥只能获得6分;若小明选择B 组动作则一定能正常发挥并获得8分。
据平时训练成绩统计,小明能正常发挥A 组动作的概率是0.8.(1)求小明选择A 组动作的概率;(2)设x 表示小明比赛时获得的分数,求x 的期望.20.(本小题满分13分)已知函数x e x x x f ⋅+-=)33()(2的定义域为[]()N t t ∈-,2,设()n t f m f ==-)(,2.(1)若函数()x f 在[]t ,2-上为单调函数,求t 的值; (2)求证:m n >;(3)当t 取哪些值时,方程())(R m m x f ∈=在[]t ,2-上有三个不相等的实数根?并求出相应的实数m 的取值范围.21.(本小题满分14分)在平面直角坐标系XOY 中,已知定点),0(a A ,),0(a B -,M ,N 是x 轴上两个不同的动点,且)0,(42≠∈=⋅a R a a ,直线AM 与直线BN 交于C 点.(1)求点C 的轨迹方程;(2)若存在过点)1,0(-且不与坐标轴垂直的直线l 与点C 的轨迹交于不同的两点E .F ,且AF AE =,求实数a 的取值范围.参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共5小题,每小题5分,共25分. 11、4 12、41 13、36 14、-1或1 15、 A.4≥a 或1-≤a B.2 三、解答题:本大题共6小题,满分75分。
解答须写出文字说明,证明过程和演算步骤。
16、解:(1)由题可得:21=+nn a a ,∴ 数列{}n a 是以1为首项,2为公比的等比数列。
∴12-=n n a .……………………………………6分 (2)由题知:=-a b n n∴(12212-++=S n .…………12分17、解:(1)()x f '=32 由06=⎪⎭⎫⎝⎛'πf 得a,当20≤≤x 时,67626π≤+≤x , .…………………………………6分 (2)()()ϕϕ+-=+-x f x f 恒成立。
⎪⎭⎫ ⎝⎛++-=⎪⎭⎫⎝622sin 6πϕx 展开得:062sin 2cos =⎪⎭⎫⎝⎛+⋅πϕx ,………………………8分 ∴Z k k ∈=+,62ππϕ,………………10分∴125πϕ=…………………………12分 18、解:(1)∵平面PBC 平面PAC=AC ,EF ⊆平面PBC ,若EF ∥平面PAC ,则EF ∥PC ,又F 是PB 的中点,∴E 为BC 的中点,∴21=λ…………………5分 (2)以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P (0,0,1),B (0,1,0),F (0,21,21), D (3,0,0), 设a BE =,则E (a ,1,0)平面PDE 的法向量=1n ()3,3,1a -,平面ADE 的法向量()1,0,02=n ,22=,(),2233132=+-+⇒a 解得23-=a 或23+=a (舍去),∴当BE=23-时,二面角A DE P --的大小为45°………………………12分 19、解:(1)设小明选择A 组动作的概率为P (A ),选择B 组动作的概率为P(B),由题知P(A)=3P(B),P(A)+P(B)=1,解得P(A)=0.75…………………………5分 (2)由题知x 的取值为6,8,10.P ()6=x =0.75×0.2=0.15, P ()8=x =0.25, P ()10=x =0.75×0.8=0.6,……10分其分布列为故Ex =8.9………………………………………………………………………12分 20、解:(1)())(,)1(x f e x x x f x ∴-=' 在()),1(,0,+∞∞-上递增,在()1,0上递减, 所以,0≤t 又∵N t ∈,故0=t 。
………………………4分(2)因为f (x )在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,所以f (x )在x =1处取得极小值f (1)=e.又f (-2)=13e2<e ,所以f (x )定在x =-2处取得最小值,从而当t N ∈时,f (-2)<f (t ),即m <n …………………………………8分 (3)由(1)知f (x )在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,故当t =0或t =1时,方程f (x )-m =0在[-2,t ]最多只有两个实数根,所以t ≥2,且t ∈N……………………………………………………………………………………10分当t ≥2,且t ∈N 时,方程f (x )-m =0在[-2,t ]上有三个不等实根, 只需满足m ∈(m ax (f (-2),f (1)),min(f (0),f (t )))即可.因为f (-2)=13e 2,f (0)=3,f (1)=e ,f (2)=e 2,且f (t )≥f (2)=e 2>3=f (0),因而f (-2)<f (1)<f (0)<f (2)≤f (t ), 所以f (1)<m <f (0),即e<m <3,即实数m 的取值范围是(e,3)………………………………………………13分 21、解:(1)设点)0,(),0,(),,(n N m M y x C .由M C A ,,三点共线得:x ay m a -=- 由N C B ,,三点共线得:xay n a +=以上两式相乘得:2222xa y mn a -=-,又∵24a =⋅得24a mn =, 化简得C 点轨迹方程为:)0(44222≠=+x a y x …………………………6分 (2)设直线l 方程为:),(),,(),0(12211y x F y x E k kx y ≠-=, 联立⎩⎨⎧=+-=222441ay x kx y 得()044841222=-+-+a kx x k ,由0)44)(41(464222>-+-=∆a k k 得014222>-+a k a .(1)…………8分 由AF AE =得=-+2121)(a y x 2222)(a y x -+,k -,化简得a ak 432-=.(2)……………………11分 31>a , 14分。