【市级联考】江西省南昌市2019届高三第一次模拟考试数学(理)试题(解析版)

合集下载

江西省重点中学盟校2019届高三第一次联考数学理试题Word版含答案

江西省重点中学盟校2019届高三第一次联考数学理试题Word版含答案

江西省重点中学盟校2019届高三第一次联考数学理试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足33=-+iz iz ,i 是虚数单位,则=z ( ) A.i 31+ B.i 31- C.i 3 D.i 3-2.已知集合{}01|2=++=x x x A ,{}22|<≤-=x x B ,则()R A B =ð( )A.[]1,1-B.[)2,2-C.[)2,1-D.∅ 3.下列函数中,既是奇函数,又在定义域内为减函数的是( )A.1ln 1x y x -=+B.1y x x=+ C.1y x=D. cos y x x = 4.执行右边的程序框图,当2,n n N *≥∈ 时,()n f x 表示1()n f x -的 导函数,若输入函数1()sin cos f x x x =-,则输出的函数()n f x 可 化为( )4x π⎛⎫+⎪⎝⎭4x π⎛⎫-⎪⎝⎭C.4x π⎛⎫+⎪⎝⎭D. 4x π⎛⎫-⎪⎝⎭5.已知0k >,,x y 满足约束条件24(4)x x y y k x ≥⎧⎪+≤⎨⎪≥-⎩,若z x y =-的最大值为4,则k 的取值范围是( )A.(0,1)B.(0,1]C. (1,)+∞D. [1,)+∞6.设数列{}n a 是首项为1,公比为(1)q q ≠-的等比数列,若11n n a a +⎧⎫⎨⎬+⎩⎭是等差数列,则233420152016111111()()()a a a a a a ++++++=( ) A.4024 B.4026 C.4028 D.40307. 4位外省游客来江西旅游,若每人只能从庐山、井冈山、龙虎山中选择一处游览,则每个景点都有人去游览的概率为 A. 89 B. 916 C. 34 D. 498.某几何体的三视图如图所示,则该几何体的体积为( )A.16 B.13 C.23 D. 569.对于下列命题:①若命题:,p x R ∃∈使得tan x x <,命题2:,lg lg 10q x R x x +∀∈++>则命题“p 且q ⌝”是真命题;②若随机变量(,)B n p ξ,6,3,E D ξξ==则3(1)4P ξ==③“lg ,lg ,lg x y z 成等差数列”是“2y xz =”成立的充要条件;④已知ξ服从正态分布2(1,2)N ,且(11)0.3P ξ-≤<=,则(3)0.2P ξ≥=其中真命题的个数是( )A.1个B.2个C.3个D. 4个10.已知双曲线)0,0(12222>>=-b a by a x 的两条渐近线与抛物线22(0)y px p =>的准线分别交于点A 、B ,O 为坐标原点.若双曲线的离心率为2,三角形AOBp =( )A .1B .2C.2D.311.已知向量,,a b c 满足||||2a b a b ===,()(2)0a c b c --=,则||b c -的最小值为( )A.12B.237-C.23 D.2712.函数22()3,()2xf x x x ag x x =-+-=-,若[()]0f g x ≥对[0,1]x ∈恒成立,则实数a 的范围是( ) A.(,2]-∞ B.(,]e -∞ C.(,ln 2]-∞ D.1[0,)2二、填空题:本题共4个小题,每小题5分,共20分. 13.已知抛物线214y x =的焦点为F ,点(2,2)A ,点P 在抛物线上,则||||PA PF +的最小值为______14.已知45)21()1(x ax -+的展开式中2x 的系数为16-,则实数a 的值为B 115.已知(1)2n n n a +=,删除数列{}n a 中所有能被2整除的数,剩下 的数从小到大排成数列{}n b ,则21b =__________16.已知棱长为1的正方体有一个内切球(如图),E 为ABCD 的中心,1A E 与球相交于FE ,则EF 的长为_________三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分) 已知向量()2,sin -=θa,()θcos ,1=b互相垂直,其中)2,0(πθ∈;(1)求tan 2θ的值;(2)若()20,1010sin πϕϕθ<<=-,求ϕcos 的值.18.(本小题满分12分)心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20), 给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)(参考公式2()()()()()n ad bc K a b c d a c b d -=++++ 其中n a b c d =+++)(1)能否在犯错的概率不超过0.025的前提下认为视觉和空间能力与性别有关?(2)现从选择做几何题的10名女生中任意抽取3人对她们的答题情况进行全程研究,记甲、乙、丙三位女生被抽到的人数为X , 求X 的分布列及数学期望EX19.(本小题满分12分)在等腰梯形ABCD 中,//AD BC ,122AD BC ==, 60ABC ∠=,M 是BC 的中点,将梯形 ABCD 绕AB 旋转90,得到梯形11ABC D (如图)(1)求证:1BC AC ⊥(2)求二面角1D AM C --的余弦值20.(本小题满分12分)已知椭圆错误!未找到引用源。

2019届高三第一次模拟考试数学(理)试卷.docx

2019届高三第一次模拟考试数学(理)试卷.docx

第I 卷(选择题满分60分)一、选择题(本大题共12小题,每小题5分,共60分)1. 已知集合 A = |x|log 2(x+1)<1|,B = * xA ・(-1,0) B. (-oo,0) C.(0,1) D. (1,-Ko) 2. 下列函数中,既是偶函数,又在区间(0,+oo)单调递减的函数是()4. 设d>0且GH1,则“函数/(x)=/在/?上是减函数”是“函数g(x) =(2 — dX 在R 上 递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4 2 \_ 5. 已知a = 2§# = 46c = 25§,则( )A. c <a<bB. a <b <cC. b <a <cD. b <c < a6. 若实数满足2" =3,3〃 =2,则函数f{x) = a x +x-b 的零点所在的区间是()A. (-2,-1)B. (-1,0) C ・(0,1) D ・(1,2)7. 已知命题p : " 3x () e 7?,使得谕+2% + l<0成立”为真命题,则实数d 满足()A. [-1,1)B. (—00,—1)kJ(l,4-oo)C. (1,+ oo)D. (—oo,—1)8. 定义在上的奇函数/(x)满足/(x-4) = -/(x),且在区间[0,2]上递增,则()A. /(—25) < /(11) < /(80)B. /(80) < /(11) < /(—25)C. /(-25)</(80)</(11)D. /(11)</(80)</(-25)9. 己知函数y = f{x+1)是定义域为/?的偶函数,且/(x)在[l, + oo)上单调递减,则不等式 /(2x-l)>/(x + 2)的解集为()盯,则A B=()A. y = -x 3B. y = }n xC. y = cosxD. y = 2 一卜cin X3•函数的图象可能是()DA.[B. [1,3)C. <D.10.若曲线G =(无 >())与曲线C 2:y = e x 存在公共点,则Q 的取值范围是() ( 2 ' ( 2' 、 「A. 0,— < 8_ B. C. e ——,+ooD. e —,+oo _4丿 11. 函数 /(x ) = 2加彳一3凡/+10(加>()/>())有两个不同的零点,则 5(lg m )2 +9(lg/i )2 的最小值是()< 5 13 1A. 6B. —C. —D. l 9 9 12. 函数于(兀)是定义在(0,+oc )上的可导函数,导函数记为/(X ),当兀>0且兀Hl 时, 2/(兀)+ 〃(兀)>0,若曲线歹=于(切在x = l 处的切线斜率为-土,则/⑴二() x-1 52 3 4 A. — B. — C. — D. I 5 5 5第II 卷 (非选择题 满分90分)二、填空题(每小题5分,共20分)13. 任意幕函数都经过定点,则函数/'(兀)=卅+log “ (x-7?z )(6z >0且a 丰1)经过定 点 _____ •14. __________________________________________________ 函数/G ) = lnx-a 兀在[1, + oo )上递减,则a 的取值范围是 ___________________________ .— x — 2 r 〉0 '-的零点个数为 X 2+2X ,X <0+ r +116. __________________ 若函数/(兀)满足:V XG /?, /(x ) + /(-x ) = 2,则函数g (x ) = —j- + /(x )的最大 值与最小值的和为 • 三、解答题(本大题共6个小题,共70分) 17. (本小题满分10分)己知命题°:方程x 2^ax^ — = 0有两个不相等的负实数根;命题q :关于Q 的不等式 16丄〉1.如果“ p 或q”为真命题,“ p Hq ”为假命题,求实数°的取值范围. a18. (本小题满分12分)1-%2已知函数f(x)=—. 1 + X⑴判断/(兀)的奇偶性;(2) /令 + /(|) + + /(|) + /(0) + /(I) + /(2) + + /(9) + /(10)的值.19.(本小题满分12分)己知函数/(x) = 2V的定义域是[0,3],设g(x) = /(2x)-/(x + 2)・(1)求g(x)的解析式及定义域;(2)求函数g(x)的最大值和最小值.20.(本小题满分12分)已知函数/(x) = log, (x2— 2祇+ 3)・2(1)若函数/(X)的定义域为/?,值域为(-00,-1],求实数Q的值;⑵若函数/(兀)在(Y0,l]上为增函数,求实数d的取值范围.21.(本小题满分12分)已知函数f\x) = e x(ca-^b)-x2-4x,曲线y二f(x)在点(0,/(0))处的切线方程为y = 4x + 4.(1)的值;(2)讨论/(兀)的单调性,并求/(兀)的极大值.22.(本小题满分12分)已知a > 0,函数f(x) = ax2 -x9g(x) = lnx.(1)若a =-,求函数y = f(x)-2g(x)的极值.2(2)是否存在实数①使得f(x)>g(ax)成立?若存在求出a的取值集合,若不存在,说明理由.理科答案ADAAC BBCDD BA(2,1) a>\ 2 417. 0 v a S —或a 21 21&偶函数;119. g(x) = 22X - 2v+2,x G [0,1];最大值为-3,最小值为-4 20.a = ±1 ; 1 < a < 2(1)当a =—时,y = f(x)-2g(x) = — x 2 -x-21nx 2 2 (兀+1)(兀 - 2)当兀 G (0,2)1 寸,y < 0;当x e (2,+oo )0寸,y >0 .•・在兀=2处取得极小值几2) - 2g ⑵=-In 4 (2 冷/心)=2/(x ) 一 g{ax ) = 6rx 2 一兀一 In (a 兀),即力(尤)罰-0 /.^(x ) = 0有两个不等慚,兀2,(西<0<x 2), /.力(兀旌(0,兀2 )递减k X 2,+°°)递增,/. /z (x J=么才一无2 -ln (a 吃)> 0成立, /. x 2 — 1 代入2°牯—x 2 — 1 = 0得 a = 1 /. a G {1} 21 • Q = 4" = 4; (-OO ,-2),(in 丄 递增, -2,% 递减;极大值为4 - 4幺 •/ 2ax^ -x 2 -1 = 0/. k(x 2) < k(V) = 0。

26. 2019南昌一模理科数学

26. 2019南昌一模理科数学

10.已知平面向量a, b, a (2cos , 2sin ), b (cos ,sin )
若对任意的正实数, a b 的最小值为 3, 则此时 a b
( D )
A. 1
B. 2
C. 2
D. 3
B(C) A
O
设OA a (2cos , 2sin ), OB b (cos ,sin ),
3, 0, 0)
设n1 ( x, y, z)为平面EA1C1的法向量, 则
n1
A1C1
2
3x 0
33
, 取z 3, 则n1 (0, 4, 3)
n1
EA1
2
x y 2z 0 2
又因为n2 (0,1, 0)是平面A1C1C的法向量,
所以cos n1, n2
n1 n2 n1 n2
图象如下图所示, A(0, 3), C(2, 0), 并且AB / / x轴.
(1) 求和的值;
(1) f (0) 2sin 3, 又 | | ,所以 ,
2
3
所以f ( x) 2sin( x )
3
由f (2) 0, 得2sin(2 ) 0,
3
所以2 k , k Z ,
Q
M
P Q
P
A
O
B
A
O
B
M
12. 杨辉三角, 是二项式系数在三角形中的一种几何排列
在欧洲, 这个表叫做帕斯卡三角形, 帕斯卡(1623 1662)
是在1654年发现这一规律的. 我国南宋数学家杨辉在
1261年所著的《详解九章算法》一书中出现了如图所示
的表, 这是我国数学史上的一次伟大成就. 如图所示,
为( D )
A. 1

江西省重点中学盟校2019届高三第一次联考数学(理)试题(含答案)

江西省重点中学盟校2019届高三第一次联考数学(理)试题(含答案)

江西省重点中学盟校2019届高三第一次联考理科数学试卷第I 卷(选择题:共60分)一、选择题:(每小题5分,共60分.每小题所给出的四个选项只有一项是符合题意) 1.已知集合{1,2,3,4,5}A =,1{|0,}4x B x x Z x-=>∈-,则A B =I ( ) A .{2,3} B .{1,2,3,4} C .{1,2,3} D .{1,2,3,5}2.已知复数133iz i+=-,则z =( ) A 2B .2C .1D .123.已知定义在R 上的奇函数()f x 满足:当0x <时,()()2log 1f x x =-,则()()7f f =( )A .1-B .2-C .1D .24.设等差数列{}n a 的前n 项和为n S ,若136a a +=,10100S =,则5a =( )A .8B .9C .10D .115.已知条件:1p a =-,条件:q 直线10x ay -+=与直线210x a y +-=平行,则p 是q 的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 6.程序框图如下图所示,若上述程序运行的结果1320S =,则判断框中应填入( )A .12k ≤B . 11k ≤C . 10k ≤D . 9k ≤7.已知1,2a b ==r r ,且()a ab ⊥-r r r,则向量a r 在b r 方向上的投影为( )A .12B .2C .1D .228.把函数()2)6f x x π=-的图象上每个点的横坐标扩大到原来的2倍,再向左平移3π个单位,得到12,1k S ==S S k =⨯1k k =-输出S结束否是 开始函数()g x 的图象,则函数()g x 的一个单调递减区间为( ) A .[,2]ππ B .4[,]33ππC .[,]123ππ D .5[,]44ππ9.已知右图是一个几何体的三视图及有关数据如图所示, 则该几何体的棱的长度中,最大的是( ) A .23 B .2 C 5 D 310.以双曲线2222:1(0,0)x y C a b a b -=>>上一点M 为圆心 作圆,该圆与x 轴相切于C 的一个焦点F ,与y 轴交于,P Q两点,若233PQ c =,则双曲线C 的离心率是( ) A 3 B 5 C .2 D 211.今有6个人组成的旅游团,包括4个大人,2个小孩,去庐山旅游,准备同时乘缆车观光,现有三辆不同的缆车可供选择,每辆缆车最多可乘3人,为了安全起见,小孩乘缆车必须要大人陪同,则不同的乘车方式有( )种A .204B .288C .348D .39612.若曲线()(02)xf x ae ax x =-<<和()32(0)g x x x x =-+<上分别存在点,A B ,使得AOB ∆是以原点O 为直角顶点的直角三角形,AB 交y 轴于点C ,且12AC CB =uuu r uu r,则实数a 的取值范围是( )A .211,10(1)6(1)e e ⎛⎫⎪--⎝⎭ B .11,6(1)2e ⎛⎫ ⎪-⎝⎭ C .1,11e ⎛⎫⎪-⎝⎭ D .211,10(1)2e ⎛⎫ ⎪-⎝⎭第II 卷(非选择题:共90分)二、填空题(本大题共4小题,每题5分,共计20分。

江西省重点中学盟校2019届高三第一次联考理科数学试题Word版含答案

江西省重点中学盟校2019届高三第一次联考理科数学试题Word版含答案

江西省重点中学盟校2019届⾼三第⼀次联考理科数学试题Word版含答案绝密★启⽤前江西省重点中学盟校2019届⾼三第⼀次联考理科数学试题试卷分第Ⅰ卷(选择题)和第II 卷(⾮选择题)两部分,满分150分,时间120分钟第Ⅰ卷⼀、选择题:本⼤题12⼩题,每⼩题5分,共60分,在每⼩题四个选项中,只有⼀项符合题⽬要求。

1、已知复数,若复数Z 在复平⾯内对应的点在虚轴上,则实数a 的值为() A .2 B4 C .4 D2:2、已知全集为实数集R ,集合,集合,则实数m 的值为()A .2B 2C .1D 13、我国古代的数学⼤都源于⽣活,在程⼤位的《算法统宗》⼀书中有个“⽵筒盛⽶”问题:“家有九节⽵⼀茎,为因盛⽶不均平。

下头三节三升九,上梢四节贮三升。

惟有中间⼆节⽵,要将⽶数次第盛。

若是先⽣⽆算法,教君直算到天明。

” 其意思为:有⼀家⼈⽤⼀根9节长的⽵筒盛⽶,每节⽵筒盛⽶的容积是不均匀的,⾃上⽽下成等差数列,已知下端3节可盛⽶3.9升,上端4节可盛⽶3升,……;这个问题中,这根⽵筒⼀共可盛⽶多少升?() A .8.8 B .8.9C .9D .9.34、给出下列命题,其中真命题的个数有()①残差的平⽅和的值越⼩,变量之间的线性相关程度越⾼.②函数f(x)在[a,b]上连续,则f(a)·f(b)<0是⽅程f(x)=0在区间(a,b)上⾄少有⼀个解的充要条件;③某项测量结果ξ服从正态分布,则=0.19;④若数列{a n }是等⽐数列的充要条件为;A .1 B. 2 C. 3 D. 45、某⼏何体的三视图如图所⽰,图中的四边形都是边长为2的正⽅形,两条虚线所成的⾓为3,则该⼏何体的体积是()A.203 B C .163 6、已知偶函数f(x)的部分图象如图所⽰.向图中的矩形区域随机投出100个点,记下落⼊阴影区域的点数.通过10次这样的试验,算得落⼊阴影区域的点数平均数约为40个,由此可估计的值约为()A .65B .25C .45D .1237、过抛物线y 2=8x 的焦点作⼀条直线与抛物线相交于A,B 两点,它们到直线x=-3的距离之和等于10,则这样的直线()A .有且仅有⼀条B .有且仅有两条C .有⽆穷多条D .不存在 8、执⾏如图所⽰的程序框图,则输出的结果是()A .14 B. 15 C. 16 D.17 9、若实数x ,y 满⾜约束件次得到的点数分别为a,b ,则⽬标函数z=2ax-by+3在点(-2,-1)处取得最⼩值的概率为() A.56 B .56 C .14D .16 10、各项均为正数的等⽐数列{a n }满⾜a 2a 6 =64,a 3a 4=32,若函数的导函数为,则()A .10B .C .D .5511、如图,已知双曲线C: 的右顶点为A ,O 为坐标原点,以A 为圆⼼的圆与双曲线C 的某渐近线交于两点P ,Q ;若,且,则双曲线C 的离⼼率为( )C. 2D. 3 12、已知对任意x>1,f(x)=lnx+3xk+1-k ⼤于零恒成⽴,若k ∈z ,则k 的最⼤值为()A. 2B. 2C. 5D. 4第Ⅱ卷⼆、填空题:本⼤题共4⼩题,每⼩题5分,共20分 13、由3个5和4个3可以组成个不同的七位数。

江西省重点中学盟校2019届高三第一次联考数学(理)试卷(含答案)

江西省重点中学盟校2019届高三第一次联考数学(理)试卷(含答案)

江西省重点中学盟校2019届高三第一次联考理科数学试卷第I 卷(选择题:共60分)一、选择题:(每小题5分,共60分.每小题所给出的四个选项只有一项是符合题意) 1.已知集合{1,2,3,4,5}A =,1{|0,}4x B x x Z x-=>∈-,则A B =I ( ) A .{2,3} B .{1,2,3,4} C .{1,2,3} D .{1,2,3,5} 2.已知复数133iz i+=-,则z =( ) AB .2C .1D .123.已知定义在R 上的奇函数()f x 满足:当0x <时,()()2log 1f x x =-,则()()7f f =( )A .1-B .2-C .1D .24.设等差数列{}n a 的前n 项和为n S ,若136a a +=,10100S =,则5a =( )A .8B .9C .10D .115.已知条件:1p a =-,条件:q 直线10x ay -+=与直线210x a y +-=平行,则p 是q 的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 6.程序框图如下图所示,若上述程序运行的结果1320S =,则判断框中应填入( )A .12k ≤B . 11k ≤C . 10k ≤D . 9k ≤7.已知1,2a b ==r r ,且()a ab ⊥-r r r,则向量a r 在b r 方向上的投影为( )ABC .1 D8.把函数())6f x x π=-的图象上每个点的横坐标扩大到原来的2倍,再向左平移3π个单位,得到函数()g x 的图象,则函数()g x 的一个单调递减区间为( ) A .[,2]ππ B .4[,]33ππC .[,]123ππ D .5[,]44ππ9.已知右图是一个几何体的三视图及有关数据如图所示, 则该几何体的棱的长度中,最大的是( ) A. B. CD10.以双曲线2222:1(0,0)x y C a b a b-=>>上一点M 为圆心 作圆,该圆与x 轴相切于C 的一个焦点F ,与y轴交于,P Q两点,若PQ =,则双曲线C 的离心率是( )ABC .2 D11.今有6个人组成的旅游团,包括4个大人,2个小孩,去庐山旅游,准备同时乘缆车观光,现有三辆不同的缆车可供选择,每辆缆车最多可乘3人,为了安全起见,小孩乘缆车必须要大人陪同,则不同的乘车方式有( )种A .204B .288C .348D .39612.若曲线()(02)xf x ae ax x =-<<和()32(0)g x x x x =-+<上分别存在点,A B ,使得AOB ∆是以原点O 为直角顶点的直角三角形,AB 交y 轴于点C ,且12AC CB =uuu r uu r,则实数a 的取值范围是( ) A .211,10(1)6(1)e e ⎛⎫⎪--⎝⎭ B .11,6(1)2e ⎛⎫ ⎪-⎝⎭ C .1,11e ⎛⎫⎪-⎝⎭ D .211,10(1)2e ⎛⎫ ⎪-⎝⎭正视图左视图俯视图2第II 卷(非选择题:共90分)二、填空题(本大题共4小题,每题5分,共计20分。

2019年南昌市高三数学上期中第一次模拟试题带答案

2019年南昌市高三数学上期中第一次模拟试题带答案

2019年南昌市高三数学上期中第一次模拟试题带答案一、选择题1.数列{}n a 的前n 项和为21n S n n =++,()()1N*n n n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1002.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) ABCD.3-3.已知实数x ,y 满足521802030x y x y x y +-≤⎧⎪-≥⎨⎪+-≥⎩,若直线10kx y -+=经过该可行域,则实数k的最大值是( ) A .1B .32C .2D .34.已知等比数列{}n a 中,11a =,356a a +=,则57a a +=( ) A .12B .10C.D.5.当()1,2x ∈时,不等式220x mx ++≥恒成立,则m 的取值范围是( ) A .()3,-+∞ B.()-+∞C .[)3,-+∞D.)⎡-+∞⎣6.若ln 2ln 3ln 5,,235a b c ===,则 A .a b c << B .c a b << C .c b a <<D .b a c <<7.已知ABC ∆的三边长是三个连续的自然数,且最大的内角是最小内角的2倍,则最小角的余弦值为( ) A .34B .56C .78D .238.已知正数x 、y 满足1x y +=,则141x y++的最小值为( )A .2B .92C .143D .59.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A +=)222S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒10.已知等比数列{}n a 的前n 项和为n S ,11a =,且满足21,,n n n S S S ++成等差数列,则3a 等于( ) A .12B .12-C .14D .14-11.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-12.已知正项数列{}n a 中,*12(1)()2n n n a a a n N ++++=∈L ,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.已知对满足4454x y xy ++=的任意正实数x ,y ,都有22210x xy y ax ay ++--+≥,则实数a 的取值范围为______.14.已知数列{}n a 的前n 项和为n S ,且221n S n n n N *=++∈,,求n a =.__________.15.设是定义在上恒不为零的函数,对任意,都有,若,,,则数列的前项和的取值范围是__________.16.已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是__________. 17.若原点和点(1,2019)-在直线0x y a -+=的同侧,则a 的取值范围是________(用集合表示).18.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知,,a b c 成等比数列,且22a c ac bc -=-,则sin cb B的值为________. 19.设0x >,0y >,4x y +=,则14x y+的最小值为______. 20.在锐角ΔABC 中,内角,,A B C 的对边分别为,,a b c ,已知24,sin 4sin 6sin sin a b a A b B a B C +=+=,则ABC n 的面积取最小值时有2c =__________.三、解答题21.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且asin B =-bsin 3A π⎛⎫+ ⎪⎝⎭. (1)求A ;(2)若△ABC 的面积S2,求sin C 的值. 22.设数列{}n a 满足113,23nn n a a a +=-=⋅.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若n n b na =,求数列{}n b 的前n 项和n S .23.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .24.已知{a n }是等差数列,{b n }是各项均为正数的等比数列,且b 1=a 1=1,b 3=a 4,b 1+b 2+b 3=a 3+a 4.(1)求数列{a n },{b n }的通项公式; (2)设c n =a n b n ,求数列{c n }的前n 项和T n .25.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式;(2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 26.设函数2()1f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[1,3]x ∈,()0f x <恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:当1n =时,113a S ==;当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦,把1n =代入上式可得123a =≠.综上可得3,1{2,2n n a n n ==≥.所以3,1{2,12,n n b n n n n n -==-≠为奇数且为偶数.数列{}n b 的前50项和为()()503235749224650S =--+++++++++L L ()()24349252503224922++=--⋅+⋅=.故A 正确.考点:1求数列的通项公式;2数列求和问题.2.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a ),即4a +13a ≤故1212a x x x x ++的最大值为. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.3.B解析:B 【解析】 【分析】先根据约束条件画出可行域,再利用直线20kx y -+=过定点()0,1,再利用k 的几何意义,只需求出直线10kx y -+=过点()2,4B 时,k 值即可. 【详解】直线20kx y -+=过定点()0,1, 作可行域如图所示,,由5218020x y x y +-=⎧⎨-=⎩,得()2,4B .当定点()0,1和B 点连接时,斜率最大,此时413202k -==-, 则k 的最大值为:32故选:B . 【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.4.A解析:A 【解析】由已知24356a a q q +=+=,∴22q =,∴25735()2612a a q a a +=+=⨯=,故选A.5.D解析:D 【解析】由()1,2x ∈时,220x mx ++≥恒成立得2m x x ⎛⎫≥-+⎪⎝⎭对任意()1,2x ∈恒成立,即max 2,m x x ⎡⎤⎛⎫≥-+ ⎪⎢⎥⎝⎭⎣⎦Q 当2x 时,2x x ⎛⎫-+ ⎪⎝⎭取得最大值22,22m -∴≥-,m 的取值范围是)22,⎡-+∞⎣,故选D.【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).解析:B 【解析】 试题分析:因为ln 2ln 3ln8ln 9ln 2ln 30,23623--=<<,ln 2ln 5ln 32ln 25ln 2ln 50,251025--=>>,故选B. 考点:比较大小.7.A解析:A 【解析】 【分析】设三角形的三边分别为,1,2(*)n n n n N ++∈,根据余弦定理求出最小角的余弦值,然后再由正弦定理求得最小角的余弦值,进而得到n 的值,于是可得最小角的余弦值. 【详解】由题意,设ABC ∆的三边长分别为,1,2(*)n n n n N ++∈,对应的三角分别为,,A B C , 由正弦定理得222sin sin sin 22sin cos n n n n A C A A A+++===, 所以2cos 2n A n+=. 又根据余弦定理的推论得222(2)(1)5cos 2(2)(1)2(2)n n n n A n n n +++-+==+++.所以2522(2)n n n n ++=+,解得4n =, 所以453cos 2(42)4A +==+,即最小角的余弦值为34. 故选A . 【点睛】解答本题的关键是求出三角形的三边,其中运用“算两次”的方法得到关于边长的方程,使得问题得以求解,考查正余弦定理的应用及变形、计算能力,属于基础题.8.B解析:B 【解析】 【分析】由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与141x y++相乘,利用基本不等式可141x y++的最小值. 【详解】1x y +=Q ,所以,(1)2x y ++=,则1414412()[(1)]()559111x y x y x y x y y x ++=+++=++=+++…, 所以,14912x y ++…, 当且仅当4111x y y x x y +⎧=⎪+⎨⎪+=⎩,即当2313x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,因此,141x y ++的最小值为92, 故选B . 【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.9.D解析:D 【解析】 【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)222S b a c =+-,得1sin 2cos 2ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =. 故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.10.C解析:C 【解析】试题分析:由21,,n n n S S S ++成等差数列可得,212n n n n S S S S +++-=-,即122n n n a a a ++++=-,也就是2112n n a a ++=-,所以等比数列{}n a 的公比12q =-,从而2231111()24a a q ==⨯-=,故选C.考点:1.等差数列的定义;2.等比数列的通项公式及其前n 项和.11.A解析:A 【解析】 【分析】将代数式21x y+与2x y +相乘,展开式利用基本不等式求出2x y +的最小值8,将问题转化为解不等式()2min 72m m x y +<+,解出即可.【详解】由基本不等式得()21422448y x x y x y x y x y ⎛⎫+=++=++≥=⎪⎝⎭,当且仅当()4,0y xx y x y=>,即当2x y =时,等号成立,所以,2x y +的最小值为8. 由题意可得()2min 728m m x y +<+=,即2780m m +-<,解得81m -<<.因此,实数m 的取值范围是(8,1)-,故选A. 【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.12.B解析:B 【解析】 【分析】()()1122n n n n +-=-的表达式,可得出数列{}n a 的通项公式. 【详解】(1)(1),(2)22n n n n n n +-=-=≥ 1= ,所以2,(1),n n n a n =≥= ,选B.【点睛】给出n S 与n a 的递推关系求n a ,常用思路是:一是利用1,2n n n a S S n -=-≥转化为n a 的递推关系,再求其通项公式;二是转化为n S 的递推关系,先求出n S 与n 之间的关系,再求n a . 应用关系式11,1{,2n n n S n a S S n -==-≥时,一定要注意分1,2n n =≥两种情况,在求出结果后,看看这两种情况能否整合在一起.二、填空题13.(﹣∞【解析】【分析】由正实数xy 满足可求得x+y≥5由x2+2xy+y2﹣ax ﹣ay+1≥0恒成立可求得a≤x+y+恒成立利用对勾函数的性质即可求得实数a 的取值范围【详解】因为正实数xy 满足而4x解析:(﹣∞,265] 【解析】 【分析】由正实数x ,y 满足4454x y xy ++=,可求得x +y≥5,由x 2+2xy+y 2﹣ax ﹣ay+1≥0恒成立可求得a ≤x+y+1x y+恒成立,利用对勾函数的性质即可求得实数a 的取值范围.【详解】因为正实数x ,y 满足4454x y xy ++=,而4xy ≤(x+y )2,代入原式得(x +y )2﹣4(x+y )﹣5≥0,解得x +y≥5或x +y≤﹣1(舍去), 由x 2+2xy+y 2﹣ax ﹣ay+1≥0可得a (x +y )≤(x+y )2+1, 即a ≤x+y+1x y+,令t=x +y ∈[5,+∞), 则问题转化为a ≤t+1t,因为函数y=t +1t在[5,+∞)递增, 所以y min =5+15=265, 所以a ≤265, 故答案为(﹣∞,265] 【点睛】本题考查基本不等式,考查对勾函数的单调性质,求得x +y≥5是关键,考查综合分析与运算的能力,属于中档题.14.【解析】分析:根据可以求出通项公式;判断与是否相等从而确定的表达式详解:根据递推公式可得由通项公式与求和公式的关系可得代入化简得经检验当时所以所以点睛:本题考查了利用递推公式求通项公式的方法关键是最解析:4,141,2n n a n n =⎧=⎨-≥⎩.【解析】分析:根据1n n n a S S -=-可以求出通项公式n a ;判断1S 与1a 是否相等,从而确定n a 的表达式。

2019南昌一模含答案 江西省南昌市2019届高三第一次模拟考试理科综合试题含答案

2019南昌一模含答案  江西省南昌市2019届高三第一次模拟考试理科综合试题含答案

理科综合参考答案及评分标准一—二、选择题生物 化学 物理三、非选择题(一)必做题22. (1)错误!未找到引用源。

(2分)(2)μ=tan θ(1分) 错误!未找到引用源。

(1分) (3)错误!未找到引用源。

(2分)23.(1)错误!未找到引用源。

(3分)(2)错误!未找到引用源。

(3分) (3)错误!未找到引用源。

错误!未找到引用源。

错误!未找到引用源。

(3分)24.解:(1)框架开始运动时,有错误!未找到引用源。

3分其中 错误!未找到引用源。

1分错误!未找到引用源。

1分解得 错误!未找到引用源。

1分 (2)设导体棒速度为v ,则错误!未找到引用源。

1分错误!未找到引用源。

1分解得 v =2.8m/s 1分导体沿斜面上升过程中,有错误!未找到引用源。

2分且 错误!未找到引用源。

1分故 错误!未找到引用源。

2分25. 解:(1)设铁块质量为m,木板质量为M,铁块碰撞墙壁后,有错误!未找到引用源。

1分其中错误!未找到引用源。

1分错误!未找到引用源。

1分解得错误!未找到引用源。

1分(2)设木板长为l0,木板碰撞墙壁后速度大小为v1=4m/s,则错误!未找到引用源。

2分解得l0 = 14m 2分(3)铁块与木板第一次摩擦过程中,速度最终变为v2=1m/s,则错误!未找到引用源。

1分得M=3m 1分木板加速离墙壁的加速度为错误!未找到引用源。

当长木板离墙壁x1时,两物体相对静止错误!未找到引用源。

1分此时铁块离墙壁的距离为错误!未找到引用源。

1分当它们一起以1m/s向左运动x0=1.5m时,木板与P碰撞,设木板碰后速度为v3,则错误!未找到引用源。

1分错误!未找到引用源。

1分解得错误!未找到引用源。

1分接着铁块与木板相互摩擦,设最终速度为v4,则错误!未找到引用源。

解得v4 = 0 1分铁块继续向左的位移x3为错误!未找到引用源。

1分铁块最终离墙壁的距离为错误!未找到引用源。

1分26.(15分)(1)分液漏斗(1分)2MnO4- + 16Cl- + 8H+ = 2Mn2+ + 5Cl2↑+ 8H2O (2分)(2)(2分)把反应物生成物冷凝回流,提高转化率(2分)(3)水(1分)PCl3 + Cl2 + H2O△POCl3+2HCl(2分)(4)PCl3、POCl3都发生水解(2分)(5)D-C-B(2分)浓硫酸(1分)27.(14分)(1)Fe3O4 (2分) 2 mol(2分)(2)< (1分)0.5 (2分)增大压强或增大H2(g)浓度(1分)> (2分)(3)NH3·H2O(aq)+ CO2(g)错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

NCS20190607项目第一次模拟测试卷理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则( )A. B. C. D.【答案】B【解析】【分析】解一元二次不等式简化集合M,再由对数的运算性质求出N,再由交集的运算求出(∁R M)∩N.【详解】∵x2﹣4>0,∴x<﹣2或x>2,∴M=(﹣∞,﹣2)∪(2,+∞),∵log2x<1,∴0<x<2,∴N=(0,2),∴∁R M=[﹣2,2],∴(∁R M)∩N=(0,2).故选:B.【点睛】本题考查交、并、补集的混合运算,以及一元二次不等式的解法、对数的运算性质,属于基础题.2.已知复数的实部等于虚部,则( )A. B. C. -1 D. 1【答案】C【解析】【分析】直接利用复数代数形式的乘除运算化简,再结合已知条件即可求出a的值.【详解】∵z的实部等于虚部,∴,即a=﹣1.故选:C.【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知抛物线方程为,则其准线方程为( )A. B. C. D.【答案】C【解析】【分析】利用抛物线方程直接求解准线方程即可.【详解】抛物线x2=-2y的准线方程为:y,故选:C.【点睛】本题考查抛物线的简单性质的应用,熟记抛物线的简单几何性质是关键,是基本知识的考查.4.已知为等差数列,若,,则( )A. 1B. 2C. 3D. 6【答案】B【解析】【分析】利用等差数列的通项公式列出方程组,求出首项和公差,由此能求出.【详解】∵{a n}为等差数列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+12=2.故选:B.【点睛】本题考查等差数列通项公式求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.5.如图所示算法框图,当输入的为1时,输出的结果为( )A. 3B. 4C. 5D. 6【答案】C【解析】【分析】根据程序框图,利用模拟验算法进行求解即可.【详解】当x=1时,x>1不成立,则y=x+1=1+1=2,i=0+1=1,y<20不成立,x=2,x>1成立,y=2x=4,i=1+1=2,y<20成立,x=4,x>1成立,y=2x=8,i=2+1=3,y<20成立,x=8,x>1成立,y=2x=16,i=3+1=4,y<20成立x=16,x>1成立,y=2x=32,i=4+1=5,y<20不成立,输出i=5,故选:C.【点睛】本题主要考查程序框图的识别和判断,利用模拟运算法是解决本题的关键.6.一个几何体的三视图如图所示,则该几何体的体积为( )A. B. C. D.【答案】D【解析】【分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积即可.【详解】由三视图可知该几何体是由一个正三棱柱(其高为6,底面三角形的底边长为4,高为)截去一个同底面的三棱锥(其高为3)所得,则该几何体的体积为;故选:D.【点睛】本题考查简单几何体的形状与三视图的对应关系,几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.7.2021年广东新高考将实行模式,即语文数学英语必选,物理历史二选一,政治地理化学生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则他们选课相同的概率( )A. B. C. D.【答案】D【解析】【分析】基本事件总数n6,他们选课相同包含的基本事件m=1,由此能求出他们选课相同的概率.【详解】今年高一的小明与小芳都准备选历史,假若他们都对后面四科没有偏好,则基本事件总数n6,他们选课相同包含的基本事件m=1,∴他们选课相同的概率p.故选:D.【点睛】本题考查古典概型,准确计算基本事件总数和选课相同包含的基本事件数是关键,是基础题.8.已知,,:“”,:“”,若是的必要不充分条件,则实数的取值范围是( )A. B. C. D.【答案】A【解析】【分析】先作出不等式:“|x|1”,“x2+y2≤r2”表示的平面区域,再结合题意观察平面区域的位置关系即可得解【详解】“|x|1”,表示的平面区域如图所示:平行四边形ABCD及其内部,“x2+y2≤r2”,表示圆及其内部由p是q的必要不充分条件,则圆心O(0,0)到直线AD:2x+y﹣2=0的距离等于,则0,故选:A.【点睛】本题考查不等式表示的平面区域及图象之间的位置关系,熟练运用直线与圆的位置关系是关键,属中档题.9.已知在上连续可导,为其导函数,且,则( )A. B. C. 0 D.【答案】C【解析】【分析】根据条件判断函数f(x)和f′(x)的奇偶性,利用奇偶性的性质进行求解即可.【详解】函数f(﹣x)=e﹣x+e x﹣f'(1)(﹣x)•(e﹣x﹣e x)=f(x),即函数f(x)是偶函数,两边对x求导数得﹣f′(﹣x)=f′(x).即f′(﹣x)=﹣f′(x),则f′(x)是R上的奇函数,则f′(0)=0,f′(﹣2)=﹣f′(2),即f′(2)+f′(﹣2)=0,则f'(2)+f'(﹣2)﹣f'(0)f'(1)=0,故选:C.【点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题. 10.已知平面向量,,,,若对任意的实数,的最小值为,则此时( )A. 1B. 2C.D. 或【答案】D【解析】【分析】由题知,终点分别在圆上,画出图形,由最小值,确定,的夹角,再利用模长公式求解即可.【详解】由题知,终点分别在以2和1为半径的圆上运动,设的终点坐标为A(2,0),的终点为单位圆上的点B,最小时的终点有可能为如图上B、C两点处,即过A做单位圆切线切点为B时,此时AB=,此时,的夹角为,因此=,延长BO交单位圆于C,此时,的夹角为,因此,故选:D【点睛】本题考查向量的模,向量的几何意义,数形结合思想,准确确定取最小值时,的夹角是关键,是中档题.11.已知,,为圆上的动点,,过点作与垂直的直线交直线于点,则的横坐标范围是( )A. B. C. D.【答案】A【解析】【分析】设P(),则Q(2,),当≠0时,求出两直线方程,解交点的横坐标为,利用|x0|范围,得|x|范围,当=0时,求得|x|=1即可求解.【详解】设P(),则Q(2,2),当≠0时,k AP,k PM,直线PM:y﹣(x﹣),①直线QB:y﹣0(x),②联立①②消去y得x,∴,由||<1得x2>1,得|x|>1,当=0时,易求得|x|=1,故选:A.【点睛】本题考查了直线与圆的位置关系,两直线交点问题,准确计算交点坐标是关键,属中档题.12.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列,则此数列前135项的和为( )A. B. C. D.【答案】A【解析】【分析】利用n次二项式系数对应杨辉三角形的第n+1行,然后令x=1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.【详解】n次二项式系数对应杨辉三角形的第n+1行,例如(x+1)2=x2+2x+1,系数分别为1,2,1,对应杨辉三角形的第3行,令x=1,就可以求出该行的系数之和,第1行为20,第2行为21,第3行为22,以此类推即每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n项和为S n2n﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成一个首项为1,公差为1的等差数列,则T n,可得当n=15,在加上第16行的前15项时,所有项的个数和为135,由于最右侧为2,3,4,5,……,为首项是2公差为1的等差数列,则第16行的第16项为17,则杨辉三角形的前18项的和为S18=218﹣1,则此数列前135项的和为S18﹣35﹣17=218﹣53,故选:A.【点睛】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数,则的值为__________.【答案】【解析】【分析】利用函数的性质得f (5)=f(2)=f(﹣1),由此能求出f(5)的值.【详解】∵函数,∴f (5)=f(2)=f(﹣1)=(﹣1)2﹣2﹣1.故答案为:.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.14.侧面为等腰直角三角形的正三棱锥的侧棱与底面所成角的正弦值为__________.【答案】【解析】【分析】作出符合题意的图形P﹣ABC,取底面中心O,利用直角三角形POC容易得解.【详解】如图,正三棱锥P﹣ABC中,O为底面中心,不妨设PC=1,∵侧面为等腰直角三角形,∴BC,∴OC,∴OP,∴sin∠PCO,故答案为:.【点睛】此题考查了直线线与平面所成角,熟练运用线面关系找到所求角,准确计算是关键,是基础题.15.已知锐角满足方程,则__________.【答案】【解析】【分析】化简已知等式,利用同角三角函数基本关系式可求3sin2A+8sinA﹣3=0,解得sinA的值,利用二倍角的余弦函数公式即可计算得解.【详解】∵锐角A满足方程3cosA﹣8tanA=0,可得:3cos2A=8sinA,∵cos2A+sin2A=1,∴3sin2A+8sinA﹣3=0,解得:sinA,或﹣3(舍去),∴cos2A=1﹣2sin2A=1﹣2.故答案为:.【点睛】本题考查同角三角函数基本关系式的应用,二倍角公式,一元二次方程的解法,熟记三角函数基本公式,准确计算是关键,属于基础题.16.定义在封闭的平面区域内任意两点的距离的最大值称为平面区域的“直径”.已知锐角三角形的三个顶点在半径为1的圆上,且,分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域,则平面区域的“直径”的最大值是__________.【答案】【解析】【分析】画出几何图形,运用边的关系转化为求周长的最值,结合正余弦定理及基本不等式求解即可.【详解】设三个半圆圆心分别为G,F,E,半径分别为M,P,N分别为半圆上的动点,则PM≤+GF=+=,当且仅当M,G,F,P共线时取等;同理:PN ≤MN≤,又外接圆半径为1,,所以,∴BC=a=2sin=,由余弦定理解b+c≤2,当且仅当b=c=取等;故故答案为【点睛】本题考查正余弦定理,基本不等式,善于运用数形结合思想运用几何关系转化问题是关键,是难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分17.函数(,)的部分图像如下图所示,,,并且轴.(1)求和的值;(2)求的值.【答案】(1);(2).【解析】【分析】(1)根据函数过A,C两点,代入进行求解即可.(2)根据条件求出B的坐标,利用向量法进行求解即可.【详解】(1)由已知,又,所以,所以(3分)由,即,所以,,解得,,而,所以.(2)由(Ⅰ)知,,令,得或,k∈Z,所以x=6k或x=6k+1,由图可知,.所以,所以,所以.【点睛】本题主要考查三角函数解析式的求解,以及三角函数余弦值的计算,利用向量法以及待定系数法是解决本题的关键.18.如图,四棱台中,底面是菱形,底面,且,,是棱的中点.(1)求证:;(2)求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】(1)推导出⊥BD.BD⊥AC.从而BD⊥平面AC,由此能证明.(2)如图,设AC交BD于点O,以O为原点,OA、OB、OA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.利用向量法能求出二面角E﹣﹣C的余弦值.【详解】证明:(1)因为⊥底面ABCD,所以⊥BD.因为底面ABCD是菱形,所以BD⊥AC.又AC∩CC1=C,所以BD⊥平面A.又由四棱台ABCD﹣知,,A,C,四点共面.所以BD⊥.(2)如图,设AC交BD于点O,依题意,∥OC且=OC,所以O∥C,且O=C.所以O⊥底面ABCD.以O为原点,OA、OB、OA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.则,由,得B1().因为E是棱BB1的中点,所以E(),所以(),(﹣2,0,0).设(x,y,z)为平面的法向量,则,取z=3,得(0,4,3),平面的法向量(0,1,0),又由图可知,二面角E﹣A1C1﹣C为锐二面角,设二面角E﹣A1C1﹣C的平面角为θ,则cosθ,所以二面角E﹣A1C1﹣C的余弦值为.【点睛】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.19.市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,型20瓦和型55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75元/千瓦时,假定该店面正常营业一年的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯更换.(用频率估计概率)(1)若该商家新店面全部安装了型节能灯,求一年内恰好更换了2支灯的概率;(2)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.【答案】(1);(2)应选择A型节能灯.【解析】【分析】(1)由频率分布直方图可知用频率估计概率,得m型节能灯使用寿命超过3600小时的概率为,从而一年内一支B型节能灯在使用期间需更换的概率为,由此能求出一年内5支恰好更换了2支灯的概率.(2)共需要安装5支同种灯管,选择A型节能灯,一年共需花费5×120+3600×5×20×0.75×10﹣3=870元;选择B型节能灯,由于B型节能灯一年内需更换服从二项分布,一年共需花费元,由此能求出该商家应选择A型节能灯.【详解】(1)由频率分布直方图可知,B型节能灯使用寿命超过3600小时的频率为0.2,用频率估计概率,得B型节能灯使用寿命超过3600小时的概率为.所以一年内一支B型节能灯在使用期间需更换的概率为,.所以一年内支恰好更换了支灯的概率为..(2)共需要安装支同种灯管,若选择A型节能灯,一年共需花费元;若选择B型节能灯,由于B型节能灯一年内需更换服从二项分布,故一年需更换灯的支数的期望为支,故一年共需花费元.因为,所以该商家应选择A型节能灯.【点睛】本题考查概率的求法,考查频率分布直方图、二项分布等基础知识,考查运算求解能力,熟记频率分布直方图性质,准确计算是关键,是中档题.20.如图,椭圆:与圆:相切,并且椭圆上动点与圆上动点间距离最大值为.(1)求椭圆的方程;(2)过点作两条互相垂直的直线,,与交于两点,与圆的另一交点为,求面积的最大值,并求取得最大值时直线的方程.【答案】(1);(2)面积的最大值为,此时直线的方程为.【解析】【分析】(1)由题意可得b=1,a﹣1,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),根据l2⊥l1,可设直线l1,l2的方程,分别与椭圆、圆的方程联立即可得可得出|AB|、|MN|,即可得到三角形ABC的面积,利用基本不等式的性质即可得出其最大值.【详解】(1)椭圆E与圆O:x2+y2=1相切,知b2=1;又椭圆E上动点与圆O上动点间距离最大值为,即椭圆中心O到椭圆最远距离为,得椭圆长半轴长,即;所以椭圆E的方程:(2)①当l1与x轴重合时,l2与圆相切,不合题意.②当l1⊥x轴时,M(﹣1,0),l1:x=1,,此时.…(6分)③当l1的斜率存在且不为0时,设l1:x=my+1,m≠0,则,设A(x1,y1),B(x2,y2),由得,(2m2+3)y2+4my﹣1=0,所以,所以.由得,,解得,所以,所以,因为,所以,当且仅当时取等号.所以()综上,△ABM面积的最大值为,此时直线l1的方程为.【点睛】本题主要考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和计算能力及分析问题和解决问题的能力21.已知函数(为自然对数的底数,为常数,并且).(1)判断函数在区间内是否存在极值点,并说明理由;(2)若当时,恒成立,求整数的最小值.【答案】(1)无极值点;(2)0.【解析】【分析】(1)由题意结合导函数的符号考查函数是否存在极值点即可;(2)由题意结合导函数研究函数的单调性,据此讨论实数k的最小值即可.【详解】(1),令,则f'(x)=e x g(x),恒成立,所以g(x)在(1,e)上单调递减,所以g(x)<g(1)=a﹣1≤0,所以f'(x)=0在(1,e)内无解.所以函数f(x)在区间(1,e)内无极值点.(2)当a=ln2时,f(x)=e x(﹣x+lnx+ln2),定义域为(0,+∞),,令,由(Ⅰ)知,h(x)在(0,+∞)上单调递减,又,h(1)=ln2﹣1<0,所以存在,使得h(x1)=0,且当x∈(0,x1)时,h(x)>0,即f'(x)>0,当x∈(x1,+∞)时,h(x)<0,即f'(x)<0.所以f(x)在(0,x1)上单调递增,在(x1,+∞)上单调递减,所以.由h(x1)=0得,即,所以,令,则恒成立,所以r(x)在上单调递增,所以,所以f(x)max<0,又因为,所以﹣1<f(x)max<0,所以若f(x)<k(k∈Z)恒成立,则k的最小值为0.【点睛】本题主要考查导数研究函数的极值,导数研究函数的单调性,导数的综合运用等知识,属于中等题.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22.在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)设点,直线与曲线相交于点,求的值.【答案】(1);(2)4.【解析】【分析】(1)直接利用参数方程直角坐标方程和极坐标方程之间的转换求出结果.(2)利用直线的参数方程的转换,利用一元二次方程根和系数关系的应用求出结果.【详解】(1)由参数方程,得普通方程,所以极坐标方程.(2)设点对应的参数分别为,将代入得得所以,直线l(t为参数)可化为,所以.【点睛】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.已知函数.(1)求证:;(2)若不等式恒成立,求实数的取值范围.【答案】(1)详见解析;(2).【解析】【分析】(1)由绝对值不等式性质得即可证明;(2)由去绝对值求解不等式即可.【详解】(1)因为,所以.,即(2)由已知,①当m≥-时,等价于,即,解得所以②当m<-时,等价于,,解得-3≤m≤5,所以-3≤m<综上,实数的取值范围是.【点睛】本题考查绝对值不等式解法,不等式恒成立问题,熟练运用零点分段取绝对值,准确计算是关键,是中档题.。

相关文档
最新文档