第二讲 双曲线-学生版
一轮复习教案:第10章 第2讲 双曲线及其性质

则双曲线的顶点为(1,0),(-1,0),焦点为(2,0),(-2,0).
则双曲线的标准方程为:x2-y2=1. 3
其渐近线为 y=± 3x.
解题法
[考法综述] 高考对于双曲线的几何性质的考查以理解和运用为主,双曲线独有的渐近
线是高频考点,常与其他圆锥曲线综合考查,难度较大.
命题法 双曲线的几何性质
ay22-bx22=1(a>0,b>0)
图形
2 等轴双曲线及性质 (1)等轴双曲线:实轴长和虚轴长相等的双曲线叫做等轴双曲线,其标准方程可写作:x2-y2 =λ(λ≠0).
(2)等轴双曲线⇔离心率 e= 2⇔两条渐近线 y=±x 相互垂直. 3 点 P(x0,y0)和双曲线ax22-by22=1(a>0,b>0)的关系 (1)P 在双曲线内(含焦点部分)⇔ax202-by202>1; (2)P 在双曲线上⇔ax202-by202=1; (3)P 在双曲线外(不含焦点部分)⇔ax202-by202<1.
注意点 双曲线的离心率与曲线开口大小的关系 离心率 e 的取值范围:e>1,当 e 越接近于 1 时,双曲线开口越小;e 越接近于+∞时,双 曲线开口越大.
入门测
1.思维辨析
(1)双曲线方程mx22-ny22=λ(m>0,n>0,λ≠0)的渐近线方程是mx22-ny22=0,即mx ±ny=0.(
16 12
mn
3 -1=1, n>0),则 m n
m+n=4,
解得 m=n=2,故选 C.
3.双曲线 x2 -y2=1 上的点 P 到点(5,0)的距离是 6,则点 P 的坐标是________. 16 9
答案 (8,±3 3)
第二讲 双曲线中常用的结论及解法技巧(学生版)

第二讲 双曲线中常用的结论及解法技巧【知识要点】一.双曲线三大定义定义 1.到两定点距离之差的绝对值(小于两定点距离)为定值的点的轨迹是双曲线. 几何性质:双曲线上任一点到两焦点的距离之差的绝对值为定值.定义 2.到一个定点的距离与到一条定直线的距离之比为定值(大于1)的点的轨迹是双曲线.几何性质:双曲线上任一点到左(右)焦点的距离与到左(右)准线的距离之比为离心率e . 定义 3.到两个定点的斜率之积为定值(大于0)的点的轨迹是双曲线.几何性质:双曲线上任一点到左右(上下)两顶点的斜率之积为22ab .二.双曲线经典结论汇总1.AB 是双曲线()0,012222>>=-b a by a x 的不平行于对称轴的弦,),(00y x M 为AB 的中点,则22a b k k ABOM =⋅,即 0202y a x b k AB =. 等价形式:21,A A 是双曲线()0,012222>>=-b a by a x 上关于原点对称的任意两点,B 是双曲线上其它任意一点,直线B A B A 21,的斜率存在,则2221ab k k BA B A =⋅. 2.双曲线()0,012222>>=-b a by a x 的左右焦点分别为21,F F ,点P 为双曲线上异于实轴端点的任意一点θ=∠21PF F 则(1)2122||||1cos b PF PF θ=-;(2)双曲线的焦点角形的面积为2tan 221θb S PF F =∆.3.过双曲线()0,012222>>=-b a by a x 上任一点),(00y x A 任意作两条倾斜角互补的直线交双曲线于C B ,两点,则直线BC 有定向且0202y a x b k BC-= (常数).4.P 为双曲线()0,012222>>=-b a by a x 上任一点,21,F F 为二焦点,A 为双曲线内一定点,则||||2||12PF PA a AF +≤-,当且仅当P F A ,,2三点共线且P 和2,F A 在y 轴同侧时,等号成立.5.已知双曲线()0,012222>>=-b a by a x ,O 为坐标原点,Q P ,为双曲线上两动点,且OP OQ ⊥,(1)22221111||||OP OQ a b +=-;(2)22||||OQ OP +的最大值为22224a b b a -;(3)OPQ S ∆的最小值是2222a b b a -.6.双曲线()0,012222>>=-b a by a x 的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交双曲线于21,P P 时11P A 与22P A 交点的轨迹方程是22221x y a b+=. 7.双曲线()0,012222>>=-b a by a x 的焦半径公式:),0,(),0,(21c F c F -当),(00y x M 在右支上时,.||,||0201a ex MF a ex MF -=+=当),(00y x M 在左支上时,.||,||0201a ex MF a ex MF --=+-=8.若),(000y x P 在双曲线()0,012222>>=-b a by a x 内,则被0P 所平分的中点弦的方程是222202020by a x b y y a x x -=-. 9.若),(000y x P 在双曲线()0,012222>>=-b a by a x 内,则过0P 的弦中点的轨迹方程是20202222byy a x x b y a x -=-. 10.若),(000y x P 在双曲线()0,012222>>=-b a by a x 上,则过0P 的双曲线的切线方程是12020=-byy a x x . 11.若),(000y x P 在双曲线()0,012222>>=-b a by a x 外 ,则过0P 作双曲线的两条切线切点为21,P P ,则切点弦 21P P 的直线方程是12020=-byy a x x . 12.设双曲线()0,012222>>=-b a by a x 的两个焦点为P F F ,,21(异于实轴端点)为双曲线上任意一点,在21F PF ∆中,记12F PF α∠=,12PF F β∠=,12F F P γ∠=,则有sin (sin sin )ce aαγβ==±-.13.若P 为双曲线()0,012222>>=-b a by a x 上异于实轴端点的任一点,21,F F 是焦点,12PF F α∠=,21PF F β∠=,则2cot 2tan βα=+-a c a c (或2cot 2tan αβ=+-a c a c ).14.设B A ,是双曲线()0,012222>>=-b a by a x 的实轴两端点,P 是双曲线上的一点,PAB α∠=, PBA β∠=,BPA γ∠=,e c 、分别是双曲线的半焦距离心率,则有(1)22222|cos ||||s |ab PA a c co αγ=-; (2)2tan tan 1e αβ=-;(3) 22222cot PAB a b S b aγ∆=+.15.过双曲线()0,012222>>=-b a by a x 的右焦点F 作直线交该双曲线的右支于N M ,两点,弦MN 的垂直平分线交x 轴于P ,则||||2PF eMN =.16.已知双曲线()0,012222>>=-b a by a x ,B A ,是双曲线上的两点,线段AB 的垂直平分线与x 轴相交于点)0,(0x P ,则220a b x a +≥或220a b x a+≤-.17.点P 处的切线PT 平分21F PF ∆在点P 处的内角.18.过双曲线一个焦点F 的直线与双曲线交于两点Q P ,,21,A A 为双曲线实轴上的顶点,P A 1和Q A 2交于点M ,P A 2和Q A 1交于点N ,则NF MF ⊥.【例题解析】【例1】设双曲线()0,012222>>=-b a by a x 的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于B A ,两点,与双曲线的其中一个交点为P ,设O 为坐标原点,若),(R n m OB n OA m OP ∈+=→→→,且92=mn ,则该双曲线的离心率为( ) A .223 B .553 C .423 D .89【例2】双曲线134:22=-y x C 的左、右顶点分别为21,A A ,点P 在C 上且直线2PA 的斜率的取值范围是]2,1[,那么直线1PA 斜率的取值范围是( )A .]43,21[B .]43,83[C .]1,21[D .]1,43[【例3】已知斜率为3的直线l 与双曲线()0,01:2222>>=-b a by a x C 交于B A ,两点,若点)2,6(P 是AB 的中点,则双曲线C 的离心率等于( )A .2B .3C .2D .22【例4】已知双曲线()0,01:2222>>=-b a by a x C 的左、右焦点分别为21,F F ,直线l 过点1F 且与双曲线C 的一条渐进线垂直,直线l 与两条渐进线分别交于N M ,两点,若||2||11MF NF =,则双曲线C 的渐进线方程为( )A .x y 33±=B .x y 3±=C .x y 22±= D .x y 2±=【例5】设F 为双曲线()0,01:2222>>=-b a by a x C 的左焦点,过坐标原点的直线依次与双曲线C 的左、右支交于点Q P ,,若||3||PF FQ =,060=∠FPQ ,则该双曲线的离心率为( ) A .3 B .31+ C .32+ D .323+【例6】已知双曲线()0,012222>>=-b a by a x ,若存在过右焦点F 的直线与双曲线交于B A ,两点,且→→=BF AF 3,则双曲线离心率的最小值为( )A .2B .3C .2D .22【例7】已知直线()0y kx k =≠与双曲线()222210,0x y a b a b-=>>交于A ,B 两点,以AB 为直径的圆恰好经过双曲线的右焦点F ,若ABF △的面积为24a ,则双曲线的离心率为( )A B C .2D【例8】已知双曲线()0,012222>>=-b a by a x 的左右焦点分别为21,F F ,O 为双曲线的中心,P 是双曲线右支上的点,21F PF ∆的内切圆的圆心为I ,且圆I 与x 轴相切于点A ,过2F 作直线PI 的垂线,垂足为B ,若e 为双曲线的离心率,则( )A .||||OA e OB = B .||||OB e OA =C .||||OB OA =D .||OA 与||OB 关系不确定【例9】如图,已知双曲线()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,4||21=F F ,P 是双曲线右支上的一点,P F 2与y 轴交于点A ,1APF ∆的内切圆在1PF 上的切点为Q ,若1||=PQ ,则双曲线的离心率是( )A .3B .2C .3D .2 【课堂练习】【1】如图,21,F F 是双曲线()0,012222>>=-b a by a x 的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点B A ,.若2ABF ∆为等边三角形,则双曲线的离心率为( )A .4B .7C .332 D .3 【2】如图,21,F F 是双曲线()0,012222>>=-b a by a x 的左、右焦点,点P 在第一象限,且满足0)(2211=⋅+→→→P F F F P F ,a P F =→||2,线段2PF 与双曲线交于点Q ,若→→=Q F P F 225, 则双曲线的渐近线方程为( )A .x y 21±= B .x y 55±= C .x y 552±= D .x y 33±=【3】已知21,F F 为双曲线C :122=-y x 的左、右焦点,点P 在C 上,02160=∠PF F ,则||||21PF PF ⋅等于( )A .2B .4C .6D .8【4】已知双曲线()0,012222>>=-b a by a x 的左、右焦点分别为21,F F ,由2F 向双曲线的一条渐近线作垂线,垂足为H ,若21HF F ∆的面积为2b ,则双曲线的渐近线方程为____________.【5】已知点P 为双曲线()0,012222>>=-b a by a x 右支上一点,21,F F 分别为双曲线的左右焦点,且ab F F 221||=,I 为21F PF ∆的内心,若2121F IF IPF IPF S S S ∆∆∆+=λλ成立,则λ的值为_______.【6】设双曲线1322=-yx 的左、右焦点分别为21,F F ,若点P 在双曲线上,且21PF F ∆为锐角三角形,则||||21PF PF +的取值范围是_______.【7】已知点P 为双曲线()0,012222>>=-b a by a x 右支上一点,其右焦点为2F ,若直线2PF 的斜率为3,M 为线段2PF 的中点,且||||22M F OF =,则该双曲线的离心率为_______.【课后作业】 【1】双曲线的左右焦点分别为,,焦距,以右顶点为圆心的圆与直线相切于点,设与交点为,,若点恰为线段的中点,则双曲线的离心率为( ) A .B .C .D .【2】(2019年全国2卷理数)设F 为双曲线C :22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为( ) A .2B .3C .2D .5【3】已知双曲线)0,0(12222>>=-b a by a x C :的左右焦点分别为21,F F ,过1F 的直线与C的两条渐近线分别交于A 、B 两点,若以21F F 为直径的圆过点B ,且A 为B F 1的中点,则C 的离心率为( )A .13+B .2C .3D .2【4】设双曲线C :22221(0,0)x y a b a b-=>>的左焦点为F ,直线02034=+-y x 过点F且与C 在第二象限的交点为P ,O 为原点, OP OF =,则双曲线C 的离心率为( ) A.5 B. 5 C.53 D. 54【5】设1F ,2F 是双曲线()2222:10,0x y C a b a b -=>>的两个焦点,P 是C 上一点,若126PF PF a +=,且12PF F △的最小内角为30︒,则C 的离心率为( )A .2B .32C .3D .62【6】如图所示,已知双曲线()222210x y a b a b-=>>的右焦点为F ,过F 的直线l 交双曲线的渐近线于,A B 两点,且直线l 的倾斜角是渐近线OA 倾斜角的2倍,若2AF FB =,则该双曲线的离心率为( )A.324 B. 233 C. 305 D. 52【7】已知F 是双曲线2221x a b2y -=()0,0a b >>的左焦点,E 是该双曲线的右顶点,过点F 且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围为 ( )A . ()1,+∞B . ()1,2C . ()1,12+D . ()2,12+【8】双曲线的离心率,右焦点为,点是双曲线的一条渐近线上位于第一象限内的点,,AOF △的面积为,则双曲线的方程为( )A .B .C .D . 【9】已知双曲线与轴交于、两点,点,则 面积的最大值为( )A .2B .4C .6D .8【10】双曲线的右焦点为,左顶点为,以为圆心,过点的圆交双曲线的一条渐近线于两点,若不小于双曲线的虚轴长,则双曲线的离心率的取值范围为( )A. B. C. D.【11】已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( )A. 33⎛⎫-⎪ ⎪⎝⎭B. (C. 33⎡⎢⎣⎦D. ⎡⎣ 【12】(2019年全国1卷理数)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.【13】已知直线与双曲线交于,两点,为双曲线上不同于,的点,当直线,的斜率,存在时, .2222:1(0,0)x y C a b a b-=>>e =F A C AOF OAF ∠=∠C 2213612x y -=221186x y -=22193x y -=2213x y -=222214x y b b-=-()02b <<x A B ()0,C b ABC ∆()222210,0x y a b a b-=>>F A F A,P Q PQ (]1,2((]1,3[)3,+∞12y x =22194x y -=A B P A B PA PB PA k PB k PA PB k k ⋅=。
第二讲 双曲线中常用的结论及解法技巧(学生版)

C. 3
D. 2
【4】设双曲线 C
x2
:
a2
y2 b2
1(a
0,b
0)
的左焦点为 F
,直线 4x 3y 20
0 过点 F
且与 C 在第二象限的交点为 P ,O 为原点, OP OF ,则双曲线 C 的离心率为( )
【例
9】如图,已知双曲线
x2 a2
y2 b2
1a
0,b
0的左、右焦点分别为 F1, F2 ,|
F1F2
|
4,
P 是双曲线右支上的一点, F2P 与 y 轴交于点 A , APF1 的内切圆在 PF1 上的切点为 Q ,
若 | PQ | 1 ,则双曲线的离心率是( )
4
A. 3
B. 2
C. 3
D. 2
则(1)|
PF1
||
PF2
|
2b2 1 cos
;(2)双曲线的焦点角形的面积为
S F1PF2
b2 .
tan
2
3.过双曲线
x2 a2
y2 b2
1a
0,b
0 上任一点
A(x0 ,
y0 ) 任意作两条倾斜角互补的直线交双
曲线于 B,C
两点,则直线 BC 有定向且 kBC
b2 x0 a2 y0
(常数).
x a
2 2
y2 b2
1a 0,b 0上关于原点对称的任意两点, B 是双曲
线上其它任意一点,直线
A1B, A2B 的斜率存在,则 k A1B
k A2B
b2 a2
.
2.双曲线
x2 a2
y2 b2
1a
0, b
高三数学二轮复习-专题五第二讲-椭圆、双曲线、抛物线课件

抛物线的方程及几何性质
(5分)(2011·山东)设M(x0,y0)为抛物线C: x2=8y上一点,F为抛物线C的焦点,以F为 圆心、|FM|为半径的圆和抛物线C的准线相交, 则y0的取值范围是
A.(0,2)
B.[0,2]
C.(2,+∞)
D.[2,+∞)
【标准解答】 ∵x2=8y, ∴焦点F的坐标为 (0,2), 准线方程为y=-2.
∴c2=a2-b2=8.∴e=ac=2 4 2=
2 2.
答案 D
4.(2011·辽宁)已知F是抛物线y2=x的焦点,A,B是该
抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的 距离为
3 A.4
B.1
5
7
C.4
D.4
解析 ∵|AF|+|BF|=xA+xB+12=3,∴xA+xB=52.
解析 由于直线AB的斜率为-ba,故OP的斜率为-ba,
直线OP的方程为y=-bax.
与椭圆方程ax22+by22=1联立,解得x=±
2 2 a.
因为PF1⊥x轴,所以x=- 22a,
从而- 22a=-c,即a= 2c. 又|F1A|=a+c= 10+ 5, 故 2c+c= 10+ 5,解得c= 5, 从而a= 10.所以所求的椭圆方程为1x02 +y52=1. 答案 1x02 +y52=1
又双曲线的离心率e= a2a+b2= a7,所以 a7=247, 所以a=2,b2=c2-a2=3, 故双曲线的方程为x42-y32=1.
答案 x42-y32=1
圆锥曲线是高考考查的重点,一般会涉及到 圆锥曲线的定义、离心率、圆锥曲线的几何 性质及直线与圆锥曲线的位置关系等. 在命题 中体现知识与能力的综合,一般地,选择题、 填空题的难度属中档偏下,解答题综合性较 强,能力要求较高,故在复习的过程中,注 重基础的同时,要兼顾直线与圆锥曲线的综 合问题的强化训练,尤其是对推理、运算能 力的训练.
第二讲-4双曲线的参数方程

a cos ϕ ( x − a cos ϕ ) − (a sin ϕ ) = . a 解得 x = .记 cos ϕ
cos ϕ = sec ϕ , 则x = a sec ϕ .
y
B` A
M
ϕ
O B
A `
x
因为点B`在角ϕ的终边上,由 y 图 − 三角函数定义有 tan ϕ = , b 即y = b tan ϕ . 所以, 点M的轨迹的参数方程为
S平行四边形MAOB =| OA | ⋅ | OB | sin α xA xB = ⋅ ⋅ sin α cos α cos α
y
A
M
O
x
练习: 练习
1.已知参数方程
1 x = t + t 是参数, 1 (t 是参数 t >0) y = t − t
化为普通方程,画出方程的曲线. 化为普通方程,画出方程的曲线. 画出方程的曲线
x2 y2 与椭圆类似, 与椭圆类似, 2 − 2 = 1双 a b
y
B` A
M
ϕ
O B
A `
x
例
图 − , 设M为 曲 如 双
y
x y 线 − = (a,b > ) 上 意 任 a b 一 , O 原 ,过 M 作 曲 点 为 点 点 双 线 渐 线 平 线分 与 两 近 的 行 , 别 两 近 交 A B两 .探 平 渐 线 于, 点 求 行 边 M B 的 积,由 四 形 AO 面 此 可 发 什 结 ? 以 现 么 论
A
M
O
B
x
同理可得点B的横坐标为 a b xB = (sec ϕ − tan ϕ ). 设∠AOx = α , 则 tan α = . a 所以, 平行四边形MAOB的面积为
第2讲双曲线课件理课件.ppt

【互动探究】
1.设双曲线1x62-9y2=1 上的点 P 到点(5,0)的距离为 15,则 P 点到(-5,0)的距离是( D )
A.7 B.23 C.5 或 23 D.7 或 23 解析:容易知道(5,0)与(-5,0)是给出双曲线的焦点,P 是双 曲线上的点,直接从定义入手.设所求的距离为 d,则由双曲线 的定义可得:|d-15|=2a=8⇒d=7 或 23.
AB 的方程为 y=x+1,
因此 M 点的坐标为12,23, F→M=-32,32. 同理可得F→N=-32,-32. 因此F→M·F→N=-322+32×-32=0 综上F→M·F→N=0,即 FM⊥FN. 故以线段 MN 为直径的圆经过点 F.
的范围变化值需探究;
(3)运用不等式知识转化为 a、b、c 的齐次式是关键.
错源:没有考虑根的判别式 例 5:已知双曲线 x2-y22=1,问过点 A(1,1)是否存在直线 l 与双曲线交于 P、Q 两点,并且 A 为线段 PQ 的中点?若存在求 出直线 l 的方程,若不存在请说明理由.
误解分析:没有考虑根的判别式,导致出错.
y2 9
Hale Waihona Puke -2x72 =1D.以上都不对
3.已知双曲线ax22-by22=1(a>0,b>0)的离心率为 26,则双曲 线的渐近线方程为( C )
A.y=±2x B.y=± 2x
C.y=±
2 2x
D.y=±12x
4.已知双曲线ax22-by22=1(a>0,b>0)的一条渐近线方程为 x
+2y=0,则双曲线的离心率 e 的值为( A )
正解:设符合题意的直线 l 存在,并设 P(x1,y1),Q(x2,y2),
双曲线的简单几何性质学生版

(2)x2 y2 4
2.若双曲线的渐近线方程为y 4 x,则双曲线 3
的离心率为
1.双曲线的简单几何性质: 范围、对称性、顶点、渐近线、离心率
2.数学思想方法:“类比”和“数形结合”
体验高考
1.2011安徽高考双曲线2x2 y2 8的实轴长是( )
A.2
y2 - x2 1 (a 0, b 0) a2 b2
y a或y a, x R
对称性
关于x轴、y轴、原点对称
顶点 离心率 渐近线
A1(- a,0),A2(a,0)
A1(0,-a),A2(0,a)
* ybx a
e c (e 1) a
* yax b
巩固练习
1.求以下双曲线的焦点坐标、顶点坐标、 实轴长、虚轴长、渐近线方程、离心率.
1、范围
y a或y a, x R
y
a
o
x
-a
【练习一】写出以下双曲线的范围
x2 y2 (1) 1
4 12 (2) x2 y2 1
20 16
3 y2 x2 1
9 16
探究双曲线
x2 y2 a2 b2 1(a 0, b 0)
的简单几何性质
2、对称性
(-x,y)
y (x,y)
4.双曲线的渐近线
▲规定:直线
ybx a
叫做双曲线
x2 a2
y2 b2
=1的渐近线。
▲思考:①双曲线
y2 a2
x2 b2
1的渐近线方程是什么? y
a
x
②两种双曲线的渐近线方程,怎样统一记忆?b
x2 y2 a2 b2 =1
y2 a2
x2 b2
双曲线的基本知识点PPT

按方程形式分类
双曲线方程的对称性 双曲线的标准方程是(x-a)²/b² - (y-b)²/a² = 1,其具有中心对称性,即点 (a, b)为中心。 双曲线的焦距与实轴长度的关系 在双曲线中,焦距c与实轴长度2a有固定的数学关系:c² = a² + b²,此 式被称为双曲线的基本性质之一。
T 双曲线关于其轴和中心点均具有对称性,这是由其定义决定的。 双曲线的渐近线性质 双曲线的渐近线是一条直线,该直线与双曲线交于两个无穷远点,这是双 曲线的重要特性之一。
05 双曲线的实际应用
双曲线的实际应用:物理中的应 用
双曲线的几何特性 双曲线是二次曲线的一种,其 双曲线的几何特性 双曲线是二次曲线的一种,其几何特性包括焦点在两个固定点,且所有到两 焦点距离之和为定长的点的集合。 双曲线的方程式 双曲线的标准方程是(x^2)/a^2 - (y^2)/b^2 = 1,其中a, b > 0, a^2 + b^2 = c^2 双曲线在物理中的应用 双曲线广泛应用于物理学中,如电磁场理论、光学、量子力学等,例如,双 曲线的焦散线就是光学中的一条重要概念。 双曲线与实际问题的联系 双曲线的许多性质,如离心率、焦点等,可以用于解决实际问题,如测量物 体的距离、角度等。
双曲线的图形特征:焦点和准线
双曲线定义 双曲线是平面内到两个定点的距离之差的绝对值等于常数的点的轨迹。 焦点性质 双曲线的两个焦点位于实轴两端,距离实轴相等。 准线特征 双曲线有两条互相垂直的准线,分别交坐标轴于原点和渐近线点。
04 双曲线的性质解析
双曲线的性质解析:主要性质
双曲线的焦点特性 双曲线有两焦点位于其对称轴上,距离中心等距。 双曲线的对称性 双曲线具有旋转对称性和平移对称性。 双曲线的渐近线 双曲线有两个渐近线,分别代表双曲线在x轴和y轴上的极限状态。 实数双曲线的面积 实数双曲线的面积是πab/4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 双曲线
题型一 双曲线的定义的应用
1. 定义
在平面内到两定点21F F ,的距离的差的绝对值等于常数(小于21F F 且大于零)的点的轨迹叫做双曲线。
定点21F F ,叫做双曲线的焦点,两焦点间的距离叫做焦距。
2. 标准方程
中心在坐标原点,焦点在x 轴上的双曲线的标准方程是)0,0(122
22>>=-b a b y a x ;
中心在坐标原点,焦点在y 轴上的双曲线的标准方程是)0,0(122
22>>=-b a b
x a y ;
例1 设双曲线18
2
2
=-y x 的两个焦点为21F F ,,P 是双曲线上的一点,且4321::=PF PF ,则21F PF ∆的面积等于
例2 已知F 是双曲线112
42
2=-y x 的左焦点,A (1,4),P 是双曲线右支上的动点,则PA PF +的最小值是
变式1 等轴双曲线)0,0(12222>>=-b a b
y a x 的右焦点为F (c,0),方程02
=-+c bx ax 的
实根分别是21,x x ,则三角边长分别是2,,21x x 的三角形中,长度为2的边的对角是( ) A 锐角 B 直角 C 钝角 D 不能确定
题型二 求双曲线的标准方程
1. 定义法
根据双曲线的定义,确定22,b a 的值,再结合焦点位置,求出双曲线方程,常用的关系有(1)
222b a c +=
(2)双曲线上任意一点到曲线两焦点的距离的差的绝对值等于2a
2. 待定系数法 (1)一般步骤:
判断:确定双曲线的焦点实在x 轴上,y 轴上还是不确定 设:根据判断,设出所需未知数或标准方程 列:据题意列出方程或者方程组 解:求解得到方程 (2)常见问题形式
①如果已知双曲线的中心在原点,且确定了焦点在x 轴上或y 轴上,则设出相应形式的标准方程,然后根据条件确定关于a,b,c 的方程组,解出2
2
,b a ,从而写出双曲线的标准方程 ②当焦点位置不确定时,有两种方法来解决:
一种是分类讨论,要考虑全面;另一种是如果已知中心在原点,但不能确定焦点的具体位置
可以设双曲线的一般方程)0(122<=+mn ny mx
例3 过双曲线C :122
22=-b
y a x 的右顶点作x 轴的垂线,与C 的一条渐近线相交于A ,若以
C 的右焦点F 为圆心、半径为4 的圆经过A,O 两点(O 为坐标原点),则双曲线C 的方程为
例4 设动圆C 与两圆4)5(,452222
=+-=++y x y x )(中的一个内切,另一个外切,
求动圆圆心C 的轨迹L 的方程
变式2 设中心在原点的双曲线与椭圆12
22
=+y x 有公共的焦点,且他们的离心率互为倒数,则该双曲线的方程是
题组练习
1. 已知双曲线)0,0(122
22>>=-b a b
y a x 的一条渐近线平行于直线L:y=2x+10,双曲线的一
个焦点在直线L 上,则双曲线的方程是
2. 已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于2
3
,则C 的方程是
3. 已知双曲线C :122
22=-b
y a x 的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程是
4. 设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程是
5. 设双曲线C 经过点(2,2),且与14
22
=-x y 具有相同渐近线,则C 的方程为 渐近线方程为
6. 已知抛物线x y 82
=的准线过双曲线122
22=-b
y a x (0,0>>b a )的一个焦点,且双曲线
的离心率为2,则该双曲线的方程是
题型三 求双曲线的渐近线
求双曲线)0,0(12222>>=-b a b y a x 或)0,0(122
22>>=-b a b x a y 的渐近线方程的方法是令右
边常数等于0,即令02222=-b y a x 得x a b y ±=;或令022
22=-b x a y ,得x b a y ±=,反之,
已知渐近线方程为x a b y ±=,可设双曲线方程为)(0,022
22>>=-b a b
y a x λ
例5 已知双曲线的渐近线方程为x y 2
1
±=,且经过点A(2,-3),求双曲线的标准方程
例6 过双曲线)0,0(122
22>>=-b a b
y a x 的左焦点F 作圆O :222a y x =+的两条切线,切
点为A,B ,双曲线左顶点为C ,若0
120=∠ACB ,则双曲线的渐近线方程为
变式3 已知双曲线19222=-
y a x 的两条渐近线与以椭圆19
252
2=+y x 的左焦点为圆心、516为半径的圆相切,则渐近线方程为
题型四 求双曲线的离心率
1. 离心率的几种求法: (1)定义法: 因为a
c
e =
,所以只需求得a 、c 和a 与c 间的关系即可 (2)估算法
根据椭圆的离心率)1,0(∈e ,双曲线的离心率1>e ,抛物线的离心率e=1 (3) 几何法
2. 双曲线的形状与e 的关系:1122
2
22-=-=-==e a
c a a c a b k ,e 越大,开口越开阔
例7 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为
例8 已知双曲线)0,0(122
22>>=-b a b
y a x 的左右焦点分别为)0,()0,(21c F c F ,-.若双曲线
上存在点P ,使
c
a
F PF F PF =∠∠1221sin sin ,则该双曲线的离心率e 的取值范围是
变式4 已知双曲线)0,0(122
22>>=-b a b
y a x ,过其左焦点F 作x 轴的垂线,交双曲线于
A,B 两点,若双曲线的右顶点在以AB 为直径的圆内,则双曲线离心率的取值范围是
题组练习
1. 已知双曲线)(013
2
22>=-a y a x 的离心率为2,则a=
2. 已知F 为双曲线C:)0(32
2
>=-m m my x 的一个焦点,则点F 到C 的一条渐近线的距离
为
3. 若实数k 满足0<k<5,则曲线
192522=--k y x 与曲线19
2522=--y k x 的( ) A.离心率相等 B 虚半轴长相等 C 实半轴长相等 D 焦距相等
4. 设21F F ,分别为双曲线)0,0(122
22>>=-b a b
y a x 的左右焦点,双曲线上存在一点P 使得
ab b PF PF 32
22
1-=-)(,则该双曲线的离心率是
5. 设21F F ,分别为双曲线)0,0(122
22>>=-b a b y a x 的左右焦点,双曲线上存在一点P 使得
ab PF PF b PF PF 4
9
,32121=
∙=+,则双曲线的离心率是
6. 已知双曲线C :)0,0(12222>>=-b a b y a x 的离心率是2
5
,则C 的渐近线方程是
7. 如图所示,21F F ,是椭圆14
2
21=+y x C :与双曲线2C 的公共焦点,A,B 分别是21C C ,在
第二、四象限的公共点,若四边形21BF AF 为矩形,则2C 的离心率是
8. 已知双曲线)0,0(122
22>>=-b a b
y a x 的焦距为2c ,右顶点为A ,抛物线)
0(22>=p py x 的焦点为F ,若双曲线截抛物线的准线所得线段长为2c ,且c FA =,则双曲线的渐近线方程为
9. 设直线x-3y+m=0( 0≠m )与双曲线)0,0(122
22>>=-b a b
y a x 的两条渐近线分别交于
点A,B ,若点P(m,0)满足PB PA =,则双曲线的离心率是
10. 双曲线
1162
2=-m
y x 的离心率为45,则m=
11. 设21F F ,分别为双曲线)0,0(122
22>>=-b a b
y a x 的两个焦点,双曲线上存在一点P 使
得a PF PF 621=+,且21F PF ∆的最小内角为0
30,则C 的离心率为
能力再提升
等轴双曲线
中心在原点,以坐标轴为对称轴,实半轴长与虚半轴长相等的双曲线叫做等轴双曲线。
性质如下:
(1)方程形式为λ=-22y x )(0≠λ
(2)渐近线方程为x y ±=,它们互相垂直,并且平分双曲线实轴和虚轴所成的角 例1 等轴双曲线C 的中点在原点,焦点在x 轴上,C 与抛物线x y 162
=的准线交于A,B 两
点,34=AB ,则C 的实轴长为
例2 求中心在原点,一个焦点为F (0,22)的等轴双曲线的方程
忽视“判别式”致误
例3 已知双曲线12
2
2
=-y x ,过点P (1,1)能否作一条直线L ,与双曲线交于A,B 两点,且点P 是线段AB 的中点?。