2019年山东省潍坊市高考数学二模试卷(文科)
山东省潍坊市2019-2020学年高考数学第二次调研试卷含解析

山东省潍坊市2019-2020学年高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量(1,2),(3,1)a b =-=-r r,则( )A .a r∥b rB .a r⊥b rC .a r∥(a b -rr)D .a r⊥( a b -rr)【答案】D 【解析】 【分析】由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论. 【详解】∵向量a =r(1,﹣2),b =r(3,﹣1),∴a r和b r的坐标对应不成比例,故a r、b r不平行,故排除A ;显然,a r •b =r 3+2≠0,故a r 、b r不垂直,故排除B ;∴a b -=rr(﹣2,﹣1),显然,a r和a b -rr的坐标对应不成比例,故a r和a b -rr不平行,故排除C ; ∴a r•(a b -rr)=﹣2+2=0,故 a r⊥(a b -rr),故D 正确, 故选:D. 【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题. 2.若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c bC .a c <b cD .c a >c b【答案】B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.3.已知非零向量a v ,b v 满足||a b v v |=|,则“22a b a b +=-v vv v ”是“a b ⊥v v ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:【答案】C 【解析】 【分析】根据向量的数量积运算,由向量的关系||02|2|a b a b a a b b +=-⇔⋅⇔=⊥r r r r r r r r,可得选项.【详解】222222||||22224444a b a b a b a b a a b b a a b b -⇔⇔++-+⋅+-⋅+r r r r r r r r r r r r r r r r ===,||||0a b =≠r r Q ,∴等价于0a b a b ⋅=⇔⊥r r r r,故选:C. 【点睛】本题考查向量的数量积运算和命题的充分、必要条件,属于基础题. 4.计算2543log sin cosππ⎛⎫⎪⎝⎭等于( ) A .32-B .32C .23-D .23【答案】A 【解析】 【分析】利用诱导公式、特殊角的三角函数值,结合对数运算,求得所求表达式的值. 【详解】原式2221log cos 2log cos log 332πππ⎤⎤⎤⎛⎫⎛⎫=-==⎥⎥⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦3223log 22-==-. 故选:A 【点睛】本小题主要考查诱导公式,考查对数运算,属于基础题.5.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在[250,350]内的学生人数为( )A .800B .1000C .1200D .1600【答案】B 【解析】 【分析】由图可列方程算得a ,然后求出成绩在[250,350]内的频率,最后根据频数=总数×频率可以求得成绩在[250,350]内的学生人数.【详解】由频率和为1,得(0.0020.00420.002)501a +++⨯=,解得0.006a =, 所以成绩在[250,350]内的频率(0.0040.006)500.5=+⨯=, 所以成绩在[250,350]内的学生人数20000.51000=⨯=. 故选:B 【点睛】本题主要考查频率直方图的应用,属基础题.6.已知实数x ,y 满足约束条件2211x y y x y kx +≥⎧⎪-≤⎨⎪+≥⎩,若2z x y =-的最大值为2,则实数k 的值为( )A .1B .53C .2D .73【答案】B 【解析】 【分析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解k 即可. 【详解】可行域如图中阴影部分所示,22,111B k k ⎛⎫+⎪--⎝⎭,421,2121k C k k -⎛⎫ ⎪++⎝⎭,要使得z 能取到最大值,则1k >,当12k <≤时,x 在点B 处取得最大值,即2221211k k ⎛⎫⎛⎫-+=⎪ ⎪--⎝⎭⎝⎭,得53k =;当2k >时,z 在点C 处取得最大值,即421222121k k k -⎛⎫⎛⎫-= ⎪ ⎪++⎝⎭⎝⎭,得76k =(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.7.定义在[]22-,上的函数()f x 与其导函数()f x '的图象如图所示,设O 为坐标原点,A 、B 、C 、D 四点的横坐标依次为12-、16-、1、43,则函数()xf x y e=的单调递减区间是( )A .14,63⎛⎫-⎪⎝⎭ B .1,12⎛⎫-⎪⎝⎭C .11,26--⎛⎫⎪⎝⎭D .()1,2【答案】B 【解析】 【分析】先辨别出图象中实线部分为函数()y f x =的图象,虚线部分为其导函数的图象,求出函数()xf x y e=的导数为()()xf x f x y e'='-,由0y '<,得出()()f x f x '<,只需在图中找出满足不等式()()f x f x '<对应的x 的取值范围即可. 【详解】若虚线部分为函数()y f x =的图象,则该函数只有一个极值点,但其导函数图象(实线)与x 轴有三个交点,不合乎题意;若实线部分为函数()y f x =的图象,则该函数有两个极值点,则其导函数图象(虚线)与x 轴恰好也只有两个交点,合乎题意. 对函数()xf x y e=求导得()()xf x f x y e'='-,由0y '<得()()f x f x '<,由图象可知,满足不等式()()f x f x '<的x 的取值范围是1,12⎛⎫-⎪⎝⎭, 因此,函数()xf x y e =的单调递减区间为1,12⎛⎫- ⎪⎝⎭.故选:B. 【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.8.已知实数x ,y 满足10260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,则22z x y =+的最大值等于( )A .2 B.C .4D .8【答案】D 【解析】 【分析】画出可行域,计算出原点到可行域上的点的最大距离,由此求得z 的最大值. 【详解】画出可行域如下图所示,其中()51,,2,22A C ⎛⎫ ⎪⎝⎭,由于OA ==OC =,所以OC OA >,所以原点到可行域上的点的最大距离为所以z 的最大值为()2228=.故选:D【点睛】本小题主要考查根据可行域求非线性目标函数的最值,考查数形结合的数学思想方法,属于基础题. 9.已知复数为纯虚数(为虚数单位),则实数( ) A .-1 B .1C .0D .2【答案】B 【解析】 【分析】 化简得到,根据纯虚数概念计算得到答案.【详解】为纯虚数,故且,即.故选:. 【点睛】本题考查了根据复数类型求参数,意在考查学生的计算能力. 10. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件【答案】A 【解析】首先利用二倍角正切公式由4tan 23θ=-,求出tan θ,再根据充分条件、必要条件的定义判断即可; 【详解】解:∵22tan 4tan 21tan 3θθθ==--,∴可解得tan 2θ=或12-, ∴“tan 2θ=”是“4tan 23θ=-”的充分不必要条件.故选:A 【点睛】本题主要考查充分条件和必要条件的判断,二倍角正切公式的应用是解决本题的关键,属于基础题. 11.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数12()4324x x f x -=-⋅+(02x <<),则函数[]()y f x =的值域为( ) A .13,22⎡⎫-⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,2【答案】B 【解析】 【分析】利用换元法化简()f x 解析式为二次函数的形式,根据二次函数的性质求得()f x 的取值范围,由此求得[]()y f x =的值域.【详解】 因为12()4324x x f x -=-⋅+(02x <<),所以()21241324232424x x x x y =-⋅+=-⋅+,令2x t =(14t <<),则21()342f t t t =-+(14t <<),函数的对称轴方程为3t =,所以min 1()(3)2f t f ==-,max 3()(1)2f t f ==,所以13(),22f x ⎡⎫∈-⎪⎢⎣⎭,所以[]()y f x =的值域为{}1,0,1-. 故选:B 【点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.12.已知等差数列{}n a 的前n 项和为n S ,若1512,90a S ==,则等差数列{}n a 公差d =( ) A .2B .32C .3D .4根据等差数列的求和公式即可得出. 【详解】 ∵a 1=12,S 5=90, ∴5×12+542⨯ d=90, 解得d=1. 故选C . 【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
山东省潍坊市2019-2020学年高考第二次模拟数学试题含解析

山东省潍坊市2019-2020学年高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .12【答案】D 【解析】 【分析】中位数指一串数据按从小(大)到大(小)排列后,处在最中间的那个数,平均数指一串数据的算术平均数. 【详解】由茎叶图知,甲的中位数为8086x +=,故6x =; 乙的平均数为78828089919397887y +++++++=,解得6y =,所以12x y +=. 故选:D. 【点睛】本题考查茎叶图的应用,涉及到中位数、平均数的知识,是一道容易题.2.在正方体1111ABCD A B C D -中,球1O 同时与以A 为公共顶点的三个面相切,球2O 同时与以1C 为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,1AB 为准线的抛物线经过12O O ,,设球12O O ,的半径分别为12r r ,,则12r r =( ) A 51- B .32C .212-D .23【答案】D 【解析】 【分析】由题先画出立体图,再画出平面11AB C D 处的截面图,由抛物线第一定义可知,点2O 到点F 的距离即半径2r ,也即点2O 到面11CDD C 的距离,点2O 到直线1AB 的距离即点2O 到面11ABB A 的距离因此球2O 内切于正方体,设21r =,两球球心和公切点都在体对角线1AC 上,通过几何关系可转化出1r ,进而求解 【详解】根据抛物线的定义,点2O 到点F 的距离与到直线1AB 的距离相等,其中点2O 到点F 的距离即半径2r ,也即点2O 到面11CDD C 的距离,点2O 到直线1AB 的距离即点2O 到面11ABB A 的距离,因此球2O 内切于正方体,不妨设21r =,两个球心12O O ,和两球的切点F 均在体对角线1AC 上,两个球在平面11AB C D 处的截面如图所示,则1222132AC O F r AO ====,,所以2231AF AO O F =-=-.又因为11113AF AO O F r r =+=+,因此()13131r +=-,得123r =-,所以1223rr =-.故选:D 【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养3.某几何体的三视图如图所示,则该几何体的体积为( )A .83π33B .4π1633C .33π3D .3π1633【答案】D 【解析】 【分析】结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可. 【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积11143π4π2323V =⨯⨯⨯=,下半部分的正三棱柱的体积2142342V =⨯⨯⨯=163,故该几何体的体积1243π1633V V V =+=+.故选:D. 【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题. 4.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填( ).A .7?S ≥B .21?S ≥C .28?S ≥D .36?S ≥【答案】C 【解析】 【分析】根据程序框图写出几次循环的结果,直到输出结果是8时. 【详解】第一次循环:0,1S i == 第二次循环:1,2S i == 第三次循环:3,3S i ==第四次循环:6,4S i == 第五次循环:10,5S i == 第六次循环:15,6S i == 第七次循环:21,7S i == 第八次循环:28,8S i ==所以框图中①处填28?S ≥时,满足输出的值为8. 故选:C 【点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.5.已知集合{|{|2,}A x N y B x x n n Z =∈===∈,则A B =I ( )A .[0,4]B .{0,2,4}C .{2,4}D .[2,4]【答案】B 【解析】 【分析】计算{}0,1,2,3,4A =,再计算交集得到答案 【详解】{}{|0,1,2,3,4A x N y =∈==,{|2,}B x x n n Z ==∈表示偶数,故{0,2,4}A B =I . 故选:B . 【点睛】本题考查了集合的交集,意在考查学生的计算能力.6.设i 为虚数单位,若复数(1)22z i i -=+,则复数z 等于( ) A .2i - B .2iC .1i -+D .0【答案】B 【解析】 【分析】根据复数除法的运算法则,即可求解. 【详解】22(1)22,21iz i i z i i+-=+==-. 故选:B.本题考查复数的代数运算,属于基础题. 7.已知函数13()4sin 2,0,63f x x x π⎛⎫⎡⎤=-∈π ⎪⎢⎥⎝⎭⎣⎦,若函数()()3F x f x =-的所有零点依次记为123,,,...,n x x x x ,且123...n x x x x <<<<,则123122...2n n x x x x x -+++++=( )A .503πB .21πC .1003πD .42π【答案】C 【解析】 【分析】 令()262x k k Z πππ-=+∈,求出在130,3⎡⎤π⎢⎥⎣⎦的对称轴,由三角函数的对称性可得122315232,2,...,2366n n x x x x x x -πππ+=⨯+=⨯+=⨯,将式子相加并整理即可求得123122...2n n x x x x x -+++++的值.【详解】 令()262x k k Z πππ-=+∈,得()123x k k Z π=π+∈,即对称轴为()123x k k Z π=π+∈. 函数周期T π=,令113233k ππ+=π,可得8k =.则函数在130,3x ⎡⎤∈π⎢⎥⎣⎦上有8条对称轴. 根据正弦函数的性质可知122315232,2,...,2366n n x x x x x x -πππ+=⨯+=⨯+=⨯, 将以上各式相加得:12312582322...2...26666n n x x x x x -ππππ⎛⎫+++++=++++⨯ ⎪⎝⎭()2238100323+⨯ππ=⨯= 故选:C. 【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为1223341...n n x x x x x x x x -++++++++的形式.8.已知双曲线()222:10y C x b b-=>的一条渐近线方程为y =,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上,且13PF =,则2PF =( ) A .9 B .5C .2或9D .1或5【答案】B 【解析】根据渐近线方程求得b ,再利用双曲线定义即可求得2PF . 【详解】由于ba=b = 又122PF PF -=且22PFc a ≥-=, 故选:B. 【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题. 9.已知01021:1,log ;:,2x p x x q x R e x ∃>>∀∈>,则下列说法中正确的是( ) A .p q ∨是假命题 B .p q ∧是真命题 C .()p q ∨⌝是真命题 D .()p q ∧⌝是假命题【答案】D 【解析】 【分析】举例判断命题p 与q 的真假,再由复合命题的真假判断得答案. 【详解】当01x >时,102log 0,x <故p 命题为假命题;记f (x )=e x ﹣x 的导数为f′(x )=e x -1, 易知f (x )=e x ﹣x 在(﹣∞,0)上递减,在(0,+∞)上递增, ∴f (x )>f (0)=1>0,即,x x R e x ∀∈>,故q 命题为真命题; ∴()p q ∧⌝是假命题 故选D 【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题. 10.在钝角ABC V 中,角,,A B C 所对的边分别为,,a b c ,B 为钝角,若cos sin a A b A =,则sin sin A C +的最大值为( ) AB .98C .1D .78【答案】B 【解析】首先由正弦定理将边化角可得cos sin A B =,即可得到2A B π=-,再求出3,24B ππ⎛⎫∈⎪⎝⎭,最后根据sin sin sin sin 22A C B B B πππ⎡⎤⎛⎫⎛⎫+=-+--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦求出sin sin A C +的最大值;【详解】解:因为cos sin a A b A =, 所以sin cos sin sin A A B A = 因为sin 0A ≠ 所以cos sin A B =2B π>Q2A B π∴=-02202A B C ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩Q ,即0222022B B B πππππππ⎧<-<⎪⎪⎪<<⎨⎪⎪⎛⎫<--< ⎪⎪⎝⎭⎩,3,24B ππ⎛⎫∴∈ ⎪⎝⎭,cos B ⎛⎫∴∈ ⎪ ⎪⎝⎭sin sin sin sin 22A C B B B πππ⎡⎤⎛⎫⎛⎫∴+=-+--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos cos2B B =--22cos cos 1B B =--+2192cos 48B ⎛⎫=-++ ⎪⎝⎭1cos ,042B ⎛⎫∴=-∈- ⎪ ⎪⎝⎭时()max 9sin sin 8A C += 故选:B 【点睛】本题考查正弦定理的应用,余弦函数的性质的应用,属于中档题.11.正方体1111ABCD A B C D -,()1,2,,12i P i =L 是棱的中点,在任意两个中点的连线中,与平面11A C B 平行的直线有几条( )A .36B .21C .12D .6【答案】B 【解析】 【分析】先找到与平面11A C B 平行的平面,利用面面平行的定义即可得到. 【详解】考虑与平面11A C B 平行的平面148PP P ,平面10116P P P ,平面9523712P P P P P P , 共有22623321C C C ++=, 故选:B. 【点睛】本题考查线面平行的判定定理以及面面平行的定义,涉及到了简单的组合问题,是一中档题.12.已知i 为虚数单位,则()2312ii i +=-( )A .7455i + B .7455i - C .4755i + D .4755i - 【答案】A 【解析】 【分析】根据复数乘除运算法则,即可求解. 【详解】()()()()()2322323741222255i i i i i i i i i i +-++===+-++-.故选:A. 【点睛】本题考查复数代数运算,属于基础题题.二、填空题:本题共4小题,每小题5分,共20分。
2019年潍坊市高考模拟考试 数学试题(文)

潍坊市高考模拟考试文科数学2019.3本试卷共6页.满分150分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名、考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,21xA x xB x =>=>,则A. {}0A B x x ⋂=> B. {}A B x x ⋂=>1 C. {}1A B x x ⋃=>D. A B R ⋂=2.若复数z 满足()134i z i z +=+,则的虚部为 A.5B.52C. 52-D. 5-3.设,αβ为两个不同平面,直线m α⊂,则“//αβ”是“//m β”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知双曲线()2222:10,0y x C a b a b -=>>的一条渐近线方程为2y x =,则C 的离心率为A.B.5C.2D.55.执行右边的程序框图,如果输出的y 值为1,则输入的x 的值为 A.0 B.e C.0或e D.0或16.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,且3cos 5θ=-,若点(),8M x 是角θ终边上一点,则x = A. 12- B. 10- C. 8- D. 6-7.若函数()()2sin 2cos 02f x x x πθθ⎛⎫=+⋅<<⎪⎝⎭的图象过点()0,2,则 A.点(),04y f x π⎛⎫=⎪⎝⎭是的一个对称中心 B. 直线()4x y f x π==是的一条对称轴C.函数()y f x =的最小正周期是2πD. 函数()y f x =的值域是[]0,28.函数4cos xy x e =-的图象可能是9.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为,,a b c ,则三角形的面积S 可由公式S =其中p 为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足6,8a b c =+=,则此三角形面积的最大值为A.B.8C.D. 10.已知偶函数()y f x =,当()()1,02,xx f x αβ-∈-=时,若,为锐角三角形的两个内角,则A. ()()sin sin f f αβ>B. ()()sin cos f f αβ>C. ()()cos cos f f αβ>D. ()()cos sin f f αβ>11.已知不共线向量,OA OB 夹角为()(,1,2,1,0OA OB OP t OA OQ tOB t α===-=≤)01,PQ t t ≤=在处取最小值,当0105t α<<时,的取值范围为A.03π⎛⎫⎪⎝⎭,B. 32ππ⎛⎫⎪⎝⎭,C. 223ππ⎛⎫⎪⎝⎭,D. 23ππ⎛⎫⎪⎝⎭, 12.定义:区间[](]()[),,,,,,a b a b a b a b 的长度均为b a -,若不等式125124x x +≥--的解集是互不相交区间的并集,则该不等式的解集中所有区间的长度之和为 A.512B.125C.5D.209二、填空题:本大题共4小题,每小题5分,共20分。
山东省潍坊市2019届高三4月份第二次模拟考试(数学文)

潍坊市高考模拟考试文科数学2019.4本试卷共6页.满分150分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名、考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}23A x x =-≤≤,函数()()ln 1f x x =-的定义域为集合B ,则A B ⋂= A .[-2,1]B .[-2,1)C .[1,3]D .(1,3]2.若复数12,z z 在复平面内的对应点关于虚轴对称,1121z z i z =+=,则 A .iB .i -C .1D .1-3.已知等差数列{}n a 的前5项和为6201915,6a a ==,则 A .2017B .2018C .2019D .20204.已知命题2,0p x R x p ∀∈>⌝:,则是 A .2,0x R x ∀∈<B .2,0x R x ∃∈<C .2,0x R x ∀∈≤D .2,0x R x ∃∈≤5.七巧板是一种古老的中国传统智力玩具,是由七块板组成的.而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以湉《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为A .14B .17C .18D .1166.已知某几何体的俯视图是如图所示的边长为1的正方形,正视图与侧视图都是边长为1的正三角形,则此几何体的体积是A .6B .3C .D .137.如图所示的函数图象,对应的函数解析式可能是 A .221xy x =-- B .2sin y x x = C .ln x y x=D .()22x y x x e =-8.函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象可由函数2cos 2y x x =-的图象 A .向右平移3π要个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到 B .向右平移6π个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到C .向左平移3π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到D .向左平移6π个单位,再将所得图象上所有点的纵坐标缩短到原来的12,横坐标不变得到9.在边长为1的等边三角形ABC 中,点P 是边AB 上一点,且2BP PA =,则CP CB = A .13B .12C .23D .110.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为 A .6π B .12π C .32π D .48π11.已知P 为双曲线()2222:10,0x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为 A .43y x =±B .34y x =±C .35y x =±D .53y x =±12.已知函数()()()12cos 2,02,2,0x a x x f x g x a R x a x -+≥⎧==∈⎨+<⎩,若对任意[)11,x ∈+∞,总存在2x R ∈,使()()12f x g x =,则实数a 的取值范围是A .12⎛⎫-∞ ⎪⎝⎭,B .23⎛⎫+∞ ⎪⎝⎭,C .[]1122⎛⎫-∞⋃ ⎪⎝⎭,,D .371224⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦,,二、填空题:本大题共4小题,每小题5分,共20分. 13.焦点在x 轴上,短轴长等于16,离心率等于35的椭圆的标准方程为__________.14.若,x y 满足约束条件026236x y z x y x y ≤+≤⎧=-⎨≤-≤⎩,则的最大值为___________.15.设数列{}n a 满足123232nn a a a na ⋅⋅⋅=,则n a =____________.16.如图,边长为1的正方形ABCD ,其中边DA 在x 轴上,点D 与坐标原点重合,若正方形沿x 轴正向滚动,先以A 为中心顺时针旋转,当B 落在x 轴上时,再以B 为中心顺时针旋转,如此继续,当正方形ABCD 的某个顶点落在x 轴上时,则以该顶点为中心顺时针旋转,设顶点(),C x y 滚动时形成的曲线为()y f x =,则()2019f =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题。
山东省潍坊市2019-2020学年高考第二次大联考数学试卷含解析

山东省潍坊市2019-2020学年高考第二次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928【答案】A 【解析】 【分析】根据循环结构的运行,直至不满足条件退出循环体,求出x 的范围,利用几何概型概率公式,即可求出结论. 【详解】程序框图共运行3次,输出的x 的范围是[]23247,, 所以输出的x 不小于103的概率为24710314492472322414-==-.故选:A. 【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题. 2.定义:{}()()N f x g x ⊗表示不等式()()f x g x <的解集中的整数解之和.若2()|log |f x x =,2()(1)2g x a x =-+,{}()()6N f x g x ⊗=,则实数a 的取值范围是A .(,1]-∞-B .2(log 32,0)-C .2(2log 6,0]-D .2log 32(,0]4- 【答案】D 【解析】 【分析】 【详解】由题意得,{}()()6N f x g x ⊗=表示不等式22|log |(1)2x a x <-+的解集中整数解之和为6.当0a >时,数形结合(如图)得22|log |(1)2x a x <-+的解集中的整数解有无数多个,22|log |(1)2x a x <-+解集中的整数解之和一定大于6.当0a =时,()2g x =,数形结合(如图),由()2f x <解得144x <<.在1(,4)4内有3个整数解,为1,2,3,满足{}()()6N f x g x ⊗=,所以0a =符合题意.当0a <时,作出函数2()|log |f x x =和2()(1)2g x a x =-+的图象,如图所示.若{}()()6N f x g x ⊗=,即22|log |(1)2x a x <-+的整数解只有1,2,3.只需满足(3)(3)(4)(4)f g f g <⎧⎨≥⎩,即2log 342292a a <+⎧⎨≥+⎩,解得2log 3204a -<≤,所以2log 3204a -<<. 综上,当{}()()6N f x g x ⊗=时,实数a 的取值范围是2log 32(,0]4-.故选D.3.函数y =A ,集合(){}2log 11B x x =+>,则A B =I ( )A .{}12x x <≤ B .{}22x x -≤≤C .{}23x x -<<D .{}13x x <<【答案】A 【解析】 【分析】根据函数定义域得集合A ,解对数不等式得到集合B ,然后直接利用交集运算求解. 【详解】解:由函数y =得240x -≥,解得22x -≤≤,即{}22A x x =-≤≤;又()22log 11og 2l x +>=,解得1x >,即{}1B x x =>, 则{}12A B x x ⋂=<≤. 故选:A. 【点睛】本题考查了交集及其运算,考查了函数定义域的求法,是基础题. 4.若21i iz =-+,则z 的虚部是A .3B .3-C .3iD .3i -【答案】B 【解析】 【分析】 【详解】因为1i 2i 13i z =--=-,所以z 的虚部是3-.故选B .5.已知EF 为圆()()22111x y -++=的一条直径,点(),M x y 的坐标满足不等式组10,230,1.x y x y y -+≤⎧⎪++≥⎨⎪≤⎩则ME MF ⋅u u u r u u u r的取值范围为( )A .9,132⎡⎤⎢⎥⎣⎦B .[]4,13C .[]4,12D .7,122⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先将ME MF ⋅u u u r u u u r转化为21MT -u u u r ,只需求出MT 的取值范围即可,而MT 表示可行域内的点与圆心(1,1)T -距离,数形结合即可得到答案.【详解】作出可行域如图所示设圆心为(1,1)T -,则()()ME MF MT TE MT TF ⋅=+⋅+=u u u r u u u u r u u u r u u r u u u r u u u r22()()MT TE MT TE MT TE +⋅-=-u u u r u u r u u u r u u r u u u r u u r 21MT =-u u u r ,过T 作直线10x y -+=的垂线,垂足为B ,显然MB MT MA ≤≤,又易得(2,1)A -, 所以22[1(2)](11)13MA =--+--=223221(1)TB ==+-, 故ME MF ⋅u u u r u u u r 271[,12]2MT =-∈u u u r .故选:D. 【点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.6.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =I ( ) A .{}32x x -<< B .{}22x x -<< C .{}62x x -<< D .{}12x x -<<【答案】D 【解析】 【分析】利用一元二次不等式的解法和集合的交运算求解即可. 【详解】由题意知,集合}{16A x x =-<<,}{2B x x =<,由集合的交运算可得,}{12A B x x ⋂=-<<. 故选:D 【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题. 7.已知集合M ={y |y =,x >0},N ={x |y =lg (2x -)},则M∩N 为( )A .(1,+∞)B .(1,2)C .[2,+∞)D .[1,+∞)【答案】B 【解析】,,∴.故选.8.已知复数z =(1+2i )(1+ai )(a ∈R ),若z ∈R ,则实数a =( ) A .12B .12-C .2D .﹣2【答案】D 【解析】 【分析】化简z =(1+2i )(1+ai )=()()122a a i -++,再根据z ∈R 求解. 【详解】因为z =(1+2i )(1+ai )=()()122a a i -++, 又因为z ∈R , 所以20a +=, 解得a =-2. 故选:D 【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题. 9.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+B .,a b R ∃∈,a b a b -<+C .,a b R ∃∈,a b a b ->+D .,a b R ∃∈,a b a b -≥+【答案】D 【解析】 【分析】直接利用全称命题的否定是特称命题写出结果即可. 【详解】因为全称命题的否定是特称命题,所以,命题p :,a b R ∀∈,a b a b -<+,则p ⌝为:,a b R ∃∈,a b a b -≥+.故本题答案为D. 【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.10.如图,在矩形OABC 中的曲线分别是sin y x =,cos y x =的一部分,,02A π⎛⎫ ⎪⎝⎭,()0,1C ,在矩形OABC 内随机取一点,若此点取自阴影部分的概率为1P ,取自非阴影部分的概率为2P ,则( )A .12P P <B .12P P >C .12P P =D .大小关系不能确定【答案】B 【解析】 【分析】先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得. 【详解】根据题意,阴影部分的面积的一半为:()4cos sin 21x x dx π-=⎰,于是此点取自阴影部分的概率为)()12142141.41122 3.22P ππ--=⨯=>=. 又21112P P =-<,故12P P >. 故选B . 【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题.11.函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .1,4⎛⎫+∞⎪⎝⎭ B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】对a 分类讨论,当0a ≤,函数()f x 在(0,)+∞单调递减,当0a >,根据对勾函数的性质,求出单调递增区间,即可求解. 【详解】当0a ≤时,函数1()f x ax x=+在(2,)+∞上单调递减, 所以0a >,1()f x axx =+的递增区间是⎫+∞⎪⎭, 所以2≥14a ≥. 故选:B. 【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题.12.设函数()22cos cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .72【答案】A 【解析】 【分析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值. 【详解】()22cos cos f x x x x m =++1cos22x x m =+++2sin(2)16x m π=+++,0,2x π⎡⎤∈⎢⎥⎣⎦时,72[,]666x πππ+∈,1sin(2)[,1]62x π+∈-,∴()[,3]f x m m ∈+,由题意17[,3][,]22m m +=,∴12m =. 故选:A .本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键. 二、填空题:本题共4小题,每小题5分,共20分。
山东省潍坊市2019-2020学年高考数学二模考试卷含解析

山东省潍坊市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( ).A .26B .4C .23D .22【答案】A 【解析】 【分析】作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可. 【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且2AD AB ==,4BC =,PA ⊥平面ABCD ,且2PA =,∴22222PB =+=222222PD =+=,22CD =2242026PC PA AC =+=+= ∴这个四棱锥中最长棱的长度是26 故选A . 【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.2.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是().金牌(块)银牌(块)铜牌(块)奖牌总数24 5 11 12 2825 16 22 12 5426 16 22 12 5027 28 16 15 5928 32 17 14 6329 51 21 28 10030 38 27 23 88A.中国代表团的奥运奖牌总数一直保持上升趋势B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C.第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D.统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5【答案】B【解析】【分析】根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为545956.52+=,不正确;故选:B【点睛】此题考查统计图,关键点读懂折线图,属于简单题目.3.过抛物线()2:20E x py p =>的焦点F 作两条互相垂直的弦AB ,CD ,设P 为抛物线上的一动点,(1,2)Q ,若111||||4AB CD +=,则||||PF PQ +的最小值是( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】设直线AB 的方程为2p y kx =+,代入22x py =得:2220x pkx p --=,由根与系数的关系得2A B x x pk +=,2A B x x p =-,从而得到()2||21AB p k =+,同理可得21||2(1)CD p k=+,再利用111||||4AB CD +=求得p 的值,当Q ,P ,M 三点共线时,即可得答案. 【详解】根据题意,可知抛物线的焦点为(0,)2p,则直线AB 的斜率存在且不为0, 设直线AB 的方程为2p y kx =+,代入22x py =得:2220x pkx p --=. 由根与系数的关系得2A B x x pk +=,2A B x x p =-,所以()2||21AB p k=+.又直线CD 的方程为12p y x k =-+,同理21||2(1)CD p k=+, 所以221111111||||2(1)242(1)AB C p k p kD p +=+==++,所以24p =.故24x y =.过点P 作PM 垂直于准线,M 为垂足, 则由抛物线的定义可得||||PF PM =.所以||||||||||3PF PQ PM PQ MQ +=+≥=,当Q ,P ,M 三点共线时,等号成立. 故选:C. 【点睛】本题考查直线与抛物线的位置关系、焦半径公式的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意取最值的条件.4.已知函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则1(())f f e =( )A .32B .1C .-1D .0【答案】A 【解析】 【分析】由函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,求得11()ln 1f e e ==-,进而求得1(())f f e 的值,得到答案.【详解】由题意函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则11()ln 1f e e ==-,所以1313(())(1)2(1)2f f f e -=-=--=,故选A. 【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.5.已知函数()sin f x a x x =的图像的一条对称轴为直线56x π=,且12()()4f x f x ⋅=-,则12x x +的最小值为( )A .3π-B .0C .3π D .23π 【答案】D 【解析】 【分析】运用辅助角公式,化简函数()f x 的解析式,由对称轴的方程,求得a 的值,得出函数()f x 的解析式,集合正弦函数的最值,即可求解,得到答案. 【详解】由题意,函数()sin )(f x a x x x θθ==+为辅助角), 由于函数的对称轴的方程为56x π=,且53()622a f π=+,即322a +=1a =,所以()2sin()3f x x π=-, 又由12()()4f x f x ⋅=-,所以函数必须取得最大值和最小值,所以可设11152,6x k k Z ππ=+∈,2222,6x k k Z ππ=-∈, 所以1212222,3x x k k k Z πππ+=++∈,当120k k ==时,12x x +的最小值23π,故选D. 【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 6.下图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC 、直角边AB AC 、,已知以直角边AC AB 、为直径的半圆的面积之比为14,记ABC α∠=,则2cos sin 2αα+=( )A .35B .45C .1D .85【答案】D 【解析】 【分析】根据以直角边AC AB 、为直径的半圆的面积之比求得12AC AB =,即tan α的值,由此求得sin α和cos α的值,进而求得所求表达式的值. 【详解】由于直角边AC AB 、为直径的半圆的面积之比为14,所以12AC AB =,即1tan 2α=,所以sin 55αα==2cos sin 2αα+=4825555+=. 故选:D【点睛】本小题主要考查同角三角函数的基本关系式,考查二倍角公式,属于基础题. 7.设01p <<,随机变量ξ的分布列是ξ1-0 1P1(1)3p - 2313p 则当p 在(,)34内增大时,( )A .()E ξ减小,()D ξ减小B .()E ξ减小,()D ξ增大C .()E ξ增大,()D ξ减小 D .()E ξ增大,()D ξ增大【答案】C 【解析】 【分析】1121()(1)(1)3333E p p p ξ=-⨯-+=-,22()()()D E E ξξξ=-,判断其在23(,)34内的单调性即可.【详解】解:根据题意1121()(1)(1)3333E p p p ξ=-⨯-+=-在23,34p ⎛⎫∈ ⎪⎝⎭内递增, 22111()(1)(1)333E p p ξ=-⨯-+=222221121442411()()()(1)()3333999923D E E p p p p p p ξξξ⎛⎫=-=-+--=-++=-- ⎪+⎝⎭,是以12p =为对称轴,开口向下的抛物线,所以在23,34⎛⎫⎪⎝⎭上单调递减,故选:C . 【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题. 8.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =I ,则m =( ) A .0 B .1C .2D .4【答案】A 【解析】 【分析】根据2m =或22m +=,验证交集后求得m 的值. 【详解】因为{2}A B =I ,所以2m =或22m +=.当2m =时,{2,4}A B =I ,不符合题意,当22m +=时,0m =.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.9.已知函数2log (1),1()3,1x x x f x x -->⎧=⎨≤⎩,则[](2)f f -=( )A .1B .2C .3D .4【答案】C 【解析】【分析】结合分段函数的解析式,先求出(2)f -,进而可求出[](2)f f -. 【详解】由题意可得2(2)39f -==,则[]2(9)log (913(2))f f f =-==-.故选:C. 【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题. 10.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0 B .1 C .2 D .3【答案】C 【解析】 【分析】设切点为()00x ,y ,则300y x =,由于直线l 经过点()1,1,可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,从而可求方程. 【详解】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=, 故选C . 【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题. 11.已知双曲线C 的两条渐近线的夹角为60°,则双曲线C 的方程不可能为( )A .221155x y -=B .221515x y -=C .221312y x -=D .221217y x -=【答案】C 【解析】 【分析】判断出已知条件中双曲线C 的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项. 【详解】两条渐近线的夹角转化为双曲渐近线与x 轴的夹角时要分为两种情况.依题意,双曲渐近线与x 轴的夹角为30°或60°,双曲线C 的渐近线方程为3y x =±或y =.A 选项渐近线为3y x =±,B 选项渐近线为y =,C 选项渐近线为12y x =±,D 选项渐近线为y =.所以双曲线C 的方程不可能为221312y x -=.故选:C 【点睛】本小题主要考查双曲线的渐近线方程,属于基础题. 12.某个命题与自然数n 有关,且已证得“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”.现已知当7n =时,该命题不成立,那么( ) A .当8n =时,该命题不成立 B .当8n =时,该命题成立 C .当6n =时,该命题不成立 D .当6n =时,该命题成立【答案】C 【解析】 【分析】写出命题“假设()*n k k N=∈时该命题成立,则1n k =+时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断. 【详解】由逆否命题可知,命题“假设()*n k k N =∈时该命题成立,则1n k =+时该命题也成立”的逆否命题为“假设当()1n k k N*=+∈时该命题不成立,则当n k =时该命题也不成立”,由于当7n =时,该命题不成立,则当6n =时,该命题也不成立,故选:C. 【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。
2019年山东省潍坊市高考模拟训练数学(文)试卷及答案

2019年潍坊市高考模拟训练数学(文)试卷2019.05本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页,满分为150分,考试用时120分钟,考试结束后将答题卡交回.注意事项:1.答卷前,考生务必用0.5毫米规格黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第Ⅱ卷必须用0.5毫米规格黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后写上新的答案,不得使用涂改液、胶带纸、修正带和其他笔.4.提示不按以上要求作答以及将答案写在试题卷上的,答案无效.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题。
每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x ||x |<2},N={-1,1),则集合M N ð中整数的个数为A .3B .2C .1D .02.i 为虚数单位,213(3)i i -=+ A .1344i + B .1322i + C .1322i -- D .1344i -- 3.已知命题p :任意x ≥4,log 2x ≥2;命题q :在△ABC 中,若A>3π,则sinA>32.下列命题为真命题的是A .p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∨4.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = A .2 B .62 C .52 D .15.函数f(x)=x a 满足f (2)=4,那么函数g(x )=|log a (x +1)|的图象大致是。
山东省潍坊市2019-2020学年第二次高考模拟考试数学试卷含解析

山东省潍坊市2019-2020学年第二次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设命题p :,a b R ∀∈,a b a b -<+,则p ⌝为 A .,a b R ∀∈,a b a b -≥+ B .,a b R ∃∈,a b a b -<+ C .,a b R ∃∈,a b a b ->+ D .,a b R ∃∈,a b a b -≥+【答案】D 【解析】 【分析】直接利用全称命题的否定是特称命题写出结果即可. 【详解】因为全称命题的否定是特称命题,所以,命题p :,a b R ∀∈,a b a b -<+,则p ⌝为:,a b R ∃∈,a b a b -≥+.故本题答案为D. 【点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.2.过抛物线()220y px p =>的焦点F 的直线与抛物线交于A 、B 两点,且2AF FB =u u u r u u u r,抛物线的准线l 与x 轴交于C ,ACF ∆的面积为AB =( )A .6B .9C.D.【答案】B 【解析】 【分析】设点()11,A x y 、()22,B x y ,并设直线AB 的方程为2px my =+,由2AF FB =u u u r u u u r 得122y y =-,将直线AB 的方程代入韦达定理,求得1y ,结合ACF ∆的面积求得p 的值,结合焦点弦长公式可求得AB . 【详解】设点()11,A x y 、()22,B x y ,并设直线AB 的方程为x my p =+,将直线AB 的方程与抛物线方程联立222p x my y px⎧=+⎪⎨⎪=⎩,消去x 得2220y pmy p --=,由韦达定理得122y y pm +=,212y y p =-,11,2p AF x y ⎛⎫=-- ⎪⎝⎭u u u r ,22,2p FB x y ⎛⎫=- ⎪⎝⎭u u u r ,2AF FB =uu u r uu r Q ,122y y ∴-=,122y y ∴=-,221222y y y p ∴=-=-,可得22y p =,122y y ==, 抛物线的准线l 与x 轴交于,02p C ⎛⎫-⎪⎝⎭, ACF ∆的面积为212p p ⨯==4p =,则抛物线的方程为28y x =, 所以,2221212524988py y AB x x p p +=++=+=+=. 故选:B. 【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题. 3.给出下列四个命题:①若“p 且q ”为假命题,则p ﹑q 均为假命题;②三角形的内角是第一象限角或第二象限角;③若命题0:p x R ∃∈,200x ≥,则命题:p x R ⌝∀∈,20x <;④设集合{}1A x x =>,{}2B x x =>,则“x A ∈”是“x B ∈”的必要条件;其中正确命题的个数是( )A .1B .2C .3D .4【答案】B 【解析】 【分析】 ①利用p ∧q 真假表来判断,②考虑内角为90o ,③利用特称命题的否定是全称命题判断,④利用集合间的包含关系判断. 【详解】若“p 且q ”为假命题,则p ﹑q 中至少有一个是假命题,故①错误;当内角为90o 时,不是象限角,故②错误;由特称命题的否定是全称命题知③正确;因为B A ⊆,所以x B ∈⇒x A ∈,所以“x A ∈”是“x B ∈”的必要条件, 故④正确. 故选:B. 【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题. 4.一艘海轮从A 处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .62海里B .63海里C .82海里D .83海里【答案】A 【解析】 【分析】先根据给的条件求出三角形ABC 的三个内角,再结合AB 可求,应用正弦定理即可求解. 【详解】由题意可知:∠BAC =70°﹣40°=30°.∠ACD =110°,∴∠ACB =110°﹣65°=45°, ∴∠ABC =180°﹣30°﹣45°=105°.又AB =24×0.5=12.在△ABC 中,由正弦定理得4530AB BCsin sin =︒︒,1222BC=,∴62BC =故选:A. 【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.5.复数2(1)41i z i -+=+的虚部为( )A .—1B .—3C .1D .2【答案】B【解析】 【分析】对复数z 进行化简计算,得到答案. 【详解】()()2421(1)44213112i i i i z i i i ---+-====-++ 所以z 的虚部为3- 故选B 项. 【点睛】本题考查复数的计算,虚部的概念,属于简单题. 6.若复数52z i=-(i 为虚数单位),则z =( ) A .2i + B .2i -C .12i +D .12i -【答案】B 【解析】 【分析】根据复数的除法法则计算z ,由共轭复数的概念写出z . 【详解】55(2)10522(2)(2)5i i z i i i i ++====+--+Q , ∴2z i =-,故选:B 【点睛】本题主要考查了复数的除法计算,共轭复数的概念,属于容易题.7.已知直线l :310kx y k --+=与椭圆22122:1(0)x yC a b a b+=>>交于A 、B 两点,与圆2C :()()22311x y -+-=交于C 、D 两点.若存在[]2,1k ∈--,使得AC DB =u u u r u u u r,则椭圆1C 的离心率的取值范围为( )A .⎣⎦B .C .D . 【答案】A 【解析】 【分析】由题意可知直线过定点即为圆心,由此得到,A B 坐标的关系,再根据点差法得到直线的斜率k 与,A B 坐标的关系,由此化简并求解出离心率的取值范围. 【详解】设()()1122,,,A x y B x y ,且线:310l kx y k --+=过定点()3,1即为2C 的圆心, 因为AC DB =u u u r u u u r,所以1212236212C D C D x x x x y y y y +=+=⨯=⎧⎨+=+=⨯=⎩,又因为2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--, 所以2121221212y y x x b x x a y y -+=-⋅-+,所以[]2232,1b k a=-∈--,所以2212,33b a ⎡⎤∈⎢⎥⎣⎦,所以22212,33a c a -⎡⎤∈⎢⎥⎣⎦,所以()2121,33e ⎡⎤-∈⎢⎥⎣⎦,所以33e ∈⎣⎦.故选:A. 【点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.8.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .78【答案】D 【解析】 【分析】这是几何概型,画出图形,利用面积比即可求解. 【详解】解:事件A 发生,需满足x y ≤,即事件A 应位于五边形BCDEF 内,作图如下:()1111722218P A -⨯⨯== 故选:D 【点睛】考查几何概型,是基础题.9.已知集合{}2lgsin 9A x y x x==-,则()cos22sin f x x x x A =+∈,的值域为( )A .31,2⎡⎤⎢⎥⎣⎦B .31,2⎛⎤ ⎥⎝⎦C .11,2⎛⎤- ⎥⎝⎦D .22⎫⎪⎪⎝⎭【答案】A 【解析】 【分析】先求出集合(]0,3A =,化简()f x =22sin 2sin 1x x -++,令sin x t =(]0,1∈,得()2221g t t t =-++由二次函数的性质即可得值域. 【详解】由2sin 00390x x x >⎧⇒<≤⎨-≥⎩,得(]0,3A = ,()cos22sin f x x x =+=-22sin 2sin 1x x ++,令sin x t =, (]0,3x ∈Q ,(]0,1t ∴∈,所以得()2221g t t t =-++ ,()g t 在10,2⎛⎫ ⎪⎝⎭ 上递增,在1,12⎛⎫⎪⎝⎭上递减,()1311,22g g ⎛⎫== ⎪⎝⎭ ,所以()31,2g t ⎡⎤∈⎢⎥⎣⎦,即 ()f x 的值域为31,2⎡⎤⎢⎥⎣⎦故选A 【点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题 10.把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移3π个单位,那么所得图象的一个对称中心为( ) A .(,0)3πB .(,0)4πC .(,0)12πD .(0,0)【答案】D【详解】试题分析:把函数sin()6y x π=+图象上各点的横坐标伸长为原来的2倍(纵坐标不变),可得1sin()26y x π=+的图象;再将图象向右平移3π个单位,可得11sin[()]sin 2362y x x ππ=-+=的图象,那么所得图象的一个对称中心为(0,0),故选D. 考点:三角函数的图象与性质.11.如图是一个几何体的三视图,则该几何体的体积为( )A .23B .43C .23D .43【答案】A 【解析】 【分析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积. 【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,2AD =,3AE =2AB =.∴该几何体的体积为1232232V =⨯=本题考查三视图及棱柱的体积,属于基础题. 12.已知x 与y 之间的一组数据:若y 关于x 的线性回归方程为$ 2.10.25y x =-,则m 的值为( ) A .1.5 B .2.5C .3.5D .4.5【答案】D 【解析】 【分析】利用表格中的数据,可求解得到 2.5,x =代入回归方程,可得5y =,再结合表格数据,即得解. 【详解】利用表格中数据,可得 2.5,x = 又 2.10.25,5y x y =-∴=,3.24.87.520m ∴+++=.解得 4.5m = 故选:D 【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年山东省潍坊市高考数学二模试卷(文科)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知集合A={x|﹣2≤x≤3},函数f(x)=ln(1﹣x)的定义域为集合B,则A∩B=()A.[﹣2,1]B.[﹣2,1)C.[1,3]D.(1,3]
2.(5分)若复数z1,z2,在复平面内的对应点关于虚轴对称,z1=1+i,则=()A.i B.﹣i C.1D.﹣1
3.(5分)已知等差数列{a n}的前5项和为15,a6=6,则a2019=()
A.2017B.2018C.2019D.2020
4.(5分)已知命题p::“∀x∈R,x2>0”,则¬p是()
A.∀x∈R,x2≤0B.∃x∈R,x2>0C.∃x∈R,x2<0D.∃x∈R,x2≤0
5.(5分)七巧板是一种古老的中国传统智力玩具,是由七块板组成的,而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以淮《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了.国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为()
A.B.C.D.
6.(5分)已知某几何体的俯视图是如图所示的边长为l的正方形,正视图与侧视图都是边长为1的正三角形,则此几何体的体积是()
A.B.C.D.
7.(5分)如图所示的函数图象,对应的函数解析式可能是()
A.y=2x﹣x2﹣1B.y=2x sin x
C.D.
8.(5分)函数y=sin(2x+)的图象可由函数y=sin2x﹣cos2x的图象()
A.向右平移个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到
B.向右平穆个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到
C.向左平移个单位,再将所得图象上所有点的纵坐标缩短到原来的横坐标不变得到
D.向左平移个单位,再将所得图象上所有点的纵坐标缩短到原来的横坐标不变得到
9.(5分)在边长为1的等边三角形ABC中,点P是边AB上一点,且.BP=2P A,则=()A.B.C.D.1
10.(5分)一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为()A.6πB.12πC.32πD.48π
11.(5分)已知P为双曲线C:(a>0,b>0)上一点,F1,F2为双曲线C的左、右焦点,若|PF1|=|F1F2|,且直线PF2与以C的实轴为直径的圆相切,则C的渐近线方程为()
A.B.C.D.
12.(5分)已知函数f(x)=2x﹣1,g(x)=(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()。