八年级上二元一次方程组典型例题整理

合集下载

八年级上二元一次方程组典型例题整理

八年级上二元一次方程组典型例题整理

八年级上二元一次方程组典型例题整理一.填空题1、方程中含有2个未知数,并且一次项的次数是1,这样的方程是二元一次方程。

2、二元一次方程组的解题思想是代入法,方法有消元法,图解法。

3、将方程10-2(3-y)=3(2-x)变形,用含x的代数式表示y是6-x。

4、已知3x2a+b3-5y3a2b+2=-1是关于x、y的二元一次方程,则(a+b)b=-1/3.5、在公式s=vt+at2中,当t=1时,s=13,当t=2时,s=42,则t=5时,s=155.6、解方程组2x+3y=12(1)3x-4y=17(2)时,可以通过乘以一个系数将x项的系数化相等,还可以通过加减两个方程将y项的系数化为互为相反数。

7、已知2x3m-2n+2ym+n与x5y4n+1是同类项,则m=4,n=1.8、写出2x+3y=12的所有非负整数解为(0,4),(3,2),(6,0)。

9、已知a-b=2c,求a∶b∶c的值。

10、已知x=m,y=n,且2x-3y=1,则3n-5y=n/m的值为多少?21、解下列方程组:1.4x-3y=5,2x-y=2,用代入法解。

2.3x-5y=-9,2x+7y=-6,用代入法解。

3.2x-2y=4,xy=32/(y-1),用加减法解。

4.x+y=8,y+z=9,z+x=5,用加减法解。

5.2x+y+3z=38,3x+2y+4z=56,4x+y+5z=66,用加减法解。

22、解关于x、y的方程组:m+1)x-(3n+2)y=85-n)x+my=11用(1)×2+(2)消去未知数x,或者用(1)+(2)×5消去未知数y,求m、n的值。

23、已知有理数x、y、z满足│x-z-2│+│3x-6y-7│+(3y+3z-4)²=0,证明x=0,y=1,z=2.25、当a为何整数值时,方程组2x+ay=16,x-2y=a无正整数解?26、已知关于x、y的二元一次方程(a-1)x+(a+2)y+5-2a=0,⑴当a=1时,得方程2x+3y=3;当a=-2时,得方程-3x+2y=-9.求②③组成的方程组的解,并将解代入方程①的左边,得到的结果是什么?由此得出什么结论?验证结论的正确性。

北师大版八年级数学上册 第五章 解二元一次方程组50题配完整答案

北师大版八年级数学上册  第五章 解二元一次方程组50题配完整答案

北师大版八年级数学(上)解二元一次方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。

北师大版八年级数学上册 第五章《二元一次方程组实际应用》专项练习

北师大版八年级数学上册 第五章《二元一次方程组实际应用》专项练习

第五章《二元一次方程组实际应用》专项练习1.疫情期间,为满足市场需求,某厂家每天定量生产医用口罩和N95口罩共80万个.当该厂家生产的两种口罩当日全部售出时,则可获得利润35万元.两种口罩的成本和售价如下表所示:成本(元/个)售价(元/个)医用口罩0.8 1.2N95口罩 2.5 3 (1)求每天定量生产这两种口罩各多少万个.(2)该厂家将每天生产的口罩打包(每包1万个)并进行整包批发销售.为了支持防疫工作,现从生产的两种口罩中分别抽取若干包口罩免费捐赠给疫情严重的地区,且捐赠的N95口罩不超过医用口罩的三分之一.若该企业把捐赠后剩余的口罩全部售出后,每日仍可盈利2万元,则从医用口罩和N95口罩中各抽取多少包?2.列方程组解应用题:2020年5月1日,新修订的《北京市生活垃圾管理条例》正式实施,生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类.北京市现有生活垃圾处理设施中的焚烧设施和生化设施共34座,总处理能力达到约24550吨/日,其中每一座焚烧设施处理能力约为1500吨/日,每一座生化设施处理能力约为350吨/日.则北京市现有生活垃圾处理设施中的焚烧设施和生化设施各有多少座?3.某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60 50 1140第二次购物30 70 1110第三次购物90 80 1062 (1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.4.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.现由A、B两种货车运输救助物资,已知3辆A车和1辆B车每次可运救助物资15吨,4辆A车和3辆B车每次可运救助物资25吨.(1)1辆A车和1辆B车一次分别可运多少吨?(2)若用A,B两种货车一次运完35吨救助物资(货车均装满),该如何安排A、B 两种货车的数量?请写出所有的安排方案.。

八年级数学上册5_2求解二元一次方程组典型例题素材2新版北师大版

八年级数学上册5_2求解二元一次方程组典型例题素材2新版北师大版

《求解二元一次方程组》例1 解方程组 ⎩⎨⎧=-=+)2(124)1(532y x y x 例2 解方程组⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x y x y x例3 用加减法解方程组⎩⎨⎧=-=+)2(1353)1(958y x y x例 4 解方程组⎩⎨⎧=-=+)2( .935)1( ,1323y x y x 例5 若方程组⎩⎨⎧=+=+.12,2y x m y x 的解x 、y ,满足2≤+y x ,求正数m 的取值范围. 例6 已知方程组⎩⎨⎧=+=-31ay bx by ax 的解为⎪⎩⎪⎨⎧==211y x ,求a 、.b例7 解方程组 ⎪⎩⎪⎨⎧⨯=+-=+)2(%2040%25%15)1(43522y x y x y x例8 当1,3<>y x 时,解方程组.2873113152⎪⎩⎪⎨⎧=-+-=-+-y x y x ① ②参考答案例1 分析 观察方程组方程(2)中x 的系数是方程(1)中x 系数的2倍,用加减消元法解较简单.解:(1)×2,得 1064=+y x (3))2()3(-,得 98=y 解得 89=y 把89=y 代入(1)得 58932=⨯+x 解得 1613=x ∴ 方程组的解为 ⎪⎪⎩⎪⎪⎨⎧==891613y x 例2 分析:把方程变成⎩⎨⎧=+=+222111c y b x a c y b x a 形式.解:化简方程得⎩⎨⎧=-=-4831084314y x y x③-④得.x x 9364=∴=把9=x 代入④,得 .y ,y 1448390=∴=-⎩⎨⎧==∴.y x 149 此题还有另外的解法.解b,y x a,y x =-=+3232则原方程组变为⎪⎪⎩⎪⎪⎨⎧=+=+,b a b a 823734 解得⎩⎨⎧-==.b a 2460所以⎩⎨⎧==.y x 149 说明:这种解法叫做换元法,是数学中常见的解题方法.例3 分析:在这两个方程组中,未知数y 的系数互为相反数,把这两个方程的两边分别相③④加就可以消去未知数y .解:(1)+(2),得.x ,x 22211=∴=把2=x 代入方程(1),得57759528-=∴-==+⨯y .y ,y ⎪⎩⎪⎨⎧-==∴572y x 说明:解此题的关键在于消去未知数y ,把“二元”转化成“一元”,消元时,根据等式性质把两个方程两边分别相加(或减)的方法消去一个未知数.例4 分析 方程组的两个方程中,同一个未知数的系数既不相等,也不互为相反数时,可以用适当的数去乘方程的两边,使某一个未知数的系数相等,或互为相反数,再把所得的两个方程相加减就可以消去一个未知数.解 (1)×3,得.3969=+y x (3)(2)×2,得.18610=-y x (4)(3)+(4),得5719=x ,∴ 3=x .把3=x 代入(1)中,得13233=+⨯y ,.2=y∴ ⎩⎨⎧==2,3y x 是原方程组的解. 例5 解 由⎩⎨⎧=+=+.12,2y x m y x 可解得⎪⎪⎩⎪⎪⎨⎧-=-=.312,32m y m x 又∵ 2≤+y x ,∴2312231232≤-+-=-+-m m m m , ∴ 5≤m∴ 满足条件的m 的范围是50≤<m . 例 6 分析 由于⎪⎩⎪⎨⎧==211y x 是二元一次方程组⎩⎨⎧=+=-31ay bx by ax 的解,根据方程组解的定义有⎪⎪⎩⎪⎪⎨⎧=+=-32112a b b a ,解此二元一次方程组即可求a 、b . 解:∵ ⎪⎩⎪⎨⎧==211y x 是方程组 ⎩⎨⎧=+=-31ay bx by ax 的解 ∴ ⎪⎪⎩⎪⎪⎨⎧=+=-321121a b b a 解这个方程组得 ⎩⎨⎧==22b a ∴ 2,2==b a .例7 分析 当方程比较复杂时,应先化简,如去分母、去括号、移项、合并同类项等.解:由(1)得 05=-y x (3)由(2)得 16053=+y x (4))4()3(+,得 1604=x 解得 40=x把 40=x 代入(3),得 0540=-y 解得 8=y∴ 方程组的解为 ⎩⎨⎧==840y x 例8 分析:这是绝对值方程组,必须根据给出条件把未知数从绝对值符号内解脱出来,变成一般的二元一次方程组就可以解下去了.解:,01,02,3<-<-∴>x x x又.07,01,1>-<-∴<y y y原方程组可化为⎩⎨⎧=-=-.83105y x y x解得⎩⎨⎧-==.15y x说明:本题的关键是利用⎪⎩⎪⎨⎧=<->=)0(0)0()0(a a a a a a 化去题中的绝对值.。

北师大版八年级数学上册第五章《二元一次方程组》应用练习题(有解析)

北师大版八年级数学上册第五章《二元一次方程组》应用练习题(有解析)

八年级数学上册第五章《二元一次方程组》应用练习题1.某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?2.育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?3.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?4.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级4000 2 4八年级4200 3 3九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.5.某写字楼门口安装了一个如图所示的旋转门,旋转门每转一圈按正常负载可以出去6人,每分钟转4圈.(1)问:按正常负载半小时此旋转门可出去多少人?(2)紧急情况时,旋转门每圈负载出去人数可增加50%,但因此每分钟门的转速降低25%.①直接写出紧急情况时旋转门每分钟可以出去人;②该写字楼有9层,每层10间办公室,平均每个办公室6人,为了符合消防安全要求,要在一楼再安装几近普通侧门,每近侧门每分钟能通过45人,在紧急情况下,要使整写字楼的人能在5分钟内全部安全离(下楼时间忽略不计),至少要安装几道普通侧门.6.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?7.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”8.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?9.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?10.某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?参考答案1.解:(1)设打折前甲种商品每件x元,乙种商品每件y元,依题意,得:,解得:.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这些商品比不打折可节省3640元.2.解:设购买红色手幅x个;购买黄色手幅y个,根据题意得,解得,答:购买红色手幅280个;购买黄色手幅520个.3.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.4.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.5.解:(1)正常负载下,半小时可出去:30×4×6=720人(2)①紧急情况下,出去人数可增加50%,则每圈出去人数为:6×(1+50%)=9人,每分钟门转速降低25%,即每分钟转的圈数为4×(1﹣25%)=3圏则每分钟可以出去:3×9=27人故答案填27②写字楼的总人数为:9×10×6=540人急情况下,要使整写字楼的人能在5分钟,旋转门出去的人数为:5×27=135人则剩下的人数为540﹣135=405人,要从普通侧门通过则有405÷(45×5)≈1.8,即至少安装2道普通侧门6.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).。

应用二元一次方程组——增收节支(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练

应用二元一次方程组——增收节支(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练

专题5.16应用二元一次方程组——增收节支(知识梳理与考点分类讲解)【知识点1】列二元一次方程组解决增收节支问题(1)增长(降低)率问题:增长(降低)率=增(减)量/基数×100%,增长(减少)后的数量=基数×【1±增长(降低)率】.(2)销售问题:销售额=售价×销量,总利润=总销售额-总成本=单件的利润×销量=(售价-进价)×销量,利润率=利润/进价×100%,打折后的价格=原价×折数÷10(3)储蓄问题:利息=本金×利率×期数.本息和=本金+利息.注意:在计算过程中要保持单位的统一.【特别提醒】1.对于增长(降低)率问题,审题时一定要看清是增长还是降低,而且要看准在哪一个量的基础上增长或降低,不要颠倒.2.在储蓄问题中注意利率要根据期数而定,期数是按月算的,利率就用月利率,期数是按年算的,利率就用年利率.【考点目录】【考点1】方案问题;【考点2】行程问题;【考点3】工程问题;【考点4】销售与利润问题.【考点一】方案问题【例1】(2022上·广东深圳·八年级校考期末)现欲将一批荔枝运往外地销售,若用2辆A型车和1辆B型车载满荔枝一次可运走10吨;1辆A型车和2辆B型车载满荔枝一次可运走11吨.现有荔枝31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题::(1)1辆A型车和1辆B型车都载满荔枝一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案.【答案】(1)1辆A 型车载满荔枝一次可运送3吨,1辆B 型车载满荔枝一次可运送4吨;(2)该物流公司共有3种租车方案,方案1:租用9辆A 型车,1辆B 型车;方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.【分析】(1)设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,由“用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨”,列出二元一次方程组,解方程组即可得出结论;(2)由“现有荔枝31吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满荔枝”,列出二元一次方程,结合a 、b 均为非负整数,即可得出各租车方案.(1)解:设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,由题意得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩,答:1辆A 型车载满荔枝一次可运送3吨,1辆B 型车载满荔枝一次可运送4吨;(2)由题意得:3431a b +=,∴3143b a -=,又∵a 、b 均为非负整数,∴91a b =⎧⎨=⎩或54a b =⎧⎨=⎩或17a b =⎧⎨=⎩,∴该物流公司共有3种租车方案,方案1:租用9辆A 型车,1辆B 型车;方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.【点拨】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.【举一反三】【变式1】(2023下·黑龙江齐齐哈尔·七年级统考期末)五四青年节某校举办歌咏比赛,为鼓励本班同学们积极参加,刘老师花了48元钱买了甲、乙两种(两种都买)碳素笔作为奖品.已知甲种碳素笔每支6元,乙种碳素笔每支4元,则老师购买碳素笔的方案共有()A .4种B .3种C .2种D .1种【答案】B 【分析】本题考查了二元一次方程的应用,设刘老师购买x 本甲种碳素笔,y 本乙种碳素笔,利用总价=单价⨯数量,可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出张老师购买碳素笔的方案共有3种.解:设刘老师购买x 本甲种碳素笔,y 本乙种碳素笔,根据题意得:6448x y +=,∴3122y x =- ,x y 是正整数,∴29x y =⎧⎨=⎩或46x y =⎧⎨=⎩或63x y =⎧⎨=⎩∴刘老师购买碳素笔的方案共有3种.故选:B .【变式2】(2023下·山东烟台·七年级统考期中)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为.【答案】26【分析】设1艘大船可载x 人,1艘小船可载y 人,依题意:1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.列出二元一次方程组,求出x y +的值即可.解:设1艘大船可载x 人,1艘小船可载y 人,依题意得:232246x y x y +=⎧⎨+=⎩①②,①+②得:3378x y +=,26x y ∴+=,即1艘大船与1艘小船一次共可以满载游客的人数为26,故答案为:26.【点拨】此题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【考点二】行程问题【例2】(2023下·重庆渝中·七年级重庆市求精中学校校考期中)甲乙两地相距240千米,一辆小车和一辆摩托车分别从甲、乙两地同时出发相向而行,1小时20分两车相遇.相遇后,摩托车继续前进,小车在相遇处停留1个小时后调头按原速返回甲地,小车在返回后半小时追上了摩托车,(1)求小车和摩托车的速度.(2)求相遇后,摩托车继续行驶多少小时两车相距30千米?【答案】(1)小汽车和摩托车速度分别为135千米/小时,45千米/小时;(2)23小时或76小时或116小时或103小时【分析】(1)小车的速度为x 千米/时,摩托车的速度为y 千米/时,利用路程=速度⨯时间,结合两车速度间的关系,可得出关于x ,y 的二元一次方程组,解之即可得出小车和摩托车的速度;(2)设相遇后,摩托车继续行驶m 小时两车相距30千米,利用路程=速度⨯时间,结合两车相距30千米,可得出关于m 的一元一次方程,解之即可得出结论.(1)解:1小时20分43=小时.设小车的速度为x 千米/时,摩托车的速度为y 千米/时,根据题意得:4()240311(1)22x y x y ⎧+=⎪⎪⎨⎪=+⎪⎩,解得:13545x y =⎧⎨=⎩.答:小车的速度为135千米/时,摩托车的速度为45千米/时;(2)设相遇后,摩托车继续行驶m 小时两车相距30千米,根据题意得:4530m =或45135(1)30m m --=或135(1)4530m m --=或4524030m =-,解得:23m =或7m 6=或116m =或143m =.答:相遇后,摩托车继续行驶23小时或76小时或116小时或103小时两车相距30千米.【点拨】本题考查了一元一次方程的实际应用,解题的关键是对于(2)要用分类讨论的思想求解,注意不要漏解.【举一反三】【变式1】(2023下·贵州·七年级校联考阶段练习)甲、乙两地相距880km ,小轿车从甲地出发2h 后,大客车从乙地出发相向而行,又经过4h 两车相遇.已知小轿车比大客车每小时多行20km ,设大客车每小时行km x ,小轿车每小时行km y ,则可列方程组为()A .20,64880x y x y -=⎧⎨+=⎩B .20,64880y x y x -=⎧⎨+=⎩C .880,6420y x y x -=⎧⎨+=⎩D .20,46880y x y x -=⎧⎨+=⎩【答案】B 【分析】设大客车每小时行km x ,小轿车每小时行km y ,根据小轿车比大客车每小时多行20千米,甲车行驶2小时,两车相向行驶4小时共走了880千米,据此列方程组求解.解:设大客车每小时行km x ,小轿车每小时行km y ,由题意得:2064880y x y x -=⎧⎨+=⎩,故选:B .【点拨】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.【变式2】(2023下·云南曲靖·七年级统考期末)从甲地到乙地有一段上坡路与一段平路,如果上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需要36分钟,从乙地到甲地需要24分钟,甲地到乙地全程是多少?根据题意,老师给出的方程组为363460245460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,则方程组中x 表示.【答案】从甲地到乙地的上坡路程【分析】设从甲地到乙地的上坡路为km x ,平路为km y ,根据保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地用36分钟,从乙地到甲地用24分钟即可列出方程组363460245460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,据此解答即可.解:设从甲地到乙地的上坡路为km x ,平路为km y ,依题意得363460245460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,∴方程组中x 表示从甲地到乙地的上坡路程,故答案为:从甲地到乙地的上坡路程.【点拨】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.【考点三】工程问题【例3】(2022下·河北石家庄·七年级校考阶段练习)现有一段长为180米的河道整治任务由A ,B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲列出的方程组为20128180x y x y +=⎧⎨+=⎩,,分析甲所列的方程组,请指出未知数x ,y 表示的意义,x 表示,y 表示;(2)若设A 工程队共整治河道m 米,B 工程队共整治河道n 米,请根据题意列出二元一次方程组,并求出m ,n 的值.【答案】(1)A 工程队整治河道的天数;B 工程队整治河道的天数;(2)18020128m n m n +=⎧⎪⎨+=⎪⎩;60,120【分析】(1)根据所列的方程组,结合题意,作答即可;(2)根据有一段长为180米的河道整治任务由A ,B 两个工程队先后接力完成,得到180m n +=,根据共用时20天得到:20128m n +=,即可得出方程组,再求解即可.(1)解:由题意和所列方程组可知:x 表示A 工程队整治河道的天数,y 表示:B 工程队整治河道的天数,故答案为:A 工程队整治河道的天数;B 工程队整治河道的天数;(2)设A 工程队共整治河道m 米,B 工程队共整治河道n 米,由题意,得:18020128m n m n +=⎧⎪⎨+=⎪⎩,解得:12060m n =⎧⎨=⎩.即m ,n 的值分别为60,120.【点拨】本题考查二元一次方程组的实际应用,找准等量关系,正确的列出方程组是解题的关键.【举一反三】【变式1】(2021上·四川巴中·八年级四川省巴中中学校考期中)某污水处理厂库池里现有待处理的污水m 吨.另有从城区流入库池的待处理污水(新流入污水按每小时n 吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为()A .6台B .7台C .8台D .9台【答案】B【分析】设同时开动x 台机组,每台机组每小时处理a 吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m ,n 的二元一次方程组,解之即可得出m ,n 的值(用含a 的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x 的一元一次方程,解之可得出结论.解:设同时开动x 台机组,每台机组每小时处理a 吨污水,依题意,得2303031515a m n a m n ⨯=+⎧⎨⨯=+⎩,解得:30m a n a =⎧⎨=⎩,∵5ax =30a +5a ,∴x =7.答:要同时开动7台机组.故选:B .【点拨】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.【变式2】(2020上·重庆万州·八年级校考期中)一水池有一个进水管和三个完全相同的出水管,现水池中有一定量的水,打开进水管(注水速度一致),若只打开一个出水管,则1小时正好能把水池中的水放完;若打开两个出水管,则20分钟正好能把水池中的水放完;问若打开三个出水管,则需要分钟恰好能把水池中的水放完.【答案】12【分析】设进水管的进水速度为x ,每一个出水管的出水速度为y ,水池中原有水量为a ,根据题意列方程组求解解:设进水管的进水速度为x ,每一个出水管的出水速度为y ,水池中原有水量为a ,由题意可得:1111233a x y a x y +⋅=⋅⎧⎪⎨+=⨯⎪⎩,解得:2x a y a =⎧⎨=⎩设打开三个出水管需要b 小时能把水池中的水放完,则3a xb b y+=⋅13325a ab y x a a ===-⨯-时=12分故答案为:12【点拨】本题考查二元一次方程组的应用,理解题意,正确列出等量关系求解是关键.【考点四】销售与利润问题【例4】(2023上·全国·八年级专题练习)为促进消费,某商家对商品进行打折促销.打折前,2件A 商品和1件B 商品的总售价为30元;1件A 商品和2件B 商品的总售价为33元.(1)求每件A 商品和每件B 商品的售价;(2)若两种商品的折扣相同,打折后,9件A 商品和8件B 商品共用了141.6元.求商家打几折出售这两种商品.【答案】(1)每件A 商品售价为9元,每件B 商品的售价为12元;(2)商家打8折出售这两种商品【分析】本题考查一元一次方程,二元一次方程组的应用.(1)设每件A 商品售价为x 元,每件B 商品的售价为y 元,根据2件A 商品和1件B 商品的总售价为30元;1件A 商品和2件B 商品的总售价为33元得解方程组求解即可;(2)设商家打m 折出售这两种商品,根据9件A 商品和8件B 商品共用了141.6元列方程求解即可.解:(1)设每件A 商品售价为x 元,每件B 商品的售价为y 元,根据题意得:230233x y x y +=⎧⎨+=⎩,解得912x y =⎧⎨=⎩,∴每件A 商品售价为9元,每件B 商品的售价为12元;(2)设商家打m 折出售这两种商品,根据题意得:99812141.61010m m ⨯⨯+⨯⨯=,解得8m =,答:商家打8折出售这两种商品.【举一反三】【变式1】(2023下·湖南益阳·七年级校考期中)五一节前夕,某超市用1680元购进A ,B 两种商品共60件,A 型商品每件24元,B 型商品每件36元,设购进A 型商品x 件,B 型商品y 件,依题意列方程组正确的是()A .3624601680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .6036241680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩【答案】B【分析】根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品,分别得出等式组成方程组即可.解:设购进A 型商品x 件,B 型商品y 件,根据题意,得6024361680x y x y +=⎧⎨+=⎩.故选:B【点拨】本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.【变式2】(2023下·河北秦皇岛·七年级统考期中)在当地农业技术部门的指导下,小明家种植的大棚油桃喜获丰收,去年大棚油桃的利润(利润=收入-支出)为12000元,今年大棚油桃的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元,设小明家去年种植大棚油桃的收入为x 元,支出是y 元.依题意列方程组.【答案】12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩【分析】审题,明确等量关系,建立方程组.解:由题意知,今年收入为(120%)x +,今年支出(110%)y -,故12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩故答案为:12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩【点拨】本题考查二元一次方程组的应用,根据题意明确等量关系是解题的关键.。

2022-2023学年八年级上学期数学:二元一次方程组(附答案解析)

2022-2023学年八年级上学期数学:二元一次方程组(附答案解析)

2022-2023学年八年级上学期数学:二元一次方程组
一.选择题(共5小题)
1.某校学生去看电影,如果每辆汽车坐60人,则空出1辆汽车,如果每辆汽车坐45人,则15人没有座位,那么学生人数和汽车辆数各是多少?()
A.230人、6辆B.240人、5辆C.240人、8辆D.250人、7辆2.若方程ax+3y=2+4x是关于x,y的二元一次方程,则a满足()A.a≠1B.a≠2C.a≠3D.a≠4
3.已知方程3x﹣4y=6,用含y的式子表示x为()
A .
B .
C .
D .
4.已知是方程2x﹣my=8的一个解,则m的值是()
A.3B.﹣3C.﹣2D.﹣12
5.用加减消元法解二元一次方程组时,下列做法正确的是()A.要消去x,可以将①×3+②×5
B.要消去x,可以将①×5﹣②×3
C.要消去y,可以将①×2﹣2
D.要消去y,可以将①×2+2
二.填空题(共5小题)
6.写出一个以为解的方程.
7.将方程2x+3y=15变形为用含x的式子表示y:.
8.方程组的解是.
9.如图是小强同学解方程组过程的框图表示,请你帮他补充完整:
第1页(共11页)。

应用二元一次方程组——里程碑上的数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练

应用二元一次方程组——里程碑上的数(知识梳理与考点分类讲解)-八年级数学上册基础知识专项突破讲与练

专题5.20应用二元一次方程组——里程碑上的数(知识梳理与考点分类讲解)【知识点1】里程碑上的数字问题两位数:十位数字×10+个位数字.三位数:百位数字×100+十位数字×10+个位数字.四位数:千位数字+百位数字×100+十位数字×10+个位数字.......例如:如果一个两位数,个位数字为x,十位数字为y,则这个两位数可表示为10y+x,而不可表示为yx,因为yx表示y乘x,应注意区别.特别提醒:1.在表示多位数时,什么数位上的数字就乘什么,如百位上的数字乘100,千位上的数字乘1000.2.若用两个数拼一个新数,则要关注两个数的前后顺序和前面的数扩大的倍数与后面的数的数位的关系.【考点目录】【考点1】数字问题;【考点2】几何问题;【考点3】图表信息题;【考点4】开放问题;【考点5】其他问题.【考点一】数字问题【例1】(2023下·河南南阳·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?【答案】(1)他们取出的两张卡片上的数字分别是4、5;(2)第一次他们拼成的两位数为45.【分析】(1)设他们取出的两个数字分别为x 、y .根据题意列方程组求解即可;(2)根据(1)的结果即可求解.(1)解:设他们取出的两个数字分别为x 、y .第一次拼成的两位数为10x y +,第二次拼成的两位数为10y x +.根据题意得:910910x y y x x y +=⎧⎨+-=+⎩①②,由②,得:1y x -=③,+①③得:5y =.把5y =代入①得:4x =,∴他们取出的两张卡片上的数字分别是4、5.(2)解:根据(1)得:十位数字是4,个位数字是5,所以第一次他们拼成的两位数为45.【点拨】本题考查二元一次方程组的应用,找出合适的等量关系是解题的关键.【举一反三】【变式1】(2022下·重庆江津·七年级校联考阶段练习)甲乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的151倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1089.求这两个两位数?如果设甲数为x ,乙数为y .则得方程组()A .1001511001001089x y y y x x y +=⎧⎨+=+-⎩B .1001511001001089x y x y x x y +=⎧⎨+=++⎩C .1001001089100151x y x y y x y +=++⎧⎨+=⎩D .1001001089100151x y x y y x y +=+-⎧⎨+=⎩【答案】A【分析】设甲数为x ,乙数为y .根据题意,列出二元一次方程组即可求解.解:设甲数为x ,乙数为y .根据题意,得方程组1001511001001089x y y y x x y +=⎧⎨+=+-⎩,故选A .【点拨】本题考查了二元一次方程组的应用,理解题意是解题的关键.【变式2】(2023下·江苏扬州·七年级统考期末)小凡出门前看了下智能手表上的运动APP ,发现步数计数是一个两位数,步行下楼后发现十位数字与个位上数字互换了,到小区门口时,发现步数计数比下楼后看到的两位数中间多了个1,且从出门到小区门口共走了...........586步,则出门时看到的步数是.【答案】26【分析】设出门时看到的步数的十位数字为x ,个位数字为y ,根据从出门到小区门口共走了586步,可列出关于x ,y 的二元一次方程,结合x ,y 均为一位正整数,即可得出x ,y 的值,再将其代入()10x y +中,即可求出结论.解:设出门时看到的步数的十位数字为x ,个位数字为y ,根据题意得:()1001010586y x x y ++-+=,∴1164y x =+.又∵x ,y 均为一位正整数,∴2 6x y =⎧⎨=⎩,∴10102626x y +=⨯+=,即出门时看到的步数是26.故答案为:26.【点拨】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【考点二】几何问题【例2】(2023上·四川内江·八年级威远中学校校考期中)(1)一个正方形的边长增加3cm ,面积就增加281cm ,求原正方形的边长;(2)已知一个长方形,若它的长增加4cm ,宽减少1cm ,则面积保持不变;若它的长减少2cm ,宽增加1cm ,则面积仍保持不变.求这个长方形的面积.【答案】(1)12cm ;(2)224cm 【分析】本题考查了二元一次方程组的应用:(1)设原正方形的边长为cm x ,根据“正方形的边长增加3cm ,面积就增加281cm ”,列出方程,即可求解;(2)设长方形原来的长为cm x ,宽为cm y ,根据“它的长增加4cm ,宽减少1cm ,则面积保持不变;若它的长减少2cm ,宽增加1cm ,则面积仍保持不变”,列出方程组,即可求解.(1)解:设原正方形的边长为cm x ,()22381x x +-=,解得12x =.答:原正方形的边长为12cm ;(2)解:设长方形原来的长为cm x ,宽为cm y ,依题意,得()()()()4121x y xy x y xy ⎧+-=⎪⎨-+=⎪⎩,整理得:4422x y x y -=-⎧⎨-=⎩,解得:83x y =⎧⎨=⎩,所以这个长方形的面积23824cm S xy ==⨯=.答:这个长方形的面积是224cm .【举一反三】【变式1】(2021上·福建漳州·八年级校考阶段练习)如图,周长为34的大长方形ABCD 被分成7个全等的小长方形,则每个小长方形的面积为()A .10B .14C .20D .30【答案】A 【分析】本题中的两个等量关系是:长方形长的四倍与宽的七倍之和为34;长的二倍等于宽的五倍,据此建立二元一次方程组求解即可.解:设长方形的长为x ,宽为y ,根据题意,得:473425x y x y +=⎧⎨=⎩,解得:52x y =⎧⎨=⎩,∴5210xy =⨯=,∴每个小长方形的面积为10.故选:A .【点拨】本题考查二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.【变式2】(2023上·陕西西安·八年级高新一中校考期中)如图,在一个大长方形中放入六个形状、大小相同的小长方形,有关尺寸如图所示,则图中大长方形ABCD 的面积是2cm .【答案】560【分析】本题主要考查二元一次方程组的应用,设小长方形的长、宽分别为x 、y ,根据图示可以列出方程组,然后解这个方程组即可求出小长方形长和宽,然后求得大长方形的长和宽,从而求得面积.解题的关键是会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.解:设小长方形的长、宽分别为cm cm x y ,,依题意得212328x y y x y +-=⎧⎨+=⎩,解之得164x y =⎧⎨=⎩,∴小长方形的长、宽分别为16cm 4cm ,,∴12220cm,28cm AB y BC =+==,∴大长方形ABCD 的面积22028560cm AB BC =⋅=⨯=,【考点三】图表信息问题【例3】(2022上·陕西西安·八年级统考期末)张老师在某文体店购买商品A 、B 若干次(每次A 、B 两种商品都购买,且A 、B 都只能购买整数个),其中第一、二两次购买时,均按标价购买,两次购买商品A 、B 的数量和费用如表所示:购买商品A 的数量/个购买商品B 的数量/个购买总费用/元第一次购物65980第二次购物37940(1)求商品A 、B 的标价;(2)若张老师第三次购物时,商品A 、B 同时打6折出售,这次购买总费用为960元,则张老师有哪几种购买方案?【答案】(1)商品A 的标价为80元/个,商品B 的标价为100元/个;(2)张老师共有三种购买方案,方案一:购买15个商品A ,4个商品B ;方案二:购买10个商品A ,8个商品B ;方案三:购买5个商品A ,12个商品B【分析】(1)设商品A 的标价为x 元/个,商品B 的标价为y 元/个,根据“表格信息”建立方程组,再解方程组即可;(2)设张老师购买m 个商品A ,n 个商品B ,根据“这次购买总费用为960元”建立二元一次方程,再利用方程的正整数解可得答案.(1)解:设商品A 的标价为x 元/个,商品B 的标价为y 元/个,根据题意得:6598037940x y x y +=⎧⎨+=⎩,解得:80100x x =⎧⎨=⎩.答:商品A 的标价为80元/个,商品B 的标价为100元/个.(2)设张老师购买m 个商品A ,n 个商品B ,根据题意得:800.61000.6960m n ⨯+⨯=,∴5204m n =-.当4n =时,15m =;当8n =时,10m =;当12n =时,5m =.答:张老师共有三种购买方案,方案一:购买15个商品A ,4个商品B ;方案二:购买10个商品A ,8个商品B ;方案三:购买5个商品A ,12个商品B .【点拨】本题考查的是二元一次方程组的应用,二元一次方程的正整数解的含义,理解题意,确定相等关系建立方程组或方程是解本题的关键.【举一反三】【变式1】(2023下·河北邢台·七年级校考期末)如图,两架天平均保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是()A .10gB .20gC .25gD .30g【答案】B 【分析】通过理解题意可知本题存在两个等量关系,即三块巧克力的质量=两个果冻的质量,一块巧克力的质量+一个果冻的质量50=克.根据这两个等量关系式可列一个方程组,进行求解即可.解:设每块巧克力的重量为x 克,每块果冻的重量为y 克.由题意列方程组得:3250x y x y =⎧⎨+=⎩,解方程组得:2030x y =⎧⎨=⎩.即:每块巧克力的质量是20克.故选:B .【点拨】题考查二元一次方程的应用,根据等量关系列方程组是关键.【变式2】(2023下·浙江湖州·七年级统考期末)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在33⨯(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.如图2的方格中填写了一些代数式,若能构成一个广义的三阶幻方,则a b +=.【答案】6-【分析】根据三阶幻方中的数字列方程组求解即可.解:由题意知,322224a a b +=-⎧⎨-=+-⎩,解得33a b =-⎧⎨=-⎩,∴336a b +=--=-,故答案为:6-.【点拨】本题主要考查二元一次方程组的应用,熟练根据三阶幻方列方程求解是解题的关键.【考点四】开放问题【例4】(2017下·江苏南通·七年级校考期中)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用二元一次方程组解决的问题,并写出这个问题的解答过程.【答案】问题:1辆大车与1辆小车一次可以运货多少吨?(本题的答案不唯一),答案:6.5吨.【分析】1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.解:问题:1辆大车与1辆小车一次可以运货多少吨?(本题的答案不唯一)设1辆大车一次运货x 吨,1辆小车一次运货y 吨.根据题意,得3422{2623x y x y +=+=,解得4{ 2.5x y ==.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.【举一反三】【变式1】(2020上·辽宁铁岭·八年级校联考期中)小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是()A .20B .22C .23D .25【答案】C 【分析】设投掷中外环区、内区一次的得分分别为x ,y 分,根据等量关系列出方程组,解方程组即可;解:设投掷中外环区、内区一次的得分分别为x ,y 分,依题意得:32192321x y x y +=⎧⎨+=⎩,∴解这个方程组为:35x y =⎧⎨=⎩,∴大壮的得分为:432023x y +=+=.故选:C .【点拨】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.【变式2】(2018下·七年级单元测试)如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23cm ,小红所搭的“小树”的高度为22cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =,y =.【答案】45解:根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B 的高度×2,依两个等量关系列出方程组23233222x y x y +=⎧⎨+=⎩,解得45x y =⎧⎨=⎩.故答案为:4和5.【点拨】本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.【考点五】其他问题【例5】(2023上·全国·八年级专题练习)在疫情防控期间,某中学为保障广大师生生命健康安全,预从商场购进一批免洗手消毒液和84消毒液.如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打八折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?【答案】(1)每瓶免洗手消毒液价格是15元,每瓶84消毒液的价格是8元;(2)学校选用方案一更节约钱,节约76元.【分析】本题考查二元一次方程组的应用.(1)根据购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元,可以列出相应的二元一次方程组,从而可以求出每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元;(2)根据题意,可以求出方案一和方案二的花费情况,然后比较大小并作差即可解答本题.(1)解:设每瓶免洗手消毒液和每瓶84消毒液的价格分别是a 元、b 元,40901320601201860a b a b +=⎧⎨+=⎩,解得:158a b =⎧⎨=⎩,答:每瓶免洗手消毒液和每瓶84消毒液的价格分别是15元、8元;(2)方案一的花费为:()151008600.81584⨯+⨯⨯=(元),方案二的花费为:()15100860100521660⨯+⨯-÷⨯=(元),1660158476-=(元),15841660<,答:学校选用方案一更节约钱,节约76元.【举一反三】【变式1】(2023下·河南新乡·七年级统考期末)如图,2个塑料凳子叠放在一起的高度为60cm ,4个塑料凳子叠放在一起的高度为80cm ,塑料凳子相同且叠放时均忽略缝隙,则11个塑料凳子叠放在一起时的高度为()A .120cmB .130cmC .140cmD .150cm【答案】D 【分析】设1支塑料凳子的高度为 cm x ,每叠放1支塑料凳子高度增加 cm y ,根据2个塑料凳子叠放在一起的高度为60cm ,4个塑料凳子叠放在一起的高度为80cm ,列出二元一次方程组,解之求出x 、y 的值,即可解决问题.解:设1支塑料凳子的高度为 cm,x 每叠放1支塑料凳子高度增加 cm y ,依题意得:60380x y x y +=⎧⎨+=⎩解得:5010x y =⎧⎨=⎩10501010150x y ∴+=+⨯=,即11支塑料凳子整齐地叠放在一起的高度为150cm .故选:D .【点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式2】(2022·黑龙江齐齐哈尔·校考三模)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备用160元全部购买A ,B 两种奖品若干个,那么可以购买B 种奖品个.【答案】4或8【分析】设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据“购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元”,可得出关于x ,y 的二元一次方程组,解之可得出两种奖品的单价,设可以购买A 种奖品m 个,B 种奖品n 个,利用总价=单价×数量,可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数,即可得出n 的值.解:设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据题意得:2410052130x y x y +=⎧⎨+=⎩,解得:2015x y =⎧⎨=⎩,∴A 种奖品的单价为20元,B 种奖品的单价为15元.设可以购买A 种奖品m 个,B 种奖品n 个,根据题意得:2015160m n +=,∴384m n =-,∵m ,n 均为正整数,∴54m n =⎧⎨=⎩或28m n =⎧⎨=⎩,∴可以购买B种奖品4或8个.故答案为:4或8.【点拨】本题考查了二元一次方程组的应用以及二元一次方程的应用,找准等量关系,正确列出二元一次方程组(或二元一次方程)是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、解方程组 (1)⎩⎨⎧+-=-+=-18)1(3)1(55)1(3x y y x (2)⎪⎪⎩⎪⎪⎨⎧=+=+157655
4214332v u v u (3)⎪⎩⎪⎨⎧=+=+=+543x z z y y x
2、关于x 、y 的二元一次方程组⎩⎨
⎧-=-+=+2)1(432k y k kx y x 的解中x 和y 的值互为相反数,则k 的值是?
3、关于x 、y 的方程组⎩
⎨⎧-=-=+2242062y cx by ax 的解应为⎩⎨⎧==108y x ,但是小明在解此方程组时,由于看错了c 而错解为⎩⎨⎧==6
11y x 你能求出a+b+c 的值吗?
4、已知⎩⎨
⎧==34y x 是关于x 、y 的二元一次方程组⎩⎨⎧=+-=++0201by x y ax 的解,求a+b 的值。

5、已知关于x 、y 的方程组⎩⎨
⎧=+=-852by ax y x 与⎩⎨⎧-=+=-4
321y x ay bx 有相同的解,求a 、b 的值。

6、某班同学参加学校运土劳动,一部分同学抬土,一部分同学挑土,已知全班共有箩筐59个,扁担36根(五闲置不用的工具),问:共有多少个同学抬土,多少个同学挑土。

7、“深池一芦苇,出头六分一,若水涨吴存,出头仅一分,水苇各几何?”意思是:深池中有一芦苇,露出水面的部分为原长的6
1,若水涨5寸,则露出水面的部分占1份,水下有11份,问水有多深?芦苇长多少?
作业
一.填空题
1、方程中含有_个未知数,并且__的次数是1,这样的方程是二元一次方程。

2、二元一次方程组的解题思想是______,方法有___,___法。

3、将方程10-2(3-y )=3(2-x )变形,用含x 的代数式表示y 是_____。

4、已知3x 2a+b -3-5y 3a -2b+2=-1是关于x 、y 的二元一次方程,则(a+b )b =___。

5、在公式s=v 0t+12
at 2中, 当t =1时,s=13,当t=2时,s=42,则t=5时,s=_____。

6、解方程组⎩
⎨⎧=-=+)2(1743)1(1232y x y x 时,可以__________将x 项的系数化相等,还可以____________将y 项的系 数化为互为相反数。

7、已知2x 3m-2n+2y m+n 与12
x 5y 4n+1是同类项,则m=_____,n=_____。

8、写出2x+3y=12的所有非负整数解为_______________________________。

9、已知3a-b 3 =2a+c 5 =2b+c 7
,则a ∶b ∶c=_______________。

10、已知⎩
⎨⎧==⎩⎨⎧==m y n x n y m x 和是方程2x -3y=1的解,则代数式2m-63n-5 的值为_____。

二.解答题
21、解下列方程组
1、用代入法解⎩
⎨⎧=-=-22534y x y x 2、用代入法解⎩
⎨⎧-=+-=-672953y x y x
3、用加减法解⎩
⎨⎧=-=+422822y x y x 4、用加减法解⎪⎩⎪⎨⎧=---=+43)1(3
)43(2023y x y x
5、⎪⎩
⎪⎨⎧=+=+=+598x z z y y x
6、⎪⎩
⎪⎨⎧=++=++=++6654564233832z y x z y x z y x
22、在解关于x 、y 方程组()()⎩
⎨⎧=+-=+-+211)5(18)23()1( my x n y n x m 可以用(1)×2+(2)消去未知数x ;也可以用(1)+(2)×5消去未知数y ;求m 、n 的值。

23、已知有理数x 、y 、z 满足│x -z -2│+│3x -6y -7│+(3y+3z -4)2=0,求证:x 3n y 3n -1z 3n+1-x=0
25、当a 为何整数值时,方程组⎩⎨⎧=-=+0
2162y x ay x 有正整数解。

26、已知关于x 、y 的二元一次方程(a -1)x+(a+2)y+5-2a=0……①
⑴、当a=1时,得方程②;当a=-2时,得方程③。

求②③组成的方程组的解。

⑵、将求得的解代入方程①的左边,得什么结果?由此可得什么结论?并验证你的结论。

相关文档
最新文档