2018年中考数学复习-数与式第课时代数式与整式精练试题

合集下载

【精品】全国各地2018年中考数学真题汇编 整式(31题)【含答案】

【精品】全国各地2018年中考数学真题汇编 整式(31题)【含答案】

2018年中考数学真题汇编:整式(31题)一、选择题1. (2018四川内江)下列计算正确的是()A. B.C. D.【答案】D2.(2018广东深圳)下列运算正确的是( )A. B.C. D.【答案】B3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③.④ .其中做对的一道题的序号是()A. ①B.② C. ③D. ④【答案】C4.下列运算正确的是()A. B.C. D.【答案】A5.下列运算正确的是()。

A. B.C.D.【答案】C6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B . 2 C.3 D.4【答案】B7.下列运算正确的是()A. B.C. D.【答案】C8.计算的结果是()A. B.C.D.【答案】B9.下列运算正确的是()A. B.C. D.【答案】C10.计算的结果是()A. B.C.D.【答案】C11.下列计算正确的是()A. B. C.D.【答案】D12.下列计算结果等于的是()A. B.C.D.【答案】D13.下列运算正确的是()A.B.C.D.【答案】C14.下列运算正确的是()A. B.C. D.【答案】D15.下列计算正确的是()。

A.(x+y)2=x2+y2B.(-xy2)3=-x3y6C.x6÷x3=x2D.=2【答案】D16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。

其中做对的一道题的序号是()A. ①B.② C. ③D. ④【答案】C17.下列计算正确的是()A.a3+a3=2a3B.a3·a2=a6C.a6÷a2=a3D.(a3)2=a5【答案】A18.计算结果正确的是()A. B.C.D.【答案】B19.下列计算正确的是( )A. B. C.D.【答案】C20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()A.2aB.2bC.2a-2bD.-2b【答案】B二、填空题(共6题;共6分)21.计算:________.【答案】-4x722.计算的结果等于________.【答案】23.已知x,y满足方程组,则x2-4y2的值为________。

中考复习数与式第二节 代数式与整式

中考复习数与式第二节 代数式与整式

3-1 (2017河南名师预测(五))求代数式(x-y)·(x+y)+(x+y)2-2x2的值,其中x,y互 为倒数. 解析 原式=x2-y2+x2+2xy+y2-2x2=2xy. ∵x,y互为倒数,∴xy=1,∴原式=2×1=2.
3-2 (2018信阳一模)化简并求值:(m+1)2+(m+1)(m-1),其中m是方程x2+x-1=0 的一个根. 解析 原式=m2+2m+1+m2-1=2m2+2m, ∵m是方程x2+x-1=0的一个根, ∴m2+m-1=0,即m2+m=1, ∴原式=2(m2+m)=2.
名师点拨 提公因式法的关键是确定公因式.
系数 : 取各项系数的最大公约数.
公因式的确定字母 : 取各项相同的字母.
指数 : 取各相同字母的最低次幂.
它们的积即为这个多项式的公因式. (2)公式法: a2-b2=(a+b)(a-b);a2±2ab+b2= (a±b)2 .
3.分解因式的一般步骤 分解因式时,首先考虑是否有公因式,如果有公因式,那么 先提公因式 , 然后考虑 公式法 (当多项式为两项时,考虑用平方差公式;当多项式为 三项时,考虑用完全平方公式).分解因式要分解到每个因式 不能再分解 为止.以上步骤可总结为“一提二套三检查”.
1-2 已知代数式x+2y的值是6,则代数式3x+6y+1的值是 19 . 解析 ∵x+2y=6, ∴3x+6y+1=3(x+2y)+1 =3×6+1 =18+1 =19.
1-3 已知a与b互为相反数,c与d互为倒数,m的绝对值为6,求 a b -cd+|m|的值.

2018年中考数学一轮复习第一章数与式第2节代数式与整式练习册_83

2018年中考数学一轮复习第一章数与式第2节代数式与整式练习册_83

第2节代数式与整式(建议答题时间:45分钟)命题点一列代数式及求值1. (2017海南)已知a=-2,则代数式a+1的值为( )A. -3B. -2C. -1D. 12. (2017重庆巴蜀模拟)若m=-1,n=2,则n2-2mn-1的值是( )A. 1B. 7C. 9D. -43. (2017重庆西大附中模拟)已知2a-b=3,则2b-4a+3的值为( )A. -6B. 9C. -3D. 64. (2017淄博)若a+b=3,a2+b2=7,则ab等于( )A. 2B. 1C. -2D. -15. (2017宁夏)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是( )第5题图A. (a-b)2=a2-2ab+b2B. a(a-b)=a2-abC. (a-b)2=a2-b2D. a2-b2=(a+b)(a-b)6. (2017丽水)已知a2+a=1,则代数式3-a-a2的值为________.第7题图7. (2017山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.命题点二整式的相关概念8. (2017济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是( )A. 2B. 3C. 4D. 59. (2017河北)=( )A. 2m 3nB. 2m3n C. 2m n 3 D. m 23n命题点三 整式的运算10. (2017安徽)计算(-a 3)2的结果是( )A. a 6B. -a 6C. -a 5D. a 511. (2017乌鲁木齐)计算(ab 2)3的结果是( )A . 3ab 2B . ab 2C . a 3b 5D . a 3b 612. (2017武汉)下列计算的结果是x 5的为( )A. x 10÷x 2B. x 6-x C. x 2·x 3D. (x 2)313. (2017江西)下列运算正确的是( ) A. (-a 5)2=a 10B. 2a ·3a 2=6a 2C. -2a +a =-3aD. -6a 6÷2a 2=-3a 314. (2017郴州改编)下列运算错误的是( )A. (a 2)3=a 6B. a 2·a 3=a 5C. a -1=1aD. (a +b )(a -b )=a 2+b 215. (2017黄冈)下列计算正确的是( ) A. 2x +3y =5xy B. (m +3)2=m 2+9 C. (xy 2)3=xy 6D. a 10÷a 5=a 5 16. (2017天津)计算x 7÷x 4的结果等于________.17. (2017眉山)先化简,再求值:(a +3)2-2(3a +4),其中a =-2.18. (2017重庆西大附中模拟)化简:(b+2a)(2a-b)-3(2a-b)219. (2017重庆八中模拟)化简:(2x+1)(2x-1)-(x+1)(3x-2).20. (2017河南改编)计算:(2x+y)2+(x-y)(x+y)-5x(x-y).21. 先化简,再求值:m(m-1)+(m+1)(m-2),其中m2-m-2=0.22. 已知b=-2a,求a(a-2b)+2(a+b)(a-b)-(a-b)2的值.命题点四因式分解23. (2017常德)下列各式由左到右的变形中,属于分解因式的是( )A. a(m+n)=am+anB. a2-b2-c2=(a-b)(a+b)-c2C. 10x2-5x=5x(2x-1)D. x2-16+6x=(x+4)(x-4)+6x24. (2017甘肃)分解因式:x2-2x+1=________.25. (2017安徽)因式分解:a2b-4ab+4b=________.命题点五图形规律探索26. (2017烟台) 用棋子摆出下列一组图形:第26题图按照这种规律摆下去,第n个图形用的棋子个数为( )A. 3nB. 6nC. 3n+6D. 3n+327. (2017随州)在公园内,牡丹按正方形种植,在它的周围种植芍药,下图反映了牡丹的列数(n)和芍药的数量规律,那么当n=11时,芍药的数量为( )第27题图A. 84株B. 88株C. 92株D.121株28. (2017娄底)刘莎同学用火柴棒依图中的规律摆六边形图案,用10086根火柴棒摆出的图案应是第________个.第28题图答案1. C2. B3. C4. B5. D 【解析】第一个图形的阴影部分的面积为两个正方形的面积差:a2-b2,第二个图形是长方形,长为(a+b),宽为(a-b),∴面积为(a+b)(a-b).6. 27. 1.08a【解析】洗衣机每台进价为a元,商店将进价提高20%后零售价为a(1+20%)=1.2a元,又九折促销为1.2a·0.9=1.08a,则该型号洗衣机的零售价为1.08a元.8. D9. B10. A11. D12. C13. A14. D15. D16. x317.解:原式=a2+6a+9-6a-8=a2+1,当a=-2时,原式=(-2)2+1=5.18. 解:原式=4a2-b2-3(4a2-4ab+b2) =4a2-b2-12a2+12ab-3b2=-8a2+12ab-4b2.19.解:原式=4x2-1-(3x2-2x+3x-2) =x2-x+1.20.解:原式=4x2+4xy+y2+x2-y2-5x2+5xy=9xy.21.解:原式=m2-m+m2-m-2=2m2-2m-2=2(m2-m)-2,∵m2-m-2=0,∴m2-m=2,∴原式=2×2-2=2.22. 解:原式=a2-2ab+2(a2-b2)-(a2+b2-2ab)=a2-2ab+2a2-2b2-a2-b2+2ab=2a2-3b2.将b=-2a代入得,原式=2a2-3(-2a)2=2a2-12a2=-10a2.23. C 24. (x-1)225.b(a-2)226. D 【解析】第1个图形,棋子个数:3×1+3;第2个图形,棋子个数:3×2+3;第3个图形,棋子个数3×3+3;…;因此,第n个图形棋子的个数等于3·n+3=3n+3.27. B 【解析】当n=1时,芍药的数量为8;当n=2时,芍药的数量为16;当n=3时,芍药的数量为24;当n=4时,芍药的数量为32,由此可发现规律,芍药的数量是n的8倍,所以芍药的数量为:8n株,所以当n=11时,芍药的数量为8×11=88株.28.2017 【解析】由图可以找出规律:第n个图形需要5n+1(其中n是正整数)个火柴棒,设5n+1=10086,解得n=2017.。

2018年中考数学真题知识分类练习试卷:代数式(有答案)

2018年中考数学真题知识分类练习试卷:代数式(有答案)

代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得. 【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是()A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C11.下列运算正确的是()A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是()A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【来源】安徽省2018年中考数学试题【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.39.计算:(1)(2)【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1);(2)40.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.41.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【来源】浙江省衢州市2018年中考数学试卷【答案】略11。

2018年中考数学总复习 第一篇 教材知识梳理篇 第1章 数与式 第3节 代数式及整式运算(精练)试题

2018年中考数学总复习 第一篇 教材知识梳理篇 第1章 数与式 第3节 代数式及整式运算(精练)试题

第三节 代数式及整式运算1.(2017长春中考)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形,若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( A )A .3a +2bB .3a +4bC .6a +2bD .6a +4b2.(2017遵义航中中考模拟)若抛物线y =x 2-x -1与x 轴的交点坐标为(m ,0),则代数式m 2-m +2 016的值为( C ) A .2 015 B .2 016 C .2 017 D .2 0183.(白银中考)若x 2+4x -4=0,则3(x -2)2-6(x +1)(x -1)的值为( B ) A .-6 B .6 C .18 D .-184.(2017六盘水中考)下列式子正确的是( C )A .7m +8n =8m +7nB .7m +8n =15mnC .7m +8n =8n +7mD .7m +8n =56mn5.(2017绥化中考)下列运算正确的是( C )A .3a +2a =5a 2B .3a +3b =3abC .2a 2bc -a 2bc =a 2bcD .a 5-a 2=a 36.如图是一个运算程序的示意图,若开始输入x 的值为81,则第2 016次输出的结果为( D )A .3B .27C .9D .17.(宁夏中考)实数a 在数轴上的位置如图,则|a -3|=__3-a__.8.(资阳中考)已知:(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为__12__.9.(铜仁中考)一列数:0,-1,3,-6,10,-15,21,…,按此规律第n 个数为__(-1)n -1·n (n -1)2__.10.(西宁中考)已知x 2+x -5=0,则代数式(x -1)2-x(x -3)+(x +2)(x -2)的值为__2__.11.(2017舟山中考)(1)计算:(3)2-2-1×(-4);解:原式=3-12×(-4) =3+2=5;(2)化简:(m +2)(m -2)-m 3×3m. 解:原式=m 2-4-m 2=-4.12.(2017无锡中考)计算:(1)|-6|+(-2)3+(7)0;解:原式=6-8+1=-1;(2)(a +b)(a -b)-a(a -b).解:原式=a 2-b 2-a 2+ab=ab -b 2.13.(2017常州中考)先化简,再求值:(x +2)(x -2)-x(x -1),其中x =-2.解:当x =-2时,原式=x 2-4-x 2+x=x -4=-6.14.(2017河南中考)先化简,再求值:(2x +y)2+(x -y)(x +y)-5x(x -y),其中x =2+1,y =2-1.解:原式=4x 2+4xy +y 2+x 2-y 2-5x 2+5xy=9xy ,当x =2+1,y =2-1时,原式=9(2+1)(2-1)=9×(2-1)=9×1=9.15.(2017长春中考)先化简,再求值:3a(a 2+2a +1)-2(a +1)2,其中a =2.解:原式=3a 3+6a 2+3a -2a 2-4a -2=3a 3+4a 2-a -2,当a =2时,原式=24+16-2-2=36.16.(2017镇江中考)(1)计算:(-2)2+tan 45°-(3-2)0;解:原式=4+1-1=4;(2)化简:x(x +1)-(x +1)(x -2).解:原式=x 2+x -x 2+x +2=2x +2.17.(2017宁波中考)先化简,再求值:(2+x)(2-x)+(x -1)(x +5),其中x =32.解:原式=4-x 2+x 2+4x -5=4x -1.∵x =32, ∴原式=4×32-1=6-1=5. 18.(邵阳中考)先化简,再求值:(m -n)2-m(m -2n),其中m =3,n = 2.解:原式=m 2-2mn +n 2-m 2+2mn=n 2,当n =2时,原式=2.19.(2017黔东南中考)我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a +b)n 的展开式的各项系数,此三角形称为“杨辉三角”.(a +b)0…… …… …… ①(a +b)1…… …… … ① ①(a +b)2…… …… ① ② ①(a +b)3…… … ① ③ ③ ①(a +b)4…… ① ④ ⑥ ④ ①(a +b)5… ① ⑤ ⑩ ⑩ ⑤ ①……根据“杨辉三角”请计算(a +b)20的展开式中第三项的系数为( D ) A .2 017 B .2 016 C .191 D .19020.(2017德州中考)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的小三角形(如图①);对剩下的三个小三角形再分别重复以上做法,……,将这种做法继续下去(如图②,图③…),则图⑥中挖去三角形的个数为( C )A .121B .362C .364D .72921.(2017荆州中考)若单项式-5x 4y2m +n 与2 017x m -n y 2是同类项,则m -7n 的算术平方根是__4__. 22.(2017泰州中考)已知2m -3n =-4,则代数式m(n -4)-n(m -6)的值为__8__. 23.(2017大庆中考)若a m =2,a n =8,则am +n =__16__. 24.(2017包头中考)若2x -3y -1=0,则5-4x +6y 的值为__3__.25.(2017大连中考)先化简,再求值:(2a +b)2-a(4a +3b),其中a =1,b = 2.解:原式=4a 2+4ab +b 2-4a 2-3ab=ab +b 2,当a =1,b =2时,原式=2+2.26.(大庆中考)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值. 解:a 3b +2a 2b 2+ab 3=ab(a 2+2ab +b 2)=ab(a +b)2,将a +b =3,ab =2代入,得ab(a +b)2=2×9=18.故代数式a 3b +2a 2b 2+ab 3的值是18.27.(2017遵义十九中一模)阅读材料:求1+2+22+23+24+…+22 013的值. 解:设S =1+2+22+23+24+…+22 012+22 013, 将等式两边同时乘以2得2S =2+22+23+24+25+…+22 013+22 014, 将下式减去上式得2S -S =22 014-1,即S =22 014-1, 即1+2+22+23+24+…+22 013=22 014-1. 请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n .(其中n 为正整数)解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘以2,得2S =2+22+23+24+25+…+210+211,将下式减去上式得2S -S =211-1,即S =211-1,则1+2+22+23+24+…+210=211-1;(2)设S =1+3+32+33+34+…+3n ,将两边同时乘以3,得3S =3+32+33+34+35+…+3n +3n +1, 将下式减去上式得3S -S =3n +1-1, 即S =3n +1-12, 则1+3+32+33+34+…+3n =3n +1-12.。

(完整版)2018中考数学真题汇编代数式

(完整版)2018中考数学真题汇编代数式

(完整版)2018中考数学真题汇编代数式2018中考数学真题汇编:代数式一.选择题(共25小题)1.(2018?齐齐哈尔)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a 实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数【分析】分别判断每个选项即可得.【解答】解:A、若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额,正确;B、若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长,正确;C、将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力,正确;D、若3和a分别表示一个两位数中的十位数字和个位数字,则30+a表示这个两位数,此选项错误;故选:D.2.(2018?大庆)某商品打七折后价格为a元,则原价为()A.a元 B.a元 C.30%a元 D.a元【分析】直接利用打折的意义表示出价格进而得出答案.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.3.(2018?河北)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案.【解答】解:∵原正方形的周长为acm,∴原正方形的边长为cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.4.(2018?临安区)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()A.B.C.D.【分析】整个组的平均成绩=15名学生的总成绩÷15.【解答】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为.故选B.5.(2018?枣庄)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.6.(2018?桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.7.(2018?安徽)据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.【解答】解:因为2016年和2018年我省有效发明专利分别为a 万件和b万件,所以b=(1+22.1%)2a.故选:B.8.(2018?河北)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【分析】直接利用已知盘子上的物体得出物体之间的重量关系进而得出答案.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.9.(2018?贵阳)当x=﹣1时,代数式3x+1的值是()A.﹣1 B.﹣2 C.4 D.﹣4【分析】把x的值代入解答即可.【解答】解:把x=﹣1代入3x+1=﹣3+1=﹣2,故选:B.10.(2018?重庆)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 【分析】根据运算程序,结合输出结果确定的值即可.【解答】解:A、x=3、y=3时,输出结果为32+2×3=15,不符合题意;B、x=﹣4、y=﹣2时,输出结果为(﹣4)2﹣2×(﹣2)=20,不符合题意;C、x=2、y=4时,输出结果为22+2×4=12,符合题意;D、x=4、y=2时,输出结果为42+2×2=20,不符合题意;故选:C.11.(2018?包头)如果2x a+1y与x2y b﹣1是同类项,那么的值是()A.B.C.1 D.3【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a、b的值,然后代入求值.【解答】解:∵2x a+1y与x2y b﹣1是同类项,∴a+1=2,b﹣1=1,解得a=1,b=2.∴=.故选:A.12.(2018?武汉)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.13.(2018?淄博)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.14.(2018?台湾)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.15.(2018?随州)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为()A.33 B.301 C.386 D.571【分析】由图形知第n个三角形数为1+2+3+…+n=,第n个正方形数为n2,据此得出最大的三角形数和正方形数即可得.【解答】解:由图形知第n个三角形数为1+2+3+…+n=,第n 个正方形数为n2,当n=19时,=190<200,当n=20时,=210>200,所以最大的三角形数m=190;当n=14时,n2=196<200,当n=15时,n2=225>200,所以最大的正方形数n=196,则m+n=386,故选:C.16.(2018?十堰)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B. C.5 D.【分析】由图形可知,第n行最后一个数为=,据此可得答案.【解答】解:由图形可知,第n行最后一个数为=,∴第8行最后一个数为==6,则第9行从左至右第5个数是=,故选:B.17.(2018?临沂)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,D正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.18.(2018?绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1921 23 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633【分析】由三角形数阵,知第n行的前面共有1+2+3+…+(n﹣1)个连续奇数,再由等差数列的前n 项和公式化简,再由奇数的特点求出第n行从左向右的第m个数,代入可得答案.【解答】解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.19.(2018?宜昌)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.20.(2018?重庆)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【分析】根据第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3可得第④个图形中三角形的个数为2+2×7.【解答】解:∵第①个图案中三角形个数4=2+2×1,第②个图案中三角形个数6=2+2×2,第③个图案中三角形个数8=2+2×3,……∴第⑦个图案中三角形的个数为2+2×7=16,故选:C.21.(2018?绍兴)某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图)若有34枚图钉可供选用,则最多可以展示绘画作品()A.16张B.18张C.20张D.21张【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行的时候,34枚图钉最多可以展示的画的数量,比较后即可得出结论.【解答】解:①如果所有的画展示成一行,34÷(1+1)﹣1=16(张),∴34枚图钉最多可以展示16张画;②如果所有的画展示成两行,34÷(2+1)=11(枚) (1)(枚),11﹣1=10(张),2×10=20(张),∴34枚图钉最多可以展示20张画;③如果所有的画展示成三行,34÷(3+1)=8(枚)……2(枚),8﹣1=7(张),3×7=21(张),∴34枚图钉最多可以展示21张画;④如果所有的画展示成四行,34÷(4+1)=6(枚)……4(枚),6﹣1=5(张),4×5=20(张),∴34枚图钉最多可以展示20张画;⑤如果所有的画展示成五行,34÷(5+1)=5(枚)……4(枚),5﹣1=4(张),5×4=20(张),∴34枚图钉最多可以展示20张画.综上所述:34枚图钉最多可以展示21张画.故选:D.22.(2018?重庆)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.23.(2018?绍兴)利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是()A. B. C. D.【分析】根据规定的运算法则分别计算出每个选项第一行的数即可作出判断.【解答】解:A、第一行数字从左到右依次为1、0、1、0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B、第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C、第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D、第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意;故选:B.24.(2018?济宁)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.25.(2018?烟台)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n个图形中有120朵玫瑰花,则n的值为()A.28 B.29 C.30 D.31【分析】根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n的值,从而可以解答本题.【解答】解:由图可得,第n个图形有玫瑰花:4n,令4n=120,得n=30,故选:C.二.填空题(共17小题)26.(2018?岳阳)已知a2+2a=1,则3(a2+2a)+2的值为5.【分析】利用整体思想代入计算即可;【解答】解:∵a2+2a=1,∴3(a2+2a)+2=3×1+2=5,故答案为5.27.(2018?白银)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:128.(2018?菏泽)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是15.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.29.(2018?杭州)计算:a﹣3a=﹣2a.【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:a﹣3a=﹣2a.故答案为:﹣2a.30.(2018?成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.【分析】根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.【解答】解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.31.(2018?黔南州)根据下列各式的规律,在横线处填空:,,=,…,+﹣=【分析】根据给定等式的变化,可找出变化规律“+﹣=(n为正整数)”,依此规律即可得出结论.【解答】解:∵ +﹣1=, +﹣=, +﹣=, +﹣=,…,∴+﹣=(n为正整数).∵2018=2×1009,∴+﹣=.故答案为:.32.(2018?咸宁)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为.【分析】根据数列得出第n个数为,据此可得前2018个数的和为++++…+,再用裂项求和计算可得.【解答】解:由数列知第n个数为,则前2018个数的和为++++…+=++++…+=1﹣+﹣+﹣+﹣+…+﹣=1﹣=,故答案为:.33.(2018?孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是﹣24.【分析】由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11﹣2a10+10=10+66﹣2×55+10=﹣24,故答案为:﹣24.34.(2018?淄博)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.35.(2018?荆门)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018=63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=, +2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.36.(2018?常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出的人心里想的数是9.来,若报出来的数如图所示,则报4【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.37.(2018?永州)对于任意大于0的实数x、y,满足:log2(x?y)=log2x+log2y,若log22=1,则log216= 4.【分析】利用log2(x?y)=log2x+log2y得到log216=log22+log22+log22+log22,然后根据log22=1进行计算.【解答】解:log216=log2(2?2?2?2)=log22+log22+log22+log22=1+1+1+1=4.故答案为4.38.(2018?桂林)将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为(505,2)第1列第2列第3列第4列列行第1行 1 2 3 4第2行8 7 6 5第3行9 10 11 12第4行16 15 14 13……………第n行…………【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).39.(2018?泰安)观察“田”字中各数之间的关系:则c的值为270或28+14.【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+1440.(2018?枣庄)将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2018在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.41.(2018?自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.42.(2018?遵义)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035.【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.三.解答题(共3小题)43.(2018?安徽)观察以下等式:第1个等式:++×=1,第2个等式:++×=1,第3个等式:++×=1,第4个等式:++×=1,第5个等式:++×=1,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【分析】以序号n为前提,依此观察每个分数,可以用发现,每个分母在n的基础上依次加1,每个分字分别是1和n﹣1 【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n ﹣1故应填:证明:=∴等式成立44.(2018?河北)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?。

2018年中考数学专题复习卷《整式》含解析

2018年中考数学专题复习卷《整式》含解析

整式一、选择题1.下列运算中,正确的是()A.x3+x3=x6B.x3·x9=x27C.(x2)3=x5D.x x2=x-12.计算结果正确的是()A. B.C.D.3.下列各式能用平方差公式计算的是()A. B.C. D.4.计算(a-3)2的结果是()A. a2+9B. a2+6a+9C. a2-6a+9D. a2-95.如图,4块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的等式是()A.B.C.D.6.下列四个式子:①4x2y5÷ xy=xy4;②16a6b4c÷8a3b2=2a2b2c;③9x8y2÷3x2y=3x6y;④(12m3+8m2-4m)÷(-2m)=-6m2+4m-2.其中正确的有( )A.0个B.1个C.2个D.3个7.下列等式成立的是()A. 2﹣1=﹣2B. (a2)3=a5 C. a6÷a3=a2 D.﹣2(x﹣1)=﹣2x+28.计算(x+1)(x+2)的结果为()A. x2+2B. x2+3x+2C. x2+3x+3D. x2+2x+29.若3×9m×27m=321,则m的值是( )A. 3B. 4C. 5D. 610.下列各式中,结果为x3-2x2y+xy2的是( )A.x(x+y)(x-y)B.x(x2+2xy+y2)C.x(x+y)2D.x(x-y)211.一个长方体的长、宽、高分别为5x-3,4x和2x,则它的体积等于( )A.(5x-3)·4x·2x=20x3-12x2B.·4x·2x=4x2C.(5x-3)·4x·2x=40x3-24x2D.(5x-3)·4x=20x2-12x12.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab= .做对一题得2分,则他共得到()A. 2分B. 4分C. 6分 D. 8分二、填空题13.计算:=________.14.计算: =________15.已知,,则的值是________16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为________17.若x2﹣mx﹣15=(x+3)(x+n),则n m的值为________.18.若把代数式化为的形式,其中、为常数,则________19.若M=(x-3)(x-5),N=(x-2)(x-6),则M与N的关系为________20.已知a﹣=3,那么a2+ =________.21.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为________.22.若4x2+mx+1是一个完全平方式,则常数m的值是________.三、解答题23. (1)计算(x-2)2-x(x+1)(2)先化简:,再求出当m=-2时原式的值。

浙江省2018年中考数学复习第一单元数与式第2课时代数式与整式含近9年中考真题试题_1194

浙江省2018年中考数学复习第一单元数与式第2课时代数式与整式含近9年中考真题试题_1194

第一部分考点研究第一单元数与式第2课时代数式与整式(含因式分解)浙江近9年中考真题精选(2009~2017)命题点1 代数式及求值类型一列代数式(温州2012.15)1.(2014宁波16题4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是________(用a、b的代数式表示).第1题图2.(2012温州15题5分)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有________人(用含有m的代数式表示).类型二代数式求值3.(2015湖州2题3分)当x=1时,代数式4-3x的值是( )A. 1B. 2C. 3D. 44.(2016丽水14题4分)已知x2+2x-1=0,则3x2+6x-2=________.命题点2) 整式及其运算(杭州5考,台州5考,温州2014.5,绍兴4考)5.(2014杭州1题3分)3a·(-2a)2=( )A. -12a3B. -6a2C. 12a3D. 6a26.(2016台州4题3分)下列计算正确的是( )A. x2+x2=x4B. 2x3-x3=x3C. x2·x3=x6D. (x2)3=x57.(2012杭州5题3分)下列计算正确的是( )A. (-p2q)3=-p5q3B. (12a2b3c)÷(6ab2)=2abC. 3m2÷(3m-1)=m-3m2D. (x2-4x)x-1=x-48. (2015绍兴4题4分)下面是一位同学做的四道题:①2a+3b=5ab.②(3a3)2=6a6.③a6÷a2=a3.④a2·a3=a5.其中做对的一道题的序号是( )A. ①B. ②C. ③D. ④9.(2013杭州2题3分)下列计算正确的是( )A. m3+m2=m5B. m3·m2=m6C. (1-m)(1+m)=m2-1D.-42(1-m)=2m-110.(2016杭州5题3分)下列各式的变形中,正确的是( ) A. x2·x3=x6 B. x2=|x|C. (x2-1x)÷x=x-1 D. x2-x+1=(x-12)2+1411.(2015杭州4题3分)下列各式的变形中,正确的是( ) A. (-x-y)(-x+y)=x2-y2B. 1x-x=1-xxC. x2-4x+3=(x-2)2+1D. x÷(x2+x)=1x+112.(2017台州7题4分)下列计算正确的是( )A. (a +2)(a -2)=a 2-2B. (a +1)(a -2)=a 2+a -2C. (a +b)2=a 2+b 2D. (a -b)2=a 2-2ab +b 213.(2013台州11题5分)计算:x 5÷x 3=________.命题点3 整式化简及求值(杭州2考,台州2考,温州必考,绍兴2考) 14.(2017温州17(2)题5分)化简:(1+a)(1-a)+a(a -2).15.(2017金华17题6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.16.(2014绍兴17(2)题4分)先化简,再求值:a(a -3b)+(a +b)2-a(a -b),其中a =1,b =-12.17.(2012杭州17题4分)化简:2[(m -1)m +m(m +1)][(m -1)m -m(m +1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?18.(2014杭州19题8分)设y =kx ,是否存在实数k ,使得代数式(x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2)能化简为x 4?若能,请求出所有满足条件的k 值,若不能,请说明理由.命题点4 因式分解(杭州2考,台州必考,温州必考,绍兴必考) 19.(2015台州6题4分)把多项式2x2-8分解因式,结果正确的是( ) A. 2(x2-8) B. 2(x-2)2C. 2(x+2)(x-2)D. 2x(x-4 x )20.(2017温州11题5分)分解因式:m2+4m=________.21.(2015丽水11题4分)分解因式:9-x2=________.22.(2009杭州12题4分)在实数范围内因式分解x4-4=________.23.(2016台州11题5分)因式分解:x2-6x+9=____________.24.(2016杭州13题4分)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是________(写出一个即可).命题点5 数式规律探索(台州2014.16)25.(2014台州16题5分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x――→第1次y1=2xx+1――→第2次y2=2y1y1+1――→第3次y3=2y2y2+1――→…则第n次运算的结果y n=________(用含字母x和n的代数式表示).答案1.ab 【解析】设小正方形边长为x ,则有a -4x =b ,解得x =a -b4,则图②中未被覆盖的面积为(b +2x)2-4x 2=b 2+4bx =ab.2.2m +3 【解析】设会弹古筝的有m 人,则会弹钢琴的人数为m +10,∴该班同学共有m +m +10-7=(2m +3)人.3.A4.1 【解析】∵x 2+2x -1=0,∴x 2+2x =1,∴3x 2+6x -2=3(x 2+2x)-2=3×1-2=1.5.C6.B 【解析】7.D 【解析】8.D 【解析】逐项分析故做对的一道题的序号是④,故选D. 9.D10.B 【解析】11.A12.D 【解析】13.x214.解:原式=1-a2+a2-2a(2分)=1-2a.(5分)15.解:原式=x2-x+5x-5+x2-4x+4 =2x2-1,当x =-2时,原式=8-1=7.16.解:原式=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2,(3分) 当a =1,b =-12时,原式=1+(-12)2=1+14=54.(4分) 17.解:原式=2(m 2-m +m 2+m)(m 2-m -m 2-m) =-8m 3.(3分)原式=-8m 3,表示一个能被8整除的数.(4分) 18.解:存在.理由如下: (x 2-y 2)(4x 2-y 2)+3x 2(4x 2-y 2) =4x 4-x 2y 2-4x 2y 2+y 4+12x 4-3x 2y 2 =16x 4-8x 2y 2+y 4. 又y =kx ,∴原式=16x 4-8x 2(kx)2+(kx)4 =16x 4-8k 2x 4+k 4x 4 =(16-8k 2+k 4)x 4,(4分)则由题意有:16-8k 2+k 4=1,(5分) k 4-8k 2+15=0, (k 2-3)(k 2-5)=0, k 2=3或k 2=5,∴k =±3或k =± 5.(8分)19.C 【解析】原式=2(x 2-4)=2(x +2)(x -2). 20.m(m +4) 21.(3-x)(3+x)22.(x 2+2)(x +2)(x -2) 【解析】原式=(x 2+2)(x 2-2)=(x 2+2)(x+2)(x -2).23.(x -3)224.-4(答案不唯一) 【解析】根据平方差公式确定k 的值.当k =-a 2(a 为非零的有理数)时,原式=x 2-a 2y 2=(x -ay)(x +ay).25.2n x(2n -1)x +1 【解析】由题意知,y 1=2xx +1,将y 1代入y 2得y 2=2y 1y 1+1=2×2xx +12xx +1+1=4x 3x +1,将y 2代入y 3得y 3=2y 2y 2+1=2×4x 3x +14x3x +1+1=8x7x +1,…,以此类推,可以发现,第n 次运算结果y n =2n x(2n -1)x +1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时 代数式与整式
(时间:30分钟)
1.(2018·桂林中考)用代数式表示:a 的2倍与3的和.下列表示正确的是( B )
A .2a -3
B .2a +3
C .2(a -3)
D .2(a +3)
2.(2018·株洲中考)下列运算正确的是( D )
A .2a +3b =5ab
B .(-ab)2=a 2b
C .a 2·a 4=a 8
D .2a 6
a 3=2a 3 3.(2018·绍兴中考)下面是一位同学做的四道题:①(a+b)2=a 2+
b 2;②(-2a 2)2=-4a 4;③a 5÷a 3=a 2
;④a 3·a 4=a 12.其中做对的一道题的序号是( C ) A .① B .② C .③ D .④
4.(2018·广州中考)下列计算正确的是( D )
A .(a +b)2=a 2+b 2
B .a 2+2a 2=3a 4
C .x 2y ÷1y
=x 2(y≠0)
D .(-2x 2)3=-8x 6
5.(2018·张掖中考)下列计算结果等于x 3的是( D ) A .x 6÷x 2 B .x 4-x
C .x +x 2
D .x 2·x
6.(2018·株洲中考)单项式5mn 2
的次数__3__.
7.(2018·杭州中考)计算:a -3a =__-2a__.
8.(2018·扬州中考)若m 是方程2x 2-3x -1=0的一个根,则6m 2-9m +2 015的值为__2__018__.
9.(2018·菏泽中考)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__15__.
10.(2018·昆明中考)若m +1m =3,则m 2+1m =__7__. 11.(2018·宜昌中考)先化简,再求值: x(x +1)+(2+x)(2-x),其中x =6-4.
解:原式=x 2+x +4-x 2
=x +4.
当x =6-4时,原式=6-4+4= 6.
12.(2018·淄博中考)先化简,再求值:
a(a+2b)-(a+1)2+2a,其中,a=2+1,b=2-1.
解:原式=a2+2ab-a2-2a-1+2a
=2ab-1.
当a=2+1,b=2-1时,
原式=2(2+1)(2-1)-1
=2×(2-1)-1
=2-1
=1.
13.已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为__0.36__.
14.(2018·乐山中考)先化简,再求值:
(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m),其中m是方程x2+x-2=0的根.
解:(2m+1)(2m-1)-(m-1)2+(2m)3÷(-8m)=(2m)2-1-(m2-2m+1)+8m3÷(-8m)=4m2-1-m2+2m-1-m2
=2m2+2m-2.
∵m是方程x2+x-2=0的根,
∴m2+m-2=0,即m2+m=2.
∴原式=2(m2+m)-2=2×2-2=2.。

相关文档
最新文档