2008年山东高考数学理科试题及答案1
2008年普通高等学校招生全国统一考试数学理试题(山东卷)(含解析)

2008年普通高等学校招生全国统一考试(山东卷)理科数学全解全析(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。
【试题分析】 可设2z b i =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±【高考考点】: 共轭复数的概念、复数的运算。
【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。
3、函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=,则7sin()6πα+的值是 23().5A -23().5B 4().5C - 4().5D 【标准答案】:C 。
【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos sin 225αα+=, 7314sin()sin()sin cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。
【易错提醒】: 不能由334cos()sin cos sin 36225παααα-+=+=得到134c o s s i n 225αα+=是思考受阻的重要体现。
【学科网备考提示】:三角变换与求值主要考查诱导公式、和差公式的熟练应用,其间会涉及一些计算技巧,如本题中的为需而变。
历年高考真题 附答案(山东卷)2008数学

2008年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.球的表面积公式:24πS R =,其中R 是球的半径. 如果事件A B ,互斥,那么()()()P A B P A P B +=+一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.满足{}1234M a a a a ⊆,,,,且{}{}12312M a a a a a = ,,,的集合M 的个数是( ) A .1B .2C .3D .42.设z 的共轭复数是z ,若4z z +=,8z z = ,则z z等于( )A .iB .i -C .1±D .i ±3.函数ππln cos 22y x x ⎛⎫=-<<⎪⎝⎭的图象是( )4.给出命题:若函数()y f x =是幂函数,则函数()y f x =的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( ) A .3 B .2 C .1 D .05.设函数2211()21x x f x x x x ⎧-⎪=⎨+->⎪⎩,,,,≤则1(2)f f ⎛⎫⎪⎝⎭的值为( ) A .1516B .2716-C .89D .186.右图是一个几何体的三视图,根据图中数据, 可得该几何体的表面积是( ) A .9π B .10πC .11πD .12π 7.不等式252(1)x x +-≥的解集是( )A .132⎡⎤-⎢⎥⎣⎦,B .132⎡⎤-⎢⎥⎣⎦, C .(]11132⎡⎫⎪⎢⎣⎭,,D .(]11132⎡⎫-⎪⎢⎣⎭,,xxA .B .C .D .俯视图 正(主)视图 侧(左)视图8.已知a b c ,,为A B C △的三个内角A B C ,,的对边,向量1)(cos sin )A A =-=,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( )A .ππ63, B .2ππ36, C .ππ36, D .ππ33, 9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A .B .5C .3D .8510.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .5-B .5C .45- D .4511.若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( ) A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭12.已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<< B .101b a -<<<C .101ba -<<<- D .1101ab --<<<第Ⅱ卷(共90二、填空题:本大题共4小题,每小题4分,共16分.13.已知圆22:6480C x y x y +--+=.以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 . 14.执行右边的程序框图,若0.8p =, 则输出的n =.15.已知2(3)4log 3233xf x =+,则8(2)(4)(8)(2)f f f f ++++ 的 值等于 .x16.设x y ,满足约束条件20510000x y x y x y ⎧-+⎪--⎪⎨⎪⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 . 三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2.(Ⅰ)求π8f ⎛⎫⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.18.(本小题满分12分)现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率. 19.(本小题满分12分)如图,在四棱锥P A B C D -中,平面P A D ⊥平面A B C D ,AB D C ∥,P A D △是等边三角形,已知28B D A D ==,2AB D C ==(Ⅰ)设M 是P C 上的一点,证明:平面M B D ⊥平面PAD ; (Ⅱ)求四棱锥P A B C D -的体积. 20.(本小题满分12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表:1a 2a 3a 4a 5a 6a 7a 8a 9a 10aABCMPD记表中的第一列数1247a a a a ,,,,构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足221(2)n n n nb n b S S=-≥.(Ⅰ)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(Ⅱ)上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当81491a =-时,求上表中第(3)k k ≥行所有项的和.21.(本小题满分12分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.22.(本小题满分14分)已知曲线11(0)x y C a b a b+=>>:所围成的封闭图形的面积为曲线1C3记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设A B 是过椭圆2C 中心的任意弦,l 是线段A B 的垂直平分线.M 是l 上异于椭圆中心的点. (1)若M O OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求A M B △的面积的最小值.2008年普通高等学校招生全国统一考试(山东卷)文科数学(答案)一、选择题 1.B 2.D 3.A 4.C 5.A 6.D 7.D8.C9.B10.C11.B12.A二、填空题 13.221412xy-= 14.4 15.2008 16.11三、解答题17.解:(Ⅰ)())cos()f x x x ωϕωϕ=+-+12sin()cos()22x x ωϕωϕ⎤=+-+⎥⎣⎦π2sin 6x ωϕ⎛⎫=+- ⎪⎝⎭.因为()f x 为偶函数,所以对x ∈R ,()()f x f x -=恒成立,因此ππsin()sin 66x x ωϕωϕ⎛⎫-+-=+- ⎪⎝⎭. 即ππππsin cos cos sin sin cos cos sin 6666x x x x ωϕωϕωϕωϕ⎛⎫⎛⎫⎛⎫⎛⎫--+-=-+- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理得πsin cos 06x ωϕ⎛⎫-= ⎪⎝⎭. 因为0ω>,且x ∈R , 所以πcos 06ϕ⎛⎫-= ⎪⎝⎭. 又因为0πϕ<<, 故ππ62ϕ-=.所以π()2sin 2cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭. 由题意得2ππ22ω= ,所以2ω=. 故()2cos 2f x x =.因此ππ2cos 84f ⎛⎫==⎪⎝⎭(Ⅱ)将()f x 的图象向右平移π6个单位后,得到π6f x ⎛⎫-⎪⎝⎭的图象, 所以πππ()2cos 22cos 2663g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 当π2π22ππ3k x k -+≤≤(k ∈Z ), 即π2πππ63k x k ++≤≤(k ∈Z )时,()g x 单调递减,因此()g x 的单调递减区间为π2πππ63k k ⎡⎤++⎢⎥⎣⎦,(k ∈Z ). 18.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,, 132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,, 122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==.(Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.19.(Ⅰ)证明:在ABD △中, 由于4AD =,8B D =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面P A D ⊥平面A B C D ,平面PAD 平面A B C D A D =,ABCM PD OBD ⊂平面A B C D ,所以B D ⊥平面PAD , 又BD ⊂平面M BD , 故平面M B D ⊥平面PAD .(Ⅱ)解:过P 作P O A D ⊥交A D 于O , 由于平面P A D ⊥平面A B C D , 所以P O ⊥平面A B C D .因此P O 为四棱锥P A B C D -的高, 又P A D △是边长为4的等边三角形.因此42PO ==在底面四边形A B C D 中,A B D C ∥,2A B D C =,所以四边形A B C D 是梯形,在R t AD B △中,斜边A B5=此即为梯形A B C D 的高, 所以四边形A B C D的面积为2425S ==.故1243P A B C D V -=⨯⨯=20.(Ⅰ)证明:由已知,当2n ≥时,221n n n nb b S S =-,又12n n S b b b =+++ , 所以1212()1()n n n n n nS S S S S S ---=--,即112()1n n n n S S S S ---=-,所以11112nn S S --=,又1111S b a ===.所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列.由上可知1111(1)22n n n S +=+-=,即21n S n =+.所以当2n ≥时,12221(1)n n n b S S n nn n -=-=-=-++.因此1122(1)n n b n n n =⎧⎪=⎨-⎪+⎩, ,,.≥ (Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且0q >. 因为12131212782⨯+++== ,所以表中第1行至第12行共含有数列{}n a 的前78项, 故81a 在表中第13行第三列, 因此28113491a b q ==- .又1321314b =-⨯,所以2q =.记表中第(3)k k ≥行所有项的和为S ,则(1)2(12)2(12)(3)1(1)12(1)kkkk b q S k qk k k k --==-=--+-+ ≥.21.解:(Ⅰ)因为122()e (2)32x f x x x ax bx -'=+++1e(2)(32)x x x x ax b -=+++,又2x =-和1x =为()f x 的极值点,所以(2)(1)0f f ''-==,因此6203320a b a b -+=⎧⎨++=⎩,,解方程组得13a =-,1b =-. (Ⅱ)因为13a =-,1b =-,所以1()(2)(e 1)x f x x x -'=+-,令()0f x '=,解得12x =-,20x =,31x =. 因为当(2)x ∈-∞-,(01) ,时,()0f x '<; 当(20)(1)x ∈-+∞ ,,时,()0f x '>. 所以()f x 在(20)-,和(1)+∞,上是单调递增的; 在(2)-∞-,和(01),上是单调递减的.(Ⅲ)由(Ⅰ)可知21321()e 3x f x x x x -=--,故21321()()e (e )x x f x g x x x x x ---=-=-, 令1()e x h x x -=-, 则1()e 1x h x -'=-. 令()0h x '=,得1x =,因为(]1x ∈-∞,时,()0h x '≤, 所以()h x 在(]1x ∈-∞,上单调递减. 故(]1x ∈-∞,时,()(1)0h x h =≥; 因为[)1x ∈+∞,时,()0h x '≥, 所以()h x 在[)1x ∈+∞,上单调递增. 故[)1x ∈+∞,时,()(1)0h x h =≥. 所以对任意()x ∈-∞+∞,,恒有()0h x ≥,又20x ≥,因此()()0f x g x -≥,故对任意()x ∈-∞+∞,,恒有()()f x g x ≥. 22.解:(Ⅰ)由题意得23ab ⎧=⎪⎨=.又0a b >>, 解得25a =,24b =.因此所求椭圆的标准方程为22154xy+=.(Ⅱ)(1)假设A B 所在的直线斜率存在且不为零,设A B 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545A Akk OA x y kkk+=+=+=+++.设()M x y ,,由题意知(0)M O OA λλ=≠,所以222M O OA λ=,即2222220(1)45k x y kλ++=+,因为l 是A B 的垂直平分线, 所以直线l 的方程为1y x k =-,即x k y=-,因此22222222222220120()4545x y x y x y x y x yλλ⎛⎫+ ⎪+⎝⎭+==++ , 又220x y +≠, 所以2225420x y λ+=, 故22245xyλ+=.又当0k =或不存在时,上式仍然成立. 综上所述,M 的轨迹方程为222(0)45xyλλ+=≠.(2)当k 存在且0k ≠时,由(1)得222045Ax k=+,2222045Aky k=+,由221541x yy x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45A Ak OA x y k+=+=+,222280(1)445k ABOAk+==+,22220(1)54k OMk+=+.解法一:由于22214A MB S A B O M= △2222180(1)20(1)44554k k kk++=⨯⨯++2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥ 222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409. 解法二:因为222222111120(1)20(1)4554k k O A O M k k+=+++++2224554920(1)20k k k +++==+, 又22112O A O M O A O M + ≥,409O A O M ≥, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立, 此时A M B △面积的最小值是409A M B S =△. 当0k =,140229A M B S =⨯=>△. 当k不存在时,140429A M B S =⨯=>△. 综上所述,A M B △的面积的最小值为409.。
2008高考全国卷Ⅰ数学理科试题含答案(全word版)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-=,,,一、选择题1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )23.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .4三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.62008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+,1233AD c b =+; 4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=; 6. B. 由()()()()212121,1,y x x y x e f x e f x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x ya b+=与圆221x y +=22111a b +1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n可得cos sin 1a b αα=+11.C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC所成角的正弦值为113AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为060 长度均为a ,平面ABC 的法向量为111133OA AA AB AC =--,11AB AB AA =+ 2111126,,33OA AB a OA AB ⋅===则1AB 与底面ABC 所成角的正弦值为111123OA AB AO AB ⋅=. 12.B.分三类:种两种花有24A 种种法;种三种花有342A 种种法;种四种花有44A 种种法.共有234444284A A A ++=.另解:按A B C D ---顺序种花,可分A C 、同色与不同色有43(1322)84⨯⨯⨯+⨯= 13.答案:9.如图,作出可行域,作出直线0:20l x y -=,将0l 平移至过点A 处 时,函数2z x y =-有最大值9.14. 答案:2.由抛物线21y ax =-的焦点坐标为1(0,1)4a -为坐标原点得,14a =,则2114y x =- 与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38.设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====. 16.答案:16.设2AB =,作CO ABDE ⊥面, OHAB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D --cos 1CH OH CH CHO =⋅∠=,结合等边三角形ABC8与正方形ABDE可知此四棱锥为正四棱锥,则AN EM CH ===11(),22AN AC AB EM AC AE =+=-,11()()22AN EM AB AC AC AE ⋅=+⋅-=12故EM AN ,所成角的余弦值16AN EMANEM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,,),(,,222222M N ---,则3121321(,,),(,,),,322222AN EM AN EM AN EM ==-⋅===,故EM AN ,所成角的余弦值16AN EM AN EM ⋅=.17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥. tan tan 2CED FDC ∠=∠=, ∴90OED ODE ∠+∠=,90DOE ∴∠=,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥,则CGE ∠即为所求二面角的平面角.23AC CD CG AD ==,DG =,EG==,CE =222cos 2CG GE CE CGE CG GE +-∠==, πarccos CGE ∴∠=-⎝⎭,即二面角CAD E --的大小πarccos -⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0fx '=求得两根为x =即()f x 在⎛-∞⎝⎭递增,⎝⎭递减,3a ⎛⎫-++∞⎪ ⎪⎝⎭递增 (2)23313a ⎧---⎪⎪-,且23a>解得:74a ≥20.解:对于乙:0.20.4⨯+.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==10由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b-=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。
2008年高考理科数学试题及参考答案(山东卷)

绪论马克思主义是关于无产阶级和人类解放的科学一、单项选择题1、马克思主义理论从狭义上说是(C)A、无产阶级争取自身解放和整个人类解放的学说体系B、关于无产阶级斗争的性质、目的和解放条件的学说C、马克思和恩格斯创立的基本理论、基本观点和基本方法构成的科学体系D、关于资本主义转化为社会主义以及社会主义和共产主义发展的普遍规律的学说2、马克思主义理论从广义上说是(A)A、不仅指马克思恩格斯创立的基本理论、基本观点和学说的体系,也包括继承者对它的发展。
B、无产阶级争取自身解放和整个人类解放的学说体系C、关于无产阶级斗争的性质、目的和解放条件的学说D、马克思和恩格斯创立的基本理论、基本观点和基本方法构成的科学体系3、作为中国共产党和社会主义事业指导思想的马克思主义是指(A)A、不仅指马克思恩格斯创立的基本理论、基本观点和学说的体系,也包括继承者对它的发展。
B、无产阶级争取自身解放和整个人类解放的学说体系C、关于无产阶级斗争的性质、目的和解放条件的学说D、列宁创立的基本理论、基本观点和基本方法构成的科学体系4、在19世纪三大工人运动中,集中反映工人政治要求的是(B)A、法国里昂工人起义B、英国宪章运动C、芝加哥工人起义D、德国西里西亚纺织工人起义5、马克思主义产生的经济根源是(C)A、工业革命B、资本主义经济危机C、资本主义社会生产力和生产关系的矛盾运动D、阶级斗争6、马克思主义产生的阶级基础和实践基础是(B)A、资本主义的剥削和压迫B、无产阶级作为一支独立的政治力量登上了历史舞台C、工人罢工和起义D、工人运动得到了“农民的合唱”7、马克思和恩格斯进一步发展和完善了英国古典经济学理论是(C)A、辩证法B、历史观C、劳动价值论D、剩余价值论8、马克思把黑格尔的辩证法称为(A)A、合理内核B、基本内核C、精髓D、核心9、在第一次世界大战中成为东西方矛盾焦点和帝国主义政治体系最薄弱环节的国家是(D)A、德国B、奥地利C、中国D、俄国10、“哲学把无产阶级当作自己的物质武器,同样,无产阶级把哲学当作自己的精神武器”,这个论断的含义是(A)A、马克思主义是无产阶级的世界观和方法论B、哲学的存在方式是物质C、无产阶级的存在方式是精神D、无产阶级掌握哲学就由自为阶级转变为自在阶级11、马克思主义生命力的根源在于(A)A、以实践为基础的科学性与革命性的统一B、与时俱进C、科学性与阶级性的统一D、科学性12、无产阶级的科学世界观和方法论是(C)A、辩证唯物主义B、历史唯物主义C、辩证唯物主义和历史唯物主义D、唯物主义13、马克思主义最重要的理论品质是(D)A、吐故纳新B、科学严谨C、博大精深D、与时俱进14、马克思主义最崇高的社会理想(A)A、实现共产主义B、消灭阶级、消灭国家C、实现个人的绝对自由D、实现人权15、学习马克思主义基本原理的根本方法(C)A、认真学习马克思主义的著作B、一切从实际出发C、理论联系实际D、实事求是第一章世界的物质性及其发展规律一、单选题1.列宁对辩证唯物主义物质范畴的定义是通过( A )。
2008高考试题——数学理(山东卷)

2008年普通高等学校招生全国统一考试(山东卷)数学(理)第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径. 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k np k (1-p )n-k(k =0,1,2,…,n ). 如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是 (A )1 (B)2 (C)3 (D)4 解析:本题考查集合子集的概念及交集运算。
集合M 中必含有12,a a 则{}{}12124,,,M a a M a a a ==或 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A )1 (B )-i (C)±1 (D) ±i 解析:本题考查共轭复数的概念、复数的运算。
可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±(3)函数ln cos ()22y x x ππ=-<<的图象是解析:本题考查复合函数的图象。
l n c o s 22y x x ππ⎛⎫=-<< ⎪⎝⎭是偶函数,可排除B,D;由cos x 的值域可以确定。
(4)设函数()1f x x x a =++-的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1 解析:本题考查分段函数的图象。
2008年全国高考理科数学试题(山东卷)

第Ⅰ卷(选择题
2008 年全国各省市高等学校招生全国统一考试数学试题集锦 2008 年普通高等学校招生全国统一考试(山东卷)
理
科
数 学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 4 页.满分 150 分.考试时间 120 分钟.考试结束后,将 本试卷和答题卡一并交回. 注意事项: 1.答题前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写 在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置. 2.第Ⅰ卷每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用 橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上. 3.第Ⅱ卷必须用 0.5 毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如 需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上 要求作答的答案无效. 4.填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤. 参考公式: 球的表面积公式: S 4R2 ,其中 R 是球的半径. 如果事件 A 在一次试验中发生的概率是 p ,那么 n 次独立重复试验中事件 A 恰好发生 k 次的概
19.(本小题满分 12 分) 将数列 {an} 中的所有项按每一行比上一行多一项的规则排成如下数表: a1 a2 a3 a4 a5 a6 a7 a8 a9 a10ห้องสมุดไป่ตู้…… 记表中的第一列数 a1 , a2 ,a4 ,a7 , …构成的数列为 {bn} ,b1 a1 1 . Sn 为数列 {bn} 的前 n 项 2bn 和,且满足 1 (n 2) . bnSn Sn2 (Ⅰ)证明数列 { 1 } 成等差数列,并求数列 {bn} 的通项公式; Sn (Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为 同一个正数.当 a81 4 时,求上表中第 k (k 3) 行所有项的和. 91
山东2008年全国各地高考理科数学试题及参考答案及参考答案

2008年全国各地高考试题(山东卷)理科数学 第Ⅰ卷(共60分)参考公式:球的表面积公式:S =4πr 2,其中R 是球的半径.如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:P n (k )=C k n p k (1-p )n-k(k =0,1,2,…,n ).如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ). 如果事件A 、B 相互独立,那么P (AB )=P (A )·P (B ).一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是 (A)1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz等于 (A)1 (B)-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <)2π的图象是(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为(A) 3 (B)2 (C)1 (D)-1 (5)已知cos(α-6π)+sin α=的值是则)67sin(,354πα- (A)-532 (B)532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B)10π (C)11π (D)12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A)511 (B)681 (C)3061 (D)4081(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为(A)304.6 (B)303.6 (C)302.6 (D)301.6 (9)(X -31x)12展开式中的常数项为(A)-1320 (B)1320 (C)-220 (D)220 (10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A)1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x(11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为(A)106 (B)206 (C)306 (D)406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是(A)[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 . (14)设函数f (x )=ax 2+c (a ≠0).若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. (16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为(5,7).三、解答题:本大题共6小题,共74分. (17)(本小题满分12分)已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π (Ⅰ)美洲f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x=⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x=2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立,因此 sin(-ϕω+x -6π)=sin(ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos(ϕ-6π)=0.又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得 .2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x . 因为 .24cos2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z),即 4k π+≤32π≤x ≤4k π+38π(k ∈Z)时,g (x )单调递减.因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z)(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。
2008年山东高考数学真题

可排除B、D,
由cosx≤1⇒lncosx≤0排除C,
故选A.
4.(5分)(2008•山东)设函数f(x)=|x+1|+|x﹣a|的图象关于直线x=1对称,则a的值为( )
A.3B.2C.1D.﹣1
【分析】函数f(x)=|x﹣a|+|x﹣b|的图象为轴对称图形,其对称轴是直线x= ,可利用这个性质快速解决问题
【解答】解:由题意知本题是古典概型问题,
∵试验发生的基本事件总数为C183=17×16×3.
选出火炬手编号为an=a1+3(n﹣1),
a1=1时,由1,4,7,10,13,16可得4种选法;
a1=2时,由2,5,8,11,14,17可得4种选法;
a1=3时,由3,6,9,12,15,18可得4种选法.
【分析】先依据不等式组 ,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用函数y=ax(a>0,a≠1)的图象特征,结合区域的角上的点即可解决问题.
【解答】解析:平面区域M如如图所示.
求得A(2,10),C(3,8),B(1,9).
由图可知,欲满足条件必有a>1且图象在过B、C两点的图象之间.
18.(12分)(2008•山东)甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中每人答对的概率均为 ,乙队中3人答对的概率分别为 ,且各人回答正确与否相互之间没有影响.用ξ表示甲队的总得分.
(Ⅰ)求随机变量ξ的分布列和数学期望;
(Ⅱ)用A表示“甲、乙两个队总得分之和等于3”这一事件,用B表示“甲队总得分大于乙队总得分”这一事件,求P(AB).
【解答】解: ,
令 得r=9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年山东高考数学理科 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足M ⊆{a 1, a 2, a 3, a 4},且M ∩{a 1 ,a 2, a 3}={ a 1·a 2}的集合M 的个数是 (A )1 (B)2 (C)3 (D)4 (2)设z 的共轭复数是z ,或z +z =4,z ·z =8,则zz 等于(A )1 (B )-i (C)±1 (D) ±i (3)函数y =lncos x (-2π<x <)2π的图象是(4)设函数f (x )=|x +1|+|x -a |的图象关于直线x =1对称,则a 的值为 (A) 3 (B)2 (C)1 (D)-1 (5)已知cos (α-6π)+sin α=473,sin()56πα+的值是 (A )-532 (B )532 (C)-54 (D) 54(6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π (C)11π (D)12π(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081(8)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 (A )304.6(B )303.6 (C)302.6 (D)301.6(9)(X -31x)12展开式中的常数项为(A )-1320(B )1320(C )-220 (D)220(10)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x (11)已知圆的方程为X 2+Y 2-6X -8Y =0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为 (A )106(B )206(C )306(D )406(12)设二元一次不等式组⎪⎩⎪⎨⎧≤-+≥+-≥-+0142,080192y x y x y x ,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是 (A )[1,3] (B)[2,10] (C)[2,9] (D)[10,9]第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右边的程序框图,若p =0.8,则输出的n = 4 . (14)设函数f (x )=ax 2+c (a ≠0).若)()(010x f dx x f =⎰,0≤x 0≤1,则x 0的值为33. (15)已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角B =6π. (16)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为(5,7).三、解答题:本大题共6小题,共74分.(17)(本小题满分12分) 已知函数f (x )=)0,0)(cos()sin(3><<+-+ωϕϕωϕωπx x 为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为.2π(Ⅰ)求f (8π)的值; (Ⅱ)将函数y =f (x )的图象向右平移6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(Ⅰ)f (x )=)cos()sin(3ϕωϕω+-+x x=⎥⎦⎤⎢⎣⎡+-+)cos(21)sin(232ϕωϕωx x=2sin(ϕω+x -6π) 因为 f (x )为偶函数,所以 对x ∈R ,f (-x )=f (x )恒成立,因此 sin (-ϕω+x -6π)=sin(ϕω+x -6π). 即-sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π)=sin x ωcos(ϕ-6π)+cos x ωsin(ϕ-6π),整理得 sin x ωcos(ϕ-6π)=0.因为 ω>0,且x ∈R ,所以 cos (ϕ-6π)=0.又因为 0<ϕ<π,故 ϕ-6π=2π.所以 f (x )=2sin(x ω+2π)=2cos x ω.由题意得.2,222 = 所以 ωπωπ⋅=故 f (x )=2cos2x .因为.24cos 2)8(==ππf(Ⅱ)将f (x )的图象向右平移个6π个单位后,得到)6(π-x f 的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到)64(ππ-f 的图象.).32(cos 2)64(2cos 2)64()(ππππππ-=⎥⎦⎤⎢⎣⎡-=-=f f x g 所以 当 2k π≤32ππ-≤2 k π+ π (k ∈Z),即 4k π+≤32π≤x ≤4k π+38π (k ∈Z)时,g (x )单调递减.因此g (x )的单调递减区间为 ⎥⎦⎤⎢⎣⎡++384,324ππππk k (k ∈Z)(18)(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分, 答错得零分。
假设甲队中每人答对的概率均为32,乙队中3人答对的概率分别为21,32,32且各人正确与否相互之间没有影响.用ε表示甲队的总得分. (Ⅰ)求随机变量ε分布列和数学期望;(Ⅱ)用A 表示“甲、乙两个队总得分之和等于3”这一事件,用B 表示“甲队总得分大于乙队总得分”这一事件,求P (AB ).(Ⅰ)解法一:由题意知,ε的可能取值为0,1,2,3,且所以ε的分布列为ε的数学期望为 E ε=.227839429212710=⨯+⨯+⨯+⨯解法二:根据题设可知)32,3(B ~ε 因此ε的分布列为2323),32,3(.3,2,1,0,32)321()32()(3323=⨯==⨯=-⨯⨯==-εεεE B k C C k P k kk k k所以~因为 (Ⅱ)解法一:用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,所以AB =C ∪D ,且C 、D 互斥,又.278)32()3(,94)321()32()2(,92)321(32)1(,271)321()0(3333232231330=⨯===-⨯⨯===-⨯⨯===-⨯==C P C P C P C P εεεε,34)213131()32()(,310213132213231213132)321()32()(52324232=⨯⨯⨯⨯==⎥⎦⎤⎢⎣⎡⨯⨯+⨯⨯+⨯⨯⨯-⨯⨯=C D P C C P 由互斥事件的概率公式得24334334354310)()()(54==+=+=D P C P AB P .解法二:用A k 表示“甲队得k 分”这一事件,用B k 表示“已队得k 分”这一事件,k =0,1,2,3由于事件A 3B 0,A 2B 1为互斥事件,故事P (AB )=P (A 3B 0∪A 2B 1)=P (A 3B 0)+P (A 2B 1).=.24334)32213121(32)2131()32(2212323223=⨯⨯+⨯⨯+⨯⨯C C (19)(本小题满分12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1 a 2 a 3 a 4 a 5 a 6a 7 a 8 a 9 a 10……记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1. S n 为数列{b n }的前n 项和,且满足=nN n nS S b b 22-1=(n ≥2).(Ⅰ)证明数列{nS 1}成等差数列,并求数列{b n }的通项公式;(Ⅱ)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当91481-=a 时,求上表中第k (k ≥3)行所有项和的和.(Ⅰ)证明:由已知,1, n =1=n b-,)1(2+n n n ≥2.(Ⅱ)解:设上表中从第三行起,每行的公比都为q ,且q >0. 因为1213121278,2⨯++⋅⋅⋅+== 所以表中第1行至第12行共含有数列{a n }的前78项, 故 a 82在表中第13行第三列, 因此282134.91a b q ==-又132,1314b =-⨯所以 q =2.记表中第k (k ≥3)行所有项的和为S ,则(1)2(12)2(12)1(1)12(1)k k k k b q S q k k k k --===--+-+(k ≥3). ).1(22122.12,2112111.2111.1,2111,12,1)(2,,121111*********+-=-+=-=≥+=+=-⎭⎬⎫⎩⎨⎧====-=--=---+++==-------n n hn S b n n S n n S S a b S S S S S S S S S S S S S b b b S S S b b n n n n n n n n n n nn n n n n n n n nn n n时,所以 当即 )(+=由上可知 的等差数列,公差为是首项为所以数列又所以 )(即 )(所以 又 (20)(本小题满分12分)如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒,E ,F 分别是BC , PC 的中点. (Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD所成最大角的正切值为62,求二面角E —AF —C 的余弦值.(Ⅰ)证明:由四边形ABCD 为菱形,∠ABC =60°,可得△ABC 为正三角形.因为 E 为BC 的中点,所以AE ⊥BC .又 BC ∥AD ,因此AE ⊥AD .因为P A ⊥平面ABCD ,AE ⊂平面ABCD ,所以P A ⊥AE . 而 P A ⊂平面P AD ,AD ⊂平面P AD 且P A ∩AD =A , 所以 AE ⊥平面P AD ,又PD ⊂平面P AD . 所以 AE ⊥PD.(Ⅱ)解:设AB =2,H 为PD 上任意一点,连接AH ,EH .由(Ⅰ)知 AE ⊥平面P AD , 则∠EHA 为EH 与平面P AD 所成的角. 在Rt △EAH 中,AE =3,所以 当AH 最短时,∠EHA 最大, 即 当AH ⊥PD 时,∠EHA 最大.此时 tan ∠EHA =36,2AE AH AH == 因此 AH =2.又AD=2,所以∠ADH =45°,所以 P A =2.解法一:因为 P A ⊥平面ABCD ,P A ⊂平面P AC , 所以 平面P AC ⊥平面ABCD .过E 作EO ⊥AC 于O ,则EO ⊥平面P AC ,过O 作OS ⊥AF 于S ,连接ES ,则∠ESO 为二面角E-AF-C 的平面角,在Rt △AOE 中,EO =AE ·sin30°=32,AO =AE ·cos30°=32, 又F 是PC 的中点,在Rt △ASO 中,SO =AO ·sin45°=324,又223830,494SE EO SO =+=+= 在Rt △ESO 中,cos ∠ESO=32154,5304SO SE ==即所求二面角的余弦值为15.5解法二:由(Ⅰ)知AE ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系,又E 、F 分别为BC 、PC 的中点,所以E 、F 分别为BC 、PC 的中点,所以A (0,0,0),B (3,-1,0),C (C ,1,0),D (0,2,0),P (0,0,2),E (3,0,0),F (31,,122), 所以31(3,0,0),(,,1).22AE AF == 设平面AEF 的一法向量为111(,,),m x y z =则0,0,m AE m AF ⎧=⎪⎨=⎪⎩ 因此111130,310.22x x y z ⎧=⎪⎨++=⎪⎩取11,(0,2,1),z m =-=-则因为 BD ⊥AC ,BD ⊥P A ,P A ∩AC=A , 所以 BD ⊥平面AFC , 故 BD 为平面AFC 的一法向量. 又BD =(-3,3,0),所以 cos <m ,BD >=2315.5||||512m BD m BD ⨯==⨯因为 二面角E-AF-C 为锐角,所以所求二面角的余弦值为5(21)(本小题满分12分) 已知函数1()ln(1),(1)nf x a x x =+--其中n ∈N*,a 为常数.(Ⅰ)当n =2时,求函数f (x )的极值;(Ⅱ)当a =1时,证明:对任意的正整数n ,当x ≥2时,有f (x )≤x -1. (Ⅰ)解:由已知得函数f (x )的定义域为{x |x >1}, 当n =2时,21()ln(1),(1)f x a x x =+--所以232(1)().(1)a x f x x --=-(1)当a >0时,由f (x )=0得11x =+>1,21x =-<1,此时 f ′(x )=123()()(1)a x x x x x ----. 当x ∈(1,x 1)时,f ′(x )<0,f (x )单调递减; 当x ∈(x 1+∞)时,f ′(x )>0, f (x )单调递增. (2)当a ≤0时,f ′(x )<0恒成立,所以f (x )无极值. 综上所述,n =2时,当a >0时,f (x )在1x=+2(1(1ln ).2a f a=+ 当a ≤0时,f (x )无极值. (Ⅱ)证法一:因为a =1,所以1()ln(1).(1)nf x x x =+--当n 为偶数时,令1()1ln(1),(1)ng x x x x =-----则 g ′(x )=1+1112(1)11(1)n n n x nx x x x ++--=+---->0(x ≥2).所以当x ∈[2,+∞]时,g(x)单调递增, 又 g (2)=0因此1()1ln(1)(1)ng x x x x =-----≥g(2)=0恒成立, 所以f (x )≤x-1成立.当n 为奇数时,要证()f x ≤x-1,由于1(1)nx -<0,所以只需证ln(x -1) ≤x -1,令 h (x )=x -1-ln(x -1), 则 h ′(x )=1-1211x x x -=--≥0(x ≥2), 所以 当x ∈[2,+∞]时,()1ln(1)h x x x =---单调递增,又h (2)=1>0,所以当x ≥2时,恒有h (x ) >0,即ln (x -1)<x-1命题成立.综上所述,结论成立.证法二:当a =1时,1()ln(1).(1)nf x x x =+--当x ≤2,时,对任意的正整数n ,恒有1(1)nx -≤1,故只需证明1+ln(x -1) ≤x -1. 令[)()1(1ln(1))2ln(1),2,h x x x x x x =--+-=---∈+∞则12()1,11x h x x x -'=-=-- 当x ≥2时,()h x '≥0,故h (x )在[)2,+∞上单调递增,因此 当x ≥2时,h (x )≥h (2)=0,即1+ln(x -1) ≤x -1成立. 故 当x ≥2时,有1ln(1)(1)nx x +--≤x -1.即f (x )≤x -1.(22)(本小题满分14分)如图,设抛物线方程为x 2=2py (p >0),M 为 直线y =-2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B .(Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(2,-2p )时,410AB =,求此时抛物线的方程;(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)xpy p =>上,其中,点C 满足OCOA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由. (Ⅰ)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-< 由22x py =得22x y p =,则,x y p'= 所以12,.MA MB x x k k p p== 因此直线MA 的方程为102(),x y p x x p +=- 直线MB 的方程为202().x y p x x p+=- 所以211102(),2x x p x x p p+=- ① 222202().2x x p x x p p +=- ②由①、②得 212120,2x x x x x +=+- 因此 21202x x x +=,即0122.x x x =+ 所以A 、M 、B 三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当x 0=2时,将其代入①、②并整理得:2211440,x x p --= 2222440,x x p --=所以 x 1、x 2是方程22440xx p --=的两根, 因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p -+===-所以2. ABkp=由弦长公式得AB==又AB=所以p=1或p=2,因此所求抛物线方程为22x y=或24.x y=(Ⅲ)解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2),则CD的中点坐标为123123(,),22x x x y y yQ++++设直线AB的方程为011(),xy y x xp-=-由点Q在直线AB上,并注意到点1212(,)22x x y y++也在直线AB上,代入得033.xy xp=若D(x3,y3)在抛物线上,则2330322,x py x x==因此x3=0或x3=2x0.即D(0,0)或22(2,).xD xp(1)当x0=0时,则12020x x x+==,此时,点M(0,-2p)适合题意.(2)当00x≠,对于D(0,0),此时221222221212002(2,),,224CDx xx x x xpC x kp x px+++==又0,ABxkp=AB⊥CD,所以22220121221,44AB CDx x x x xk kp px p++===-即222124,x x p+=-矛盾.对于2002(2,),x D x p 因为22120(2,),2x x C x p+此时直线CD 平行于y 轴, 又00,AB x k p=≠ 所以 直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点.综上所述,仅存在一点M (0,-2p )适合题意.。